stud/Karto/assignment4/draw.py

88 lines
3.1 KiB
Python
Raw Normal View History

2019-11-28 18:54:24 +02:00
#!/usr/bin/env python3
2019-11-29 16:28:14 +02:00
from math import atan, pi
2019-11-29 00:08:08 +02:00
import numpy as np
2019-11-28 18:54:24 +02:00
import matplotlib.pyplot as plt
2019-11-29 00:34:41 +02:00
from collections import namedtuple
2019-11-29 19:37:42 +02:00
from shapely.geometry import LineString, asPolygon, Point as sPoint, asLineString
2019-11-29 00:08:08 +02:00
from descartes import PolygonPatch
2019-11-28 18:54:24 +02:00
2019-11-28 19:55:27 +02:00
from measure import *
2019-11-28 18:54:24 +02:00
2019-11-29 16:28:14 +02:00
# nubraižytos kelio linijos ir jų nubrėžti offset'ai iš dešinės į kairę.
2019-11-30 01:25:34 +02:00
kelias_l = namedtuple('kelias_l', ['line', 'offsets'])
2019-11-29 00:46:31 +02:00
2019-11-29 16:28:14 +02:00
N, E, S, W = (0,10), (10,0), (0,-10), (-10,0)
2019-11-29 14:11:51 +02:00
point_annotations = {
2019-11-29 16:28:14 +02:00
1: S, 2: E, 3: N, 4: W,
2019-11-29 14:11:51 +02:00
5: N, 6: S, 7: S, 8: N,
2019-11-29 16:28:14 +02:00
9: E, 10: N, 11: S, 12: N,
2019-11-29 14:11:51 +02:00
13: S, 14: W, 15: N, 16: N,
17: N, 18: E, 19: N, 20: S,
2019-11-29 16:28:14 +02:00
21: N, 22: S, 23: E, 24: N,
2019-11-29 14:11:51 +02:00
}
2019-11-29 16:53:41 +02:00
road_annotations = {'A-08':W, 'A-05':N, 'A-03':N, 'G-11':E}
2019-11-29 16:28:14 +02:00
2019-11-29 00:59:37 +02:00
# implementacija
fig, ax = plt.subplots()
2019-11-29 18:13:28 +02:00
ax.set_aspect('equal')
2019-11-29 14:11:51 +02:00
plt.grid(True)
2019-11-29 00:59:37 +02:00
2019-11-29 14:11:51 +02:00
# taškų anotacijos
for v in vertices:
2019-11-29 18:13:28 +02:00
ax.annotate(v.point, xy=v.xy, zorder=KAT0, textcoords='offset points',
fontsize='small', xytext=point_annotations[v.point])
2019-11-29 14:11:51 +02:00
2019-11-29 16:28:14 +02:00
keliai_l = {}
2019-11-29 14:11:51 +02:00
# kelių piešimas
2019-11-30 01:25:34 +02:00
for id, kelias in keliai.items():
2019-11-29 00:34:41 +02:00
# ašis
2019-11-29 16:28:14 +02:00
kelias_line = LineString([Points[i].xy for i in kelias.virsunes])
2019-11-29 00:46:31 +02:00
ax.plot(*kelias_line.xy, linewidth=2, dashes=kelias.dashes, color=kelias.spalva, zorder=kelias.kat)
2019-11-29 00:34:41 +02:00
# offset'ai
2019-11-29 00:46:31 +02:00
offset_multiplier = kelias.plotis/(kelias.juostos[0].plotis + kelias.juostos[-1].plotis)
2019-11-29 00:34:41 +02:00
offset_lines = []
2019-11-29 00:46:31 +02:00
for offset in kelias.juostos:
2019-11-29 16:28:14 +02:00
l = kelias_line.parallel_offset(offset.plotis*offset_multiplier, offset.kryptis, join_style=2)
2019-11-29 00:34:41 +02:00
offset_lines.append(l)
2019-11-29 00:46:31 +02:00
ax.plot(*l.xy, linewidth=.5, dashes=offset.dashes, color=offset.spalva, zorder=kelias.kat)
2019-11-29 00:34:41 +02:00
# kelio poligonas su plotu
kelias_poly = np.vstack((offset_lines[0].coords, offset_lines[-1].coords))
ax.add_patch(PolygonPatch(asPolygon(kelias_poly), fc='white', zorder=kelias.kat, linewidth=0))
2019-11-30 01:25:34 +02:00
keliai_l[id] = kelias_l(line=kelias_line, offsets=offset_lines)
2019-11-29 00:34:41 +02:00
2019-11-29 16:28:14 +02:00
# kelių anotacijos
for id, kelias in keliai_l.items():
linestart, lineend = np.array(kelias.offsets[-1].coords)[0:2]
delta = lineend - linestart
angle = atan(delta[1]/delta[0])*180/pi
offset = road_annotations[id]
2019-11-29 18:13:28 +02:00
ax.annotate(id, kelias.offsets[-1].coords[0], zorder=KAT0, textcoords='offset points',
fontsize='small', xytext=offset, rotation=angle)
2019-11-29 00:08:08 +02:00
2019-11-29 16:53:41 +02:00
# septynkampis
prev_dirang = float(K1)*pi/180
2019-11-29 18:13:28 +02:00
step = 5/7*pi
2019-11-29 16:53:41 +02:00
heptagon = [np.array(Points[6].xy)]
for i in range(1, 7):
dxy = np.array([float(D1)*cos(prev_dirang), float(D1)*sin(prev_dirang)])
heptagon.append(heptagon[i-1] + dxy)
2019-11-29 18:13:28 +02:00
prev_dirang += pi - step
ax.add_patch(PolygonPatch(asPolygon(heptagon), linewidth=2, fc='xkcd:white', ec='xkcd:magenta'))
2019-11-29 16:53:41 +02:00
2019-11-29 18:52:12 +02:00
# septynkampio centras
x0, y0 = Points[6].xy
x = x0 + float(D1)/(2*sin(pi/7))*sin(pi/7-float(K1)*pi/180)
y = y0 + float(D1)/(2*sin(pi/7))*cos(pi/7-float(K1)*pi/180)
2019-11-29 19:37:42 +02:00
center = sPoint(x, y)
2019-11-29 18:52:12 +02:00
2019-11-30 01:25:34 +02:00
# užlieta erdvė apskritimas
2019-11-29 19:37:42 +02:00
radius = float(D1)/2/sin(pi/7)-float(A1)
angles = np.linspace(0, 2*pi, num=360)
circle_y = y + np.sin(angles) * radius
circle_x = x + np.cos(angles) * radius
ax.plot(circle_x, circle_y)
if __name__ == '__main__':
plt.show()