2020-05-21 11:25:14 +03:00
|
|
|
\documentclass{article}
|
|
|
|
|
|
|
|
\usepackage[L7x,T1]{fontenc}
|
|
|
|
\usepackage[utf8]{inputenc}
|
|
|
|
\usepackage{csquotes}
|
|
|
|
\usepackage[english]{babel}
|
|
|
|
\usepackage[maxbibnames=99,style=authoryear]{biblatex}
|
|
|
|
\addbibresource{bib.bib}
|
|
|
|
\usepackage{hyperref}
|
|
|
|
\usepackage{caption}
|
|
|
|
\usepackage{subcaption}
|
|
|
|
\usepackage{gensymb}
|
|
|
|
\usepackage{varwidth}
|
|
|
|
\usepackage{tikz}
|
|
|
|
\usetikzlibrary{er,positioning}
|
|
|
|
|
|
|
|
\title{
|
2020-05-21 11:40:20 +03:00
|
|
|
Cartografic Generalization of Lines \\
|
|
|
|
(example of rivers) \\ \vspace{4mm}
|
2020-05-21 11:25:14 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
\author{Motiejus Jakštys}
|
|
|
|
|
|
|
|
\date{\today}
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
|
|
|
|
\newpage
|
|
|
|
|
|
|
|
\section{Abstract}
|
|
|
|
\label{sec:abstract}
|
|
|
|
|
2020-05-21 11:40:20 +03:00
|
|
|
Ready-to-use, open-source line generalization solutions emit poor cartographic
|
|
|
|
output. Therefore, if one is using open-source technology to create a
|
|
|
|
large-scale map, downscaled lines (e.g. rivers) will look poorly. This paper
|
2020-05-21 13:31:18 +03:00
|
|
|
explores line generalization algorithms and suggests one for an avid GIS
|
|
|
|
developer to implement. Once it is implemented and integrated to open-source
|
|
|
|
GIS solutions (e.g. QGIS), rivers on future large-scale maps will look
|
|
|
|
professionally downscaled.
|
2020-05-21 11:40:20 +03:00
|
|
|
|
2020-05-21 11:25:14 +03:00
|
|
|
\section{Introduction}
|
|
|
|
\label{sec:introduction}
|
|
|
|
|
2020-05-21 13:31:18 +03:00
|
|
|
Cartographic generalization is one of the key processes of creating large-scale
|
|
|
|
maps: how can one approximate object features, without losing its main
|
|
|
|
cartographic properties?
|
|
|
|
|
2020-05-21 14:21:15 +03:00
|
|
|
Generalization algorithms are well studied, tested and implemented, but they
|
|
|
|
expose deficiencies in large-scale reduction (\cite{monmonier1986toward},
|
|
|
|
\cite{mcmaster1993spatial}, \cite{jiang2003line}, \cite{dyken2009simultaneous},
|
|
|
|
\cite{mustafa2006dynamic}, \cite{nollenburg2008morphing}).
|
2020-05-21 13:31:18 +03:00
|
|
|
|
|
|
|
There are two main approaches to generalize lines in a map: geometric and
|
|
|
|
cartographic.
|
|
|
|
|
2020-05-21 14:21:15 +03:00
|
|
|
\cite{stanislawski2012automated} studied different types of metric assessments,
|
|
|
|
such as Hausdorff distance, segment length, vector shift, surface displacement,
|
|
|
|
and tortuosity for the generalization of linear geographic elements. Their
|
|
|
|
research can provide references to the appropriate settings of the line
|
|
|
|
generalization parameters for the maps at various scales.
|
2020-05-21 13:31:18 +03:00
|
|
|
|
2020-05-21 11:25:14 +03:00
|
|
|
\section{The Problem}
|
|
|
|
\label{sec:the_problem}
|
|
|
|
|
|
|
|
\section{My Idea}
|
|
|
|
\label{sec:my_idea}
|
|
|
|
|
|
|
|
\section{The Details}
|
|
|
|
\label{sec:the_details}
|
|
|
|
|
|
|
|
\section{Related Work}
|
|
|
|
\label{sec:related_work}
|
|
|
|
|
|
|
|
\section{Conclusions and Further Work}
|
|
|
|
\label{sec:conclusions_and_further_work}
|
|
|
|
|
|
|
|
\printbibliography
|
|
|
|
|
|
|
|
\end{document}
|