add gpkg samples

This commit is contained in:
Motiejus Jakštys
2020-05-22 10:19:17 +03:00
parent b515e40435
commit d932c7c7fc
10 changed files with 196 additions and 23 deletions

View File

@@ -14,6 +14,7 @@
\usepackage{varwidth}
\usepackage{tikz}
\usetikzlibrary{er,positioning}
\input{version}
\title{
Cartografic Generalization of Lines \\
@@ -21,15 +22,40 @@
}
\iffalse
small scale: 1:XXXXXX
large scale: 1:XXX
take douglas-pecker and check for different scales.
a4: 210x297mm
a6: 105x148xmm
a7: 74x105mm
a8: 52x74mm
connect rivers first to a single polylines:
- some algs can preserve connectivity, some not.
ideal hypothesis: mueller algorithm + topology may fully realize cartographic generalization tasks.
what scales and what distances?
https://postgis.net/docs/ST_SimplifyVW.html
https://postgis.net/docs/ST_Simplify.html
https://postgis.net/docs/ST_SimplifyPreserveTopology.html
how is tolerance bound to scale?
- just use same parameter.
\fi
\author{Motiejus Jakštys}
\date{\today}
\date{
\vspace{10mm}
Version: \VCDescribe \\ \vspace{4mm}
Generated At: \GeneratedAt
}
\begin{document}
\maketitle
@@ -73,7 +99,7 @@ of straight and curved river shape, and author's familiarity with the location.
\begin{figure}
\centering
\includegraphics[width=148mm]{zeimena}
\includegraphics[width=148mm]{zeimena-pretty}
\caption{Žeimena near Jaunadaris}
\label{fig:zeimena}
\end{figure}
@@ -81,19 +107,60 @@ of straight and curved river shape, and author's familiarity with the location.
\section{Mathematical and geometrical algorithms}
To understand why geometrical algorithms are not entirely suitable for
downscaling, let's pick some visual examples.
downscaling, let's pick some visual examples. Start with
\cite{douglas1973algorithms}, one of the most well-known line simplification
algorithms, which is often used for generalization. Žeimena example is
generalized with different tolerances in figure~\ref{fig:douglas-peucker} on
page~\pageref{fig:douglas-peucker}.
\subsection{Douglas \& Peucker}
As one can observe in figure~\ref{fig:douglas-100}, the Douglas \& Peucker with
100m tolerance preserves most of the shape, and 500m
(figure~\ref{fig:douglas-500}) becomes a straight line.
\cite{douglas1973algorithms} is one of the most well-known line simplification
algorithms, which is often used for generalization. It will simplify the line shape.
Trying the same dataset with different tolerances for Douglas \& Peucker.
\begin{figure}
\centering
\begin{subfigure}[b]{0.18\textwidth}
\includegraphics[width=\textwidth]{zeimena}
\caption{original}
\label{fig:zeimena-original}
\end{subfigure}
~
\begin{subfigure}[b]{0.18\textwidth}
\includegraphics[width=\textwidth]{st-simplify-100}
\caption{100m}
\label{fig:douglas-100}
\end{subfigure}
~
\begin{subfigure}[b]{0.18\textwidth}
\includegraphics[width=\textwidth]{st-simplify-150}
\caption{150m}
\label{fig:douglas-150}
\end{subfigure}
~
\begin{subfigure}[b]{0.18\textwidth}
\includegraphics[width=\textwidth]{st-simplify-300}
\caption{300m}
\label{fig:douglas-300}
\end{subfigure}
~
\begin{subfigure}[b]{0.18\textwidth}
\includegraphics[width=\textwidth]{st-simplify-500}
\caption{500m}
\label{fig:douglas-500}
\end{subfigure}
\caption{Douglas \& Peucker line simplifications with different tolerances}
\label{fig:douglas-peucker}
\end{figure}
\section{Algorithms based on cartographical knowledge}
\cite{jiang2003line}, \cite{dyken2009simultaneous},
\cite{mustafa2006dynamic}, \cite{nollenburg2008morphing}
For further investigation:
\begin{itemize}
\item \cite{jiang2003line}
\item \cite{dyken2009simultaneous}
\item \cite{mustafa2006dynamic}
\item \cite{nollenburg2008morphing}
\end{itemize}
\section{My Idea}
\label{sec:my_idea}