explain tolerances
This commit is contained in:
parent
64ee099894
commit
8cf79b4224
@ -6,6 +6,7 @@
|
||||
\usepackage[english]{babel}
|
||||
\usepackage[maxbibnames=99,style=authoryear]{biblatex}
|
||||
\usepackage[pdfusetitle]{hyperref}
|
||||
\usepackage{enumitem}
|
||||
\addbibresource{bib.bib}
|
||||
\usepackage{caption}
|
||||
\usepackage{subcaption}
|
||||
@ -16,6 +17,9 @@
|
||||
\usetikzlibrary{er,positioning}
|
||||
\input{version}
|
||||
|
||||
\newcommand{\DP}{Douglas \& Peucker}
|
||||
\newcommand{\VW}{Visvalingam-Whyatt}
|
||||
|
||||
\title{
|
||||
Cartografic Generalization of Lines \\
|
||||
(example of rivers) \\ \vspace{4mm}
|
||||
@ -28,8 +32,6 @@ http://bl.ocks.org/msbarry/9152218
|
||||
small scale: 1:XXXXXX
|
||||
large scale: 1:XXX
|
||||
|
||||
take douglas-pecker and check for different scales.
|
||||
|
||||
a4: 210x297mm
|
||||
a6: 105x148xmm
|
||||
a7: 74x105mm
|
||||
@ -41,15 +43,6 @@ connect rivers first to a single polylines:
|
||||
ideal hypothesis: mueller algorithm + topology may fully realize cartographic generalization tasks.
|
||||
|
||||
what scales and what distances?
|
||||
|
||||
https://postgis.net/docs/ST_SimplifyVW.html
|
||||
https://postgis.net/docs/ST_Simplify.html
|
||||
https://postgis.net/docs/ST_SimplifyPreserveTopology.html
|
||||
|
||||
how is tolerance bound to scale?
|
||||
- just use same parameter.
|
||||
|
||||
|
||||
\fi
|
||||
|
||||
\author{Motiejus Jakštys}
|
||||
@ -120,7 +113,7 @@ general public:
|
||||
|
||||
For comparison reasons, this article will be using Lakaja and large part of Žeimena
|
||||
(see figure~\ref{fig:zeimena} on page~\pageref{fig:zeimena}). This location was
|
||||
chosen because it is a combination of straight and curved river shape,
|
||||
chosen because the river exhibits both both straight and curved shape, is a
|
||||
combination of two curly rivers, and author's familiarity with the location.
|
||||
|
||||
\begin{figure}
|
||||
@ -132,6 +125,20 @@ combination of two curly rivers, and author's familiarity with the location.
|
||||
|
||||
\section{Mathematical and geometrical algorithms}
|
||||
|
||||
To visually evaluate the sample above, we created a few examples for {\DP}
|
||||
and {\VW} using the following parameters:
|
||||
|
||||
\begin{enumerate}[label=(\Roman*)]
|
||||
\item {\DP} tolerance: $tolerance := 125 * 2^n, n = 0,1,...,5$.
|
||||
\item {\VW} tolerance: $vwtolerance = tolerance ^ 2$\label{itm:2}.
|
||||
\end{enumerate}
|
||||
|
||||
Item~\ref{itm:2} requires explanation. Tolerance for {\DP} is specified in
|
||||
linear units, in this case, meters. Tolerance for {\VW} is specified in areal
|
||||
units, in this case, square meters $m^2$. As author was not able to locate
|
||||
formal comparisons between the two (i.e. how to calculate one tolerance value
|
||||
from another, so the results are comparable?), {\DP} tolerance was arbitrarily
|
||||
squared. To the author's understanding, this provides reasonalbe results.
|
||||
|
||||
\renewcommand{\tabularxcolumn}[1]{>{\center\small}m{#1}}
|
||||
\begin{tabularx}{\textwidth}{ p{1.5cm} | X | X | }
|
||||
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user