#!/usr/bin/env python3 from collections import namedtuple from decimal import Decimal as Dec from math import sin, cos, pi import numpy as np def normalize(ang): while ang > 180: ang -= 360 while ang <= -180: ang += 360 return ang def guess(inp): if isinstance(inp, str) and '-' in inp: deg, mm, ss = inp.split('-') ddeg, dmm, dss = Dec(deg), Dec(mm), Dec(ss) return ddeg + dmm/60 + dss/3600 else: return Dec(instr) class Point(namedtuple('Point', ['acadx', 'acady'])): @property def lksx(self): return self.acady @property def lksy(self): return self.acadx class Vertex: def __init__(self, point, length, angle, dirang=Dec(), coords = Point(Dec(), Dec())): self.point = point self.len = length self.ang = angle self.dirang = dirang self.coords = coords @property def xy(self): """xy returns a tuple of lksx and lksy coordinates""" return np.array([float(self.coords.lksx), float(self.coords.lksy)]) # Kategorijos KAT0, KAT1, KAT2, KAT3, KAT4 = range(5,0,-1) A = Dec('6.094') B = Dec('-2.923') C = Dec('-13.462') N = Dec('9.512') L1 = Dec('16.321') # === Kelias A-05 === L2 = Dec('9.109') L3 = Dec('4.819') # === Kelias A-08 === L4 = Dec('2.675') L5 = Dec('2.059') L6 = Dec('1.262') L7 = Dec('4.170') L8 = Dec('6.005') L9 = Dec('6.453') # === Griovys G-11 === L10 = Dec('4.882') L11 = Dec('3.305') L12 = Dec('2.210') L13 = Dec('4.381') A03_plotis = Dec('17.401') + A A05_plotis = Dec('13.705') + B A08_plotis = Dec('29.006') + C G11_plotis = Dec('14.776') + N # Directional coords + angle X11 = Dec('6091968.055') Y11 = Dec('485944.146') A11_2 = guess('70-16-17') vertices = [ # point len angle dirangle coords Vertex(11, Dec('164.126'), guess('103-03-03'), A11_2, Point(X11, Y11)), Vertex(2, Dec('149.851'), guess('218-27-42')), Vertex(19, Dec('82.384' ), guess('211-44-30')), Vertex(3, Dec('259.022'), guess('67-26-49' )), Vertex(24, Dec('319.331'), guess('67-33-06' )), Vertex(12, Dec('74.764' ), guess('279-03-59')), Vertex(13, Dec('81.640' ), guess('278-54-55')), Vertex(14, Dec('31.888' ), guess('119-27-45')), Vertex(15, Dec('84.073' ), guess('160-50-28')), Vertex(16, Dec('70.072' ), guess('207-42-31')), Vertex(17, Dec('73.378' ), guess('206-18-01')), Vertex(10, Dec('66.625' ), guess('90-55-10' )), Vertex(18, Dec('97.003' ), guess('100-18-10')), Vertex(9, Dec('121.003'), guess('148-30-56')), Vertex(8, Dec('131.915'), guess('285-20-57')), Vertex(23, Dec('102.086'), guess('29-44-22' )), Vertex(22, Dec('158.324'), guess('276-33-49')), Vertex(7, Dec('72.157' ), guess('82-07-47' )), Vertex(6, Dec('107.938'), guess('104-15-46')), Vertex(21, Dec('104.082'), guess('234-17-37')), Vertex(5, Dec('154.332'), guess('283-30-57')), Vertex(20, Dec('68.972' ), guess('152-15-58')), Vertex(1, Dec('151.531'), guess('101-20-01')), Vertex(4, Dec('179.336'), guess('150-15-41')), ] angle_sum = Dec(0) for v in vertices: angle_sum += v.ang theoretical_angle_sum = Dec(int((len(vertices)-2)*180)) for i, v in enumerate(vertices[1:]): prev = vertices[i] v.dirang = prev.dirang + 180 - v.ang dx = Dec(float(prev.len) * cos(float(prev.dirang) * pi/180)) dy = Dec(float(prev.len) * sin(float(prev.dirang) * pi/180)) v.coords = Point(prev.coords.acadx + dx, prev.coords.acady + dy) # 9-kampio krastine D1 D1 = Dec('174.667') + C # Daugiakampio pasukimo kampas (K1) K1 = Dec('13.147') + B # Atstumas iki tikrosios uzliejimo zonos (A1) (0.001 tikslumu) A1 = Dec('67.536') + B # Points is vertice map by id Points = {} for v in vertices: Points[v.point] = v if __name__ == '__main__': print("angle sum %.4f, theoretical angle sum %d" % \ (angle_sum, theoretical_angle_sum)) """ for i, v in enumerate(vertices): nxt = vertices[0 if i == len(vertices) - 1 else i+1] pts = "%d-%d" % (v.point, nxt.point) draw = "@%.3f<%.4f" % (v.len, normalize(90 - v.dirang)) print("%5s: %19s acadcoords:(%.3f,%.3f)" % \ (pts, draw, v.coords.acadx, v.coords.acady)) """ print(""" Kelio A-03 plotis = 17.401 + A = %.3f""" % A03_plotis + """ Kelio A-05 plotis = 13.705 + B = %.3f""" % A05_plotis + """ Kelio A-08 plotis = 29.006 + C = %.3f""" % A08_plotis + """ Griovio G-11 plotis = 14.776 + N = %.3f""" % G11_plotis + """ Prognozuojamo uzliejimo zona, tai taisyklingas 9-kampis 9-kampio krastine D1 = %.3f""" % D1 + """ Daugiakampio pasukimo kampas (K1) (0.0001 laipsnio tikslumu) K1 = %.4f""" % K1 + """ Tikroji uzliejimo zona, tai taisyklingas apskritimas, kurio centras TURI SUTAPTI su daugiakampio centru. Atstumas iki tikrosios uzliejimo zonos (A1) (0.001 tikslumu) A1 = %.3f""" % A1 + """ A-05: x(l) = %.3f""" % (A05_plotis*L3/(L2+L3)) + """ x(r) = %.3f""" % (A05_plotis*L2/(L2+L3)) + """ A-08: x(l) = %.3f""" % (A08_plotis*(L7+L8+L9)/(L7+L8+L9+L6+L5+L4)) + """ x(r) = %.3f""" % (A08_plotis*(L6+L5+L4)/(L7+L8+L9+L6+L5+L4)) + """ G-11: x(l) = %.3f""" % (G11_plotis*(L12+L13)/(L10+L11+L12+L13)) + """ x(r) = %.3f""" % (G11_plotis*(L10+L11)/(L10+L11+L12+L13)) + """ """)