From c8f40e18025443ddd8a704790890b896c127b8c5 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Motiejus=20Jak=C5=A1tys?= Date: Mon, 3 May 2021 15:42:33 +0300 Subject: [PATCH] use degrees where possible --- IV/bib.bib | 1 - IV/mj-msc.tex | 49 ++++++++++++++----------------------------------- 2 files changed, 14 insertions(+), 36 deletions(-) diff --git a/IV/bib.bib b/IV/bib.bib index e409c85..fb427a6 100644 --- a/IV/bib.bib +++ b/IV/bib.bib @@ -202,7 +202,6 @@ month={1}, day={26}, url={http://www.e-cartouche.ch/content_reg/cartouche/cartdesign/en/html/GenRules_learningObject3.html}, - organization={CartouCHe}, urldate={2021-05-03}, } diff --git a/IV/mj-msc.tex b/IV/mj-msc.tex index 0eaaedd..9c239d9 100644 --- a/IV/mj-msc.tex +++ b/IV/mj-msc.tex @@ -1,15 +1,15 @@ \documentclass[a4paper]{article} -\usepackage[T1,T2A]{fontenc} % T2A is for Cyrillic characters +\usepackage[T1]{fontenc} \usepackage[american]{babel} \usepackage[utf8]{inputenc} -\usepackage [autostyle, english=american]{csquotes} +\usepackage [autostyle,english=american]{csquotes} \MakeOuterQuote{"} \usepackage[maxbibnames=99,style=numeric,sorting=none,alldates=edtf]{biblatex} \addbibresource{bib.bib} \usepackage[ pdfusetitle, - pdfkeywords={Line Generalization,Cartographic Line Generalization,Wang--Mueller}, + pdfkeywords={Line Generalization,Line Simplification,Wang--Mueller}, pdfborderstyle={/S/U/W 0} % /S/U/W 1 to enable reasonable decorations ]{hyperref} \usepackage{enumitem} @@ -29,6 +29,8 @@ %\usepackage{setspace} %\doublespacing +\input{version.inc} +\input{vars.inc} \IfFileExists{./editorial-version}{\def \mjEditorial {}}{} \ifx \mjEditorial \undefined \usepackage{minted} @@ -38,10 +40,6 @@ \newcommand{\inputcode}[2]{\verbatiminput{#2}} \fi -\input{version.inc} -\input{vars.inc} - - \newcommand{\onpage}[1]{\ref{#1} on page~\pageref{#1}} \newcommand{\titlecite}[1]{\citetitle{#1}\cite{#1}} \newcommand{\DP}{Douglas \& Peucker} @@ -50,7 +48,7 @@ \newcommand{\WnM}{Wang and M{\"u}ller} % {\WM} algoritmo realizacija kartografinei upių generalizacijai \newcommand{\MYTITLE}{{\WM} algorithm realization for cartographic line generalization} -\newcommand{\MYTITLESC}{wang--m{\"u}ller algorithm realization for cartographic line generalization} +\newcommand{\MYTITLENOCAPS}{wang--m{\"u}ller algorithm realization for cartographic line generalization} \newcommand{\MYAUTHOR}{Motiejus Jakštys} \title{\MYTITLE} @@ -76,7 +74,7 @@ A thesis presented for the degree of Master in Cartography \\[8ex] \LARGE - \textbf{\textsc{\MYTITLESC}} + \textbf{\textsc{\MYTITLENOCAPS}} \vfill @@ -444,25 +442,6 @@ This section defines vocabulary and terms as defined in the rest of the paper. \end{description} -\subsection{Radians and Degrees} - -This document contains a few constant angles expressed in radians. -Table~\ref{table:radians} summarizes some of the values used in this document -and the implementation. - -\begin{table}[h] - \centering - \begin{tabular}{|c|c|c|c|c|c|c|} - \hline - Degrees & $30^\circ$ & $45^\circ$ & $90^\circ$ & $180^\circ$ & $360^\circ$ \\ - \hline - Radians & $\nicefrac{\pi}{6}$ & $\nicefrac{\pi}{4}$ & $\nicefrac{\pi}{2}$ & $\pi$ & $2\pi$ \\ - \hline - \end{tabular} - \caption{Some angular degree and radian values mentioned in this article.} - \label{table:radians} -\end{table} - \subsection{Automated tests} \label{sec:automated-tests} @@ -771,13 +750,13 @@ be quite computationally expensive: naively implemented, complexity of checking every bend with every bend is $O(n^2)$. In other words, the time it takes to run the algorithm grows quadratically with the with the number of vertices. -It is possible to optimize this step and skip checking most of the bends. Only -bends whose sum of inner angles is larger than $\pi$ can ever self-cross. If -the value is less than $\pi$, it cannot cross other bends. That way, only a -fraction of bends need to be checked. The worst-case complexity is still -$O(n^2)$, when all bends' inner angles are larger than $\pi$, but, assuming no -more than $20\%$ of the bends' inner angles are larger than $\pi$, the time it -takes to run this piece of the algorithm drops by $80\%$. +It is possible to optimize this step and skip checking a large number of bends. +Only bends whose sum of inner angles is larger than $180^\circ$ can ever +self-cross. That way, only a fraction of bends need to be checked. The +worst-case complexity is still $O(n^2)$, when all bends' inner angles are +larger than $180^\circ$. Having this optimization, the algorithmic complexity +(as a result, the time it takes to execute the algorithm) is drops by the +fraction of bends whose sum of inner angles is smaller than $180^\circ$. \subsection{Attributes of a Single Bend}