\documentclass{article} \usepackage[L7x,T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{csquotes} \usepackage[english]{babel} \usepackage[maxbibnames=99,style=authoryear]{biblatex} \addbibresource{bib.bib} \usepackage{hyperref} \usepackage{caption} \usepackage{subcaption} \usepackage{gensymb} \usepackage{varwidth} \usepackage{tikz} \usetikzlibrary{er,positioning} \title{ Cartografic Generalization of Lines \\ (example of rivers) \\ \vspace{4mm} } \author{Motiejus Jakštys} \date{\today} \begin{document} \maketitle \newpage \section{Abstract} \label{sec:abstract} Ready-to-use, open-source line generalization solutions emit poor cartographic output. Therefore, if one is using open-source technology to create a large-scale map, downscaled lines (e.g. rivers) will look poorly. This paper explores line generalization algorithms and suggests one for an avid GIS developer to implement. Once it is implemented and integrated to open-source GIS solutions (e.g. QGIS), rivers on future large-scale maps will look professionally downscaled. \section{Introduction} \label{sec:introduction} Cartographic generalization is one of the key processes of creating large-scale maps: how can one approximate object features, without losing its main cartographic properties? Linear generalization algorithms are well studied, tested and implemented. There are two main approaches to generalize lines in a map: geometric and cartographic. \subsection{ \section{The Problem} \label{sec:the_problem} \section{My Idea} \label{sec:my_idea} \section{The Details} \label{sec:the_details} \section{Related Work} \label{sec:related_work} \section{Conclusions and Further Work} \label{sec:conclusions_and_further_work} \printbibliography \end{document}