stud/IV/wm.sql

243 lines
7.6 KiB
MySQL
Raw Normal View History

2021-02-13 17:05:16 +02:00
\set ON_ERROR_STOP on
SET plpgsql.extra_errors TO 'all';
2021-02-18 10:00:14 +02:00
drop function if exists detect_bends;
2021-02-18 07:59:24 +02:00
-- detect_bends detects bends using the inflection angles. It does not do corrections.
2021-02-18 10:00:14 +02:00
create or replace function detect_bends(line geometry, OUT bends geometry[]) as $$
2021-02-10 00:08:55 +02:00
declare
pi real;
p geometry;
p1 geometry;
p2 geometry;
p3 geometry;
2021-02-18 10:00:14 +02:00
bend geometry;
2021-02-13 17:05:16 +02:00
prev_sign int4;
cur_sign int4;
2021-02-10 00:08:55 +02:00
begin
pi = radians(180);
2021-02-20 14:23:21 +02:00
-- the last vertex is iterated over twice, because the algorithm uses 3 vertices
-- to calculate the angle between them.
--
-- Given 3 vertices p1, p2, p3:
--
2021-02-20 14:30:40 +02:00
-- p1___ ...
-- /
-- ... _____/
-- p3 p2
2021-02-20 14:23:21 +02:00
--
2021-02-20 14:30:40 +02:00
-- When looping over the line, p1 will be head (lead) vertex, p2 will be the
-- measured angle, and p3 will be trailing. The line that will be added to
-- the bend will always be [p3,p2].
2021-02-20 14:23:21 +02:00
-- So once the p1 becomes the last vertex, the loop terminates, and the
-- [p2,p1] line will not have a chance to be added. So the loop adds the last
-- vertex twice, so it has a chance to become p2, and be added to the bend.
--
2021-02-20 14:10:34 +02:00
for p in (
2021-02-20 14:30:40 +02:00
(select geom from st_dumppoints(line) order by path[1] asc)
2021-02-20 14:10:34 +02:00
union all
2021-02-20 14:30:40 +02:00
(select geom from st_dumppoints(line) order by path[1] desc limit 1)
2021-02-20 14:10:34 +02:00
) loop
2021-02-10 00:08:55 +02:00
p3 = p2;
p2 = p1;
p1 = p;
2021-03-04 14:25:50 +02:00
continue when p3 is null;
2021-02-26 17:31:24 +02:00
cur_sign = sign(pi - st_angle(p1, p2, p2, p3));
2021-02-13 17:05:16 +02:00
2021-02-20 14:10:34 +02:00
if bend is null then
bend = st_makeline(p3, p2);
else
bend = st_linemerge(st_union(bend, st_makeline(p3, p2)));
end if;
2021-02-13 17:05:16 +02:00
if prev_sign + cur_sign = 0 then
if bend is not null then
2021-02-18 10:00:14 +02:00
bends = bends || bend;
2021-02-13 17:05:16 +02:00
end if;
bend = st_makeline(p3, p2);
end if;
prev_sign = cur_sign;
2021-02-10 00:08:55 +02:00
end loop;
2021-02-18 07:08:04 +02:00
2021-02-20 14:30:40 +02:00
-- the last line may be lost if there is no "final" inflection angle. Add it.
if (select count(1) >= 2 from st_dumppoints(bend)) then
2021-02-18 10:00:14 +02:00
bends = bends || bend;
2021-02-18 07:08:04 +02:00
end if;
2021-02-10 00:08:55 +02:00
end
$$ language plpgsql;
2021-02-18 07:59:24 +02:00
2021-02-18 13:45:53 +02:00
-- fix_gentle_inflections moves bend endpoints following "Gentle Inflection at
-- End of a Bend" section.
2021-02-22 08:44:23 +02:00
--
-- The text does not specify how many vertices can be "adjusted"; it can
-- equally be one or many. This function is adjusting many, as long as the
2021-02-26 10:27:40 +02:00
-- commulative inflection angle small (see variable below).
2021-02-26 19:15:39 +02:00
--
-- The implementation could be significantly optimized to avoid `st_reverse`
-- and array reversals, trading for complexity in fix_gentle_inflections1.
2021-02-18 13:45:53 +02:00
create or replace function fix_gentle_inflections(INOUT bends geometry[]) as $$
2021-02-26 17:31:24 +02:00
declare
len int4;
2021-02-26 17:31:24 +02:00
bends1 geometry[];
begin
len = array_length(bends, 1);
2021-02-26 19:15:39 +02:00
bends = fix_gentle_inflections1(bends);
for i in 1..len loop
2021-02-26 19:15:39 +02:00
bends1[i] = st_reverse(bends[len-i+1]);
end loop;
2021-02-26 19:15:39 +02:00
bends1 = fix_gentle_inflections1(bends1);
for i in 1..len loop
2021-02-26 19:15:39 +02:00
bends[i] = st_reverse(bends1[len-i+1]);
end loop;
2021-02-26 17:31:24 +02:00
end
$$ language plpgsql;
-- fix_gentle_inflections1 fixes gentle inflections of an array of lines in
-- one direction. This is an implementation detail of fix_gentle_inflections.
create or replace function fix_gentle_inflections1(INOUT bends geometry[]) as $$
2021-02-22 08:44:23 +02:00
declare
2021-02-26 10:41:38 +02:00
pi real;
2021-02-26 10:27:40 +02:00
small_angle real;
2021-02-26 16:10:31 +02:00
ptail geometry; -- tail point of tail bend
phead geometry[]; -- 3 tail points of head bend
2021-02-26 10:27:40 +02:00
i int4; -- bends[i] is the current head
2021-02-18 07:59:24 +02:00
begin
2021-02-26 10:41:38 +02:00
pi = radians(180);
2021-02-26 10:27:40 +02:00
-- the threshold when the angle is still "small", so gentle inflections can
-- be joined
small_angle := radians(30);
2021-02-26 16:10:31 +02:00
for i in 2..array_length(bends, 1) loop
2021-02-22 08:44:23 +02:00
-- Predicate: two bends will always share an edge. Assuming (A,B,C,D,E,F)
-- is a bend:
-- C________D
-- / \
-- \________/ \_______/
-- A B E F
--
-- Then edges (A,B) and (E,F) are shared with the neighboring bends.
--
--
2021-02-26 16:21:20 +02:00
-- Assume this curve (figure `inflection-1`), going clockwise from A:
2021-02-22 08:44:23 +02:00
--
2021-02-26 10:27:40 +02:00
-- \______B
-- A `-------. C
-- |
-- G___ F |
-- / `-----.____+ D
-- E
2021-02-22 08:44:23 +02:00
--
-- After processing the curve following the definition of a bend, the bend
2021-02-23 18:49:39 +02:00
-- [A-E] would be detected. Assuming inflection point E and F are "small",
-- the bend needs to be extended by two edges to [A,G].
2021-02-26 16:21:20 +02:00
select geom from st_dumppoints(bends[i-1])
order by path[1] asc limit 1 into ptail;
2021-02-26 10:27:40 +02:00
while true loop
-- copy last 3 points of bends[i-1] (tail) to ptail
2021-02-26 16:10:31 +02:00
select array(
select geom from st_dumppoints(bends[i]) order by path[1] asc limit 3
) into phead;
2021-02-26 10:27:40 +02:00
2021-02-26 16:12:45 +02:00
-- if the bend got too short, stop processing it
exit when array_length(phead, 1) < 3;
2021-02-26 10:27:40 +02:00
-- if inflection angle between ptail[1:3] "large", stop processing this bend
2021-03-02 18:34:42 +02:00
exit when abs(st_angle(phead[1], phead[2], phead[3]) - pi) > small_angle;
2021-02-26 10:27:40 +02:00
2021-02-26 16:10:31 +02:00
-- distance from head's first vertex should be larger than from second vertex
2021-03-02 18:34:42 +02:00
exit when st_distance(ptail, phead[2]) < st_distance(ptail, phead[3]);
2021-02-22 08:44:23 +02:00
2021-02-26 10:27:40 +02:00
-- detected a gentle inflection. Move head of the tail to the tail of head
2021-02-26 16:10:31 +02:00
bends[i] = st_removepoint(bends[i], 0);
bends[i-1] = st_addpoint(bends[i-1], phead[3]);
2021-02-22 08:44:23 +02:00
end loop;
end loop;
2021-02-18 07:59:24 +02:00
end
$$ language plpgsql;
-- self_crossing eliminates self-crossing from the bends, following the
-- article's section "Self-line Crossing When Cutting a Bend".
create or replace function self_crossing(INOUT bends geometry[]) as $$
declare
2021-03-02 18:34:44 +02:00
i int4;
j int4;
pi real;
2021-03-02 14:54:44 +02:00
angle real;
2021-03-04 14:25:50 +02:00
p0 geometry;
2021-03-02 14:54:44 +02:00
p1 geometry;
p2 geometry;
p3 geometry;
2021-03-04 14:25:50 +02:00
s2 real;
s3 real;
2021-03-02 14:54:44 +02:00
bend geometry;
2021-03-04 17:59:26 +02:00
this geometry;
multi geometry;
begin
2021-03-02 14:54:44 +02:00
pi = radians(180);
2021-03-02 14:54:44 +02:00
-- go through the bends and find one where sum of inflection angle is >180
2021-03-02 18:34:44 +02:00
for i in 1..array_length(bends, 1) loop
2021-03-02 14:54:44 +02:00
angle = 0;
p1 = null;
2021-03-02 18:34:44 +02:00
p2 = null;
p3 = null;
2021-03-04 14:25:50 +02:00
for p0 in (select geom from st_dumppoints(bends[i]) order by path[1] asc) loop
2021-03-02 14:54:44 +02:00
p3 = p2;
p2 = p1;
2021-03-04 14:25:50 +02:00
p1 = p0;
continue when p3 is null;
2021-03-02 14:54:44 +02:00
angle = angle + abs(pi - st_angle(p1, p2, p3));
end loop;
2021-03-04 14:25:50 +02:00
continue when abs(angle) <= pi;
2021-03-02 18:34:44 +02:00
2021-03-04 18:16:11 +02:00
-- sum of inflection angles for this bend is >180, so it may be
-- self-crossing. now try to find another bend in this line that
-- crosses an imaginary line of end-vertices
2021-03-04 14:25:50 +02:00
p0 = st_pointn(bends[i], 1);
p1 = st_pointn(bends[i], -1);
2021-03-02 18:34:44 +02:00
2021-03-04 18:16:11 +02:00
-- go through each bend in the given line, and see if has a potential to
-- cross bends[i]. optimization: we care only about bends which beginning
-- and end start at different sides of the plane, separated by endpoints
-- p0 and p1.
2021-03-04 14:25:50 +02:00
for j in 1..array_length(bends, 1) loop
continue when i = j;
2021-03-02 18:34:44 +02:00
2021-03-04 14:25:50 +02:00
p2 = st_pointn(bends[j], 1);
p3 = st_pointn(bends[j], -1);
2021-03-04 18:16:11 +02:00
-- are p2 and p3 on the different sides of line(p0,p1)? vector
-- multiplication; https://stackoverflow.com/questions/1560492/
2021-03-04 14:25:50 +02:00
s2 = (st_x(p0)-st_x(p1)*(st_y(p2)-st_y(p1))-(st_y(p0)-st_y(p1))*(st_x(p2)-st_x(p1)));
s3 = (st_x(p0)-st_x(p1)*(st_y(p3)-st_y(p1))-(st_y(p0)-st_y(p1))*(st_x(p3)-st_x(p1)));
continue when sign(s2) = sign(s3);
2021-03-04 17:59:26 +02:00
-- do end vertices of bend[i] cross bend[j]?
this = st_makeline(st_pointn(bends[i], 1), st_pointn(bends[i], -1));
multi = st_split(bends[j], this);
continue when st_numgeometries(multi) = 1;
2021-03-04 18:16:11 +02:00
-- real self-crossing detected! Remove it.
2021-03-04 17:59:26 +02:00
-- if j < i:
-- bends[j] = multi[1][1...n-1]; that will have all the vertices of bends[j],
2021-03-04 18:16:11 +02:00
-- except the crossing and what comes after it.
2021-03-04 17:59:26 +02:00
-- bends[j] = append(bends[j], bends[i][-1])
-- remove bends from bends[j+1] to bends[i] inclusive.
-- elif j > i:
2021-03-04 18:16:11 +02:00
-- bends[i] = bends[i][1]
-- bends[i] = append(bends[i], multi[2][2..n])
-- remove bends from bends[i+1] to bends[j] inclusive.
2021-03-04 14:25:50 +02:00
end loop;
2021-03-02 18:34:44 +02:00
2021-03-02 14:54:44 +02:00
end loop;
end
$$ language plpgsql;