1
stud/IV/wm.sql
Motiejus Jakštys 98af154526 test harness
2021-05-15 00:31:41 +03:00

844 lines
26 KiB
PL/PgSQL

\set ON_ERROR_STOP on
SET plpgsql.extra_errors TO 'all';
-- wm_detect_bends detects bends using the inflection angles. No corrections.
drop function if exists wm_detect_bends;
create function wm_detect_bends(
line geometry,
dbgname text default null,
dbggen integer default null,
OUT bends geometry[]
) as $$
declare
p geometry;
p1 geometry;
p2 geometry;
p3 geometry;
bend geometry;
prev_sign int4;
cur_sign int4;
l_type text;
dbgpolygon geometry;
begin
l_type = st_geometrytype(line);
if l_type != 'ST_LineString' then
raise 'This function works with ST_LineString, got %', l_type;
end if;
-- The last vertex is iterated over twice, because the algorithm uses 3
-- vertices to calculate the angle between them.
--
-- Given 3 vertices p1, p2, p3:
--
-- p1___ ...
-- /
-- ... _____/
-- p3 p2
--
-- When looping over the line, p1 will be head (lead) vertex, p2 will be the
-- measured angle, and p3 will be trailing. The line that will be added to
-- the bend will always be [p3,p2].
-- So once the p1 becomes the last vertex, the loop terminates, and the
-- [p2,p1] line will not have a chance to be added. So the loop adds the last
-- vertex twice, so it has a chance to become p2, and be added to the bend.
for p in
(select geom from st_dumppoints(line) order by path[1] asc)
union all
(select geom from st_dumppoints(line) order by path[1] desc limit 1)
loop
p3 = p2;
p2 = p1;
p1 = p;
continue when p3 is null;
cur_sign = sign(pi() - st_angle(p1, p2, p2, p3));
if bend is null then
bend = st_makeline(p3, p2);
else
bend = st_linemerge(st_union(bend, st_makeline(p3, p2)));
end if;
if prev_sign + cur_sign = 0 then
if bend is not null then
bends = bends || bend;
end if;
bend = st_makeline(p3, p2);
end if;
prev_sign = cur_sign;
end loop;
-- the last line may be lost if there is no "final" inflection angle. Add it.
if (select count(1) >= 2 from st_dumppoints(bend)) then
bends = bends || bend;
end if;
if dbgname is not null then
for i in 1..array_length(bends, 1) loop
insert into wm_debug(stage, name, gen, nbend, way) values(
'bbends', dbgname, dbggen, i, bends[i]);
dbgpolygon = null;
if st_npoints(bends[i]) >= 3 then
dbgpolygon = st_makepolygon(
st_addpoint(bends[i], st_startpoint(bends[i]))
);
end if;
insert into wm_debug(stage, name, gen, nbend, way) values(
'bbends-polygon', dbgname, dbggen, i, dbgpolygon);
end loop;
end if;
end $$ language plpgsql;
-- wm_fix_gentle_inflections moves bend endpoints following "Gentle Inflection
-- at End of a Bend" section.
--
-- The text does not specify how many vertices can be "adjusted"; it can
-- equally be one or many. This function is adjusting many, as long as the
-- cumulative inflection angle is small (see variable below).
--
-- The implementation could be significantly optimized to avoid `st_reverse`
-- and array reversals, trading for complexity in wm_fix_gentle_inflections1.
drop function if exists wm_fix_gentle_inflections;
create function wm_fix_gentle_inflections(
INOUT bends geometry[],
dbgname text default null,
dbggen integer default null
) as $$
declare
len int4;
bends1 geometry[];
dbgpolygon geometry;
begin
len = array_length(bends, 1);
bends = wm_fix_gentle_inflections1(bends);
for i in 1..len loop
bends1[i] = st_reverse(bends[len-i+1]);
end loop;
bends1 = wm_fix_gentle_inflections1(bends1);
for i in 1..len loop
bends[i] = st_reverse(bends1[len-i+1]);
end loop;
if dbgname is not null then
for i in 1..array_length(bends, 1) loop
insert into wm_debug(stage, name, gen, nbend, way) values(
'cinflections', dbgname, dbggen, i, bends[i]);
dbgpolygon = null;
if st_npoints(bends[i]) >= 3 then
dbgpolygon = st_makepolygon(
st_addpoint(bends[i],
st_startpoint(bends[i]))
);
end if;
insert into wm_debug(stage, name, gen, nbend, way) values(
'cinflections-polygon', dbgname, dbggen, i, dbgpolygon);
end loop;
end if;
end $$ language plpgsql;
-- wm_fix_gentle_inflections1 fixes gentle inflections of an array of lines in
-- one direction. An implementation detail of wm_fix_gentle_inflections.
drop function if exists wm_fix_gentle_inflections1;
create function wm_fix_gentle_inflections1(INOUT bends geometry[]) as $$
declare
-- the threshold when the angle is still "small", so gentle inflections can
-- be joined
small_angle constant real default radians(45);
ptail geometry; -- tail point of tail bend
phead geometry[]; -- 3 tail points of head bend
i int4; -- bends[i] is the current head
begin
for i in 2..array_length(bends, 1) loop
-- Predicate: two bends will always share an edge. Assuming (A,B,C,D,E,F)
-- is a bend:
-- C________D
-- / \
-- \________/ \_______/
-- A B E F
--
-- Then edges (A,B) and (E,F) are shared with the neighboring bends.
--
--
-- Assume this curve (figure `inflection-1`), going clockwise from A:
--
-- \______B
-- A `-------. C
-- |
-- G___ F |
-- / `-----.____+ D
-- E
--
-- After processing the curve following the definition of a bend, the bend
-- [A-E] would be detected. Assuming inflection point E and F are "small",
-- the bend needs to be extended by two edges to [A,G].
select geom from st_dumppoints(bends[i-1])
order by path[1] asc limit 1 into ptail;
while true loop
-- copy last 3 points of bends[i-1] (tail) to ptail
select array(
select geom from st_dumppoints(bends[i]) order by path[1] asc limit 3
) into phead;
-- if the bend got too short, stop processing it
exit when array_length(phead, 1) < 3;
-- inflection angle between ptail[1:3] is "large", stop processing
exit when abs(st_angle(phead[1], phead[2], phead[3]) - pi()) > small_angle;
-- distance from head's 1st vertex should be larger than from 2nd vertex
exit when st_distance(ptail, phead[2]) < st_distance(ptail, phead[3]);
-- Detected a gentle inflection.
-- Move head of the tail to the tail of head
bends[i] = st_removepoint(bends[i], 0);
bends[i-1] = st_addpoint(bends[i-1], phead[3]);
end loop;
end loop;
end $$ language plpgsql;
-- wm_if_selfcross returns whether baseline of bendi crosses bendj.
-- If it doesn't, returns a null geometry.
-- Otherwise, it will return the baseline split into a few parts where it
-- crosses bendj.
drop function if exists wm_if_selfcross;
create function wm_if_selfcross(
bendi geometry,
bendj geometry
) returns geometry as $$
declare
a geometry;
b geometry;
multi geometry;
begin
a = st_pointn(bendi, 1);
b = st_pointn(bendi, -1);
multi = st_split(bendj, st_makeline(a, b));
if st_numgeometries(multi) = 1 then
return null;
end if;
if st_numgeometries(multi) = 2 and
(st_contains(bendj, a) or st_contains(bendj, b)) then
return null;
end if;
return multi;
end $$ language plpgsql;
-- wm_self_crossing eliminates self-crossing from the bends, following the
-- article's section "Self-line Crossing When Cutting a Bend".
drop function if exists wm_self_crossing;
create function wm_self_crossing(
INOUT bends geometry[],
dbgname text default null,
dbggen integer default null,
OUT mutated boolean
) as $$
declare
i int4;
j int4;
multi geometry;
begin
mutated = false;
<<bendloop>>
for i in 1..array_length(bends, 1) loop
continue when abs(wm_inflection_angle(bends[i])) <= pi();
-- sum of inflection angles for this bend is >180, so it may be
-- self-crossing. Now try to find another bend in this line that
-- crosses an imaginary line of end-vertices
-- Go through each bend in the given line, and see if has a potential to
-- cross bends[i]. The line-cut process is different when i<j and i>j;
-- therefore there are two loops, one for each case.
for j in 1..i-1 loop
multi = wm_if_selfcross(bends[i], bends[j]);
continue when multi is null;
mutated = true;
-- remove first vertex of the following bend, because the last
-- segment is always duplicated with the i'th bend.
bends[i+1] = st_removepoint(bends[i+1], 0);
bends[j] = st_geometryn(multi, 1);
bends[j] = st_setpoint(
bends[j],
st_npoints(bends[j])-1,
st_pointn(bends[i], st_npoints(bends[i]))
);
bends = bends[1:j] || bends[i+1:];
continue bendloop;
end loop;
for j in reverse array_length(bends, 1)..i+1 loop
multi = wm_if_selfcross(bends[i], bends[j]);
continue when multi is null;
mutated = true;
-- remove last vertex of the previous bend, because the last
-- segment is duplicated with the i'th bend.
bends[i-1] = st_removepoint(bends[i-1], st_npoints(bends[i-1])-1);
bends[i] = st_makeline(
st_pointn(bends[i], 1),
st_removepoint(st_geometryn(multi, st_numgeometries(multi)), 0)
);
bends = bends[1:i] || bends[j+1:];
continue bendloop;
end loop;
end loop;
if dbgname is not null then
insert into wm_debug(stage, name, gen, nbend, way) values(
'dcrossings', dbgname, dbggen, generate_subscripts(bends, 1),
unnest(bends)
);
end if;
end $$ language plpgsql;
drop function if exists wm_inflection_angle;
create function wm_inflection_angle (IN bend geometry, OUT angle real) as $$
declare
p0 geometry;
p1 geometry;
p2 geometry;
p3 geometry;
begin
angle = 0;
for p0 in select geom from st_dumppoints(bend) order by path[1] asc loop
p3 = p2;
p2 = p1;
p1 = p0;
continue when p3 is null;
angle = angle + abs(pi() - st_angle(p1, p2, p3));
end loop;
end $$ language plpgsql;
drop function if exists wm_bend_attrs;
drop function if exists wm_elimination;
drop function if exists wm_exaggeration;
drop type if exists wm_t_attrs;
create type wm_t_attrs as (
adjsize real,
baselinelength real,
curvature real,
isolated boolean
);
create function wm_bend_attrs(
bends geometry[],
dbgname text default null,
dbggen integer default null
) returns wm_t_attrs[] as $$
declare
isolation_threshold constant real default 0.5;
attrs wm_t_attrs[];
attr wm_t_attrs;
bend geometry;
i int4;
needs_curvature real;
skip_next boolean;
dbglastid integer;
begin
for i in 1..array_length(bends, 1) loop
bend = bends[i];
attr.adjsize = 0;
attr.baselinelength = st_distance(st_startpoint(bend), st_endpoint(bend));
attr.curvature = wm_inflection_angle(bend) / st_length(bend);
attr.isolated = false;
if st_numpoints(bend) >= 3 then
attr.adjsize = wm_adjsize(bend);
end if;
attrs[i] = attr;
end loop;
for i in 1..array_length(attrs, 1) loop
if dbgname is not null then
insert into wm_debug (stage, name, gen, nbend, way, props) values(
'ebendattrs', dbgname, dbggen, i, bends[i],
jsonb_build_object(
'adjsize', attrs[i].adjsize,
'baselinelength', attrs[i].baselinelength,
'curvature', attrs[i].curvature,
'isolated', false
)
) returning id into dbglastid;
end if;
-- first and last bends can never be isolated by definition
if skip_next or i = 1 or i = array_length(attrs, 1) then
-- invariant: two bends that touch cannot be isolated.
if st_npoints(bends[i]) > 3 then
skip_next = false;
end if;
continue;
end if;
needs_curvature = attrs[i].curvature * isolation_threshold;
if attrs[i-1].curvature < needs_curvature and
attrs[i+1].curvature < needs_curvature then
attr = attrs[i];
attr.isolated = true;
attrs[i] = attr;
skip_next = true;
if dbgname is not null then
update wm_debug
set props=props || jsonb_build_object('isolated', true)
where id=dbglastid;
end if;
end if;
end loop;
return attrs;
end $$ language plpgsql;
-- sm_st_split a line by a point in a more robust way than st_split.
-- See https://trac.osgeo.org/postgis/ticket/2192
drop function if exists wm_st_split;
create function wm_st_split(
input geometry,
blade geometry
) returns geometry as $$
declare
type1 text;
type2 text;
begin
type1 = st_geometrytype(input);
type2 = st_geometrytype(blade);
if not (type1 = 'ST_LineString' and
type2 = 'ST_Point') then
raise 'Arguments must be LineString and Point, got: % and %', type1, type2;
end if;
return st_split(st_snap(input, blade, 0.00000001), blade);
end $$ language plpgsql;
-- wm_exaggerate_bend2 is the second version of bend exaggeration. Uses
-- non-linear interpolation by point azimuth. Slower, but produces nicer
-- exaggerated geometries.
drop function if exists wm_exaggerate_bend2;
create function wm_exaggerate_bend2(
INOUT bend geometry,
size float,
desired_size float
) as $$
declare
scale2 constant float default 1.2; -- exaggeration enthusiasm
midpoint geometry; -- midpoint of the baseline
points geometry[];
startazimuth float;
azimuth float;
diffazimuth float;
point geometry;
sss float;
protect int = 10;
begin
if size = 0 then
raise 'invalid input: zero-area bend';
end if;
midpoint = st_lineinterpolatepoint(st_makeline(
st_pointn(bend, 1),
st_pointn(bend, -1)
), .5);
startazimuth = st_azimuth(midpoint, st_pointn(bend, 1));
while (size < desired_size) and (protect > 0) loop
protect = protect - 1;
for i in 2..st_npoints(bend)-1 loop
point = st_pointn(bend, i);
azimuth = st_azimuth(midpoint, point);
diffazimuth = degrees(azimuth - startazimuth);
if diffazimuth > 180 then
diffazimuth = diffazimuth - 360;
elseif diffazimuth < -180 then
diffazimuth = diffazimuth + 360;
end if;
diffazimuth = abs(diffazimuth);
if diffazimuth > 90 then
diffazimuth = 180 - diffazimuth;
end if;
sss = ((scale2-1) * (diffazimuth / 90)^0.5);
point = st_transform(
st_project(
st_transform(point, 4326)::geography,
st_distance(midpoint, point) * sss, azimuth)::geometry,
st_srid(midpoint)
);
bend = st_setpoint(bend, i-1, point);
end loop;
size = wm_adjsize(bend);
end loop;
end $$ language plpgsql;
-- wm_exaggerate_bend exaggerates a given bend. Uses naive linear
-- interpolation. Faster than wm_exaggerate_bend2, but result visually looks
-- worse.
drop function if exists wm_exaggerate_bend;
create function wm_exaggerate_bend(
INOUT bend geometry,
size float,
desired_size float
) as $$
declare
scale constant float default 1.2; -- exaggeration enthusiasm
midpoint geometry; -- midpoint of the baseline
splitbend geometry; -- bend split across its half
bendm geometry; -- bend with coefficients to prolong the lines
points geometry[];
begin
if size = 0 then
raise 'invalid input: zero-area bend';
end if;
midpoint = st_lineinterpolatepoint(st_makeline(
st_pointn(bend, 1),
st_pointn(bend, -1)
), .5);
while size < desired_size loop
splitbend = wm_st_split(bend, st_lineinterpolatepoint(bend, .5));
-- Convert bend to LINESTRINGM, where M is the fraction by how
-- much the point will be prolonged:
-- 1. draw a line between midpoint and the point on the bend.
-- 2. multiply the line length by M. Midpoint stays intact.
-- 3. the new set of lines form a new bend.
-- Uses linear interpolation; can be updated to gaussian or similar;
-- then interpolate manually instead of relying on st_addmeasure.
bendm = st_collect(
st_addmeasure(st_geometryn(splitbend, 1), 1, scale),
st_addmeasure(st_geometryn(splitbend, 2), scale, 1)
);
points = array((
select st_scale(
st_makepoint(st_x(geom), st_y(geom)),
st_makepoint(st_m(geom), st_m(geom)),
midpoint
)
from st_dumppoints(bendm)
order by path[1], path[2]
));
bend = st_setsrid(st_makeline(points), st_srid(bend));
size = wm_adjsize(bend);
end loop;
end $$ language plpgsql;
-- wm_adjsize calculates adjusted size for a polygon. Can return 0.
drop function if exists wm_adjsize;
create function wm_adjsize(bend geometry, OUT adjsize float) as $$
declare
polygon geometry;
area float;
cmp float;
begin
adjsize = 0;
polygon = st_makepolygon(st_addpoint(bend, st_startpoint(bend)));
-- Compactness Index (cmp) is defined as "the ratio of the area of the
-- polygon over the circle whose circumference length is the same as the
-- length of the circumference of the polygon". I assume they meant the
-- area of the circle. So here goes:
-- 1. get polygon area P.
-- 2. get polygon perimeter = u. Pretend it's our circle's circumference.
-- 3. get A (area) of the circle from u: A = u^2/(4pi)
-- 4. divide P by A: cmp = P/A = P/(u^2/(4pi)) = 4pi*P/u^2
area = st_area(polygon);
cmp = 4*pi()*area/(st_perimeter(polygon)^2);
if cmp > 0 then
adjsize = (area*(0.75/cmp));
end if;
end $$ language plpgsql;
-- wm_exaggeration is the Exaggeration Operator described in the WM paper.
create function wm_exaggeration(
INOUT bends geometry[],
attrs wm_t_attrs[],
dhalfcircle float,
intersect_patience integer,
dbgname text default null,
dbggen integer default null,
OUT mutated boolean
) as $$
declare
desired_size constant float default pi()*(dhalfcircle^2)/8;
bend geometry;
tmpint geometry;
i integer;
n integer;
last_id integer;
begin
mutated = false;
<<bendloop>>
for i in 1..array_length(attrs, 1) loop
if attrs[i].isolated and attrs[i].adjsize < desired_size then
bend = wm_exaggerate_bend2(bends[i], attrs[i].adjsize, desired_size);
-- Does bend intersect with the previous or next
-- intersect_patience bends? If they do, abort exaggeration for this one.
-- Do close-by bends intersect with this one? Special
-- handling first, because 2 vertices need to be removed before checking.
n = st_npoints(bends[i-1]);
if n > 3 then
continue when st_intersects(bend,
st_removepoint(st_removepoint(bends[i-1], n-1), n-2));
end if;
if n > 2 then
tmpint = st_intersection(bend, st_removepoint(bends[i-1], n-1));
continue when st_npoints(tmpint) > 1;
end if;
n = st_npoints(bends[i+1]);
if n > 3 then
continue when st_intersects(bend,
st_removepoint(st_removepoint(bends[i+1], 0), 0));
end if;
if n > 2 then
tmpint = st_intersection(bend, st_removepoint(bends[i+1], 0));
continue when st_npoints(tmpint) > 1;
end if;
for n in -intersect_patience+1..intersect_patience-1 loop
continue when n in (-1, 0, 1);
continue when i+n < 1;
continue when i+n > array_length(attrs, 1);
-- More special handling: if the neigbhoring bend has 3 vertices, the
-- neighbor's neighbor may just touch the tmpbendattr.bend; in this
-- case, the nearest vertex should be removed before comparing.
tmpint = bends[i+n];
if st_npoints(tmpint) > 2 then
if n = -2 and st_npoints(bends[i+n+1]) = 3 then
tmpint = st_removepoint(tmpint, st_npoints(tmpint)-1);
elsif n = 2 and st_npoints(bends[i+n-1]) = 3 then
tmpint = st_removepoint(tmpint, 0);
end if;
end if;
continue bendloop when st_intersects(bend, tmpint);
end loop;
-- No intersections within intersect_patience, mutate bend!
mutated = true;
bends[i] = bend;
-- remove last vertex of the previous bend and first vertex of the next
-- bend, because bends always share a line segment together this is
-- duplicated in a few places, because PostGIS does not allow (?)
-- mutating an array when passed to a function.
bends[i-1] = st_addpoint(
st_removepoint(bends[i-1], st_npoints(bends[i-1])-1),
st_pointn(bends[i], 1),
-1
);
bends[i+1] = st_addpoint(
st_removepoint(bends[i+1], 0),
st_pointn(bends[i], st_npoints(bends[i])-1),
0
);
if dbgname is not null then
insert into wm_debug (stage, name, gen, nbend, way) values(
'gexaggeration', dbgname, dbggen, i, bends[i]);
end if;
end if;
end loop;
end $$ language plpgsql;
create function wm_elimination(
INOUT bends geometry[],
attrs wm_t_attrs[],
dhalfcircle float,
dbgname text default null,
dbggen integer default null,
OUT mutated boolean
) as $$
declare
desired_size constant float default pi()*(dhalfcircle^2)/8;
leftsize float;
rightsize float;
i int4;
begin
mutated = false;
i = 1;
while i < array_length(attrs, 1)-1 loop
i = i + 1;
continue when attrs[i].adjsize = 0;
continue when attrs[i].adjsize > desired_size;
if i = 2 then
leftsize = attrs[i].adjsize + 1;
else
leftsize = attrs[i-1].adjsize;
end if;
if i = array_length(attrs, 1)-1 then
rightsize = attrs[i].adjsize + 1;
else
rightsize = attrs[i+1].adjsize;
end if;
continue when attrs[i].adjsize >= leftsize;
continue when attrs[i].adjsize >= rightsize;
-- Local minimum. Elminate bend!
mutated = true;
bends[i] = st_makeline(st_pointn(bends[i], 1), st_pointn(bends[i], -1));
-- remove last vertex of the previous bend and
-- first vertex of the next bend, because bends always
-- share a line segment together
bends[i-1] = st_addpoint(
st_removepoint(bends[i-1], st_npoints(bends[i-1])-1),
st_pointn(bends[i], 1),
-1
);
bends[i+1] = st_addpoint(
st_removepoint(bends[i+1], 0),
st_pointn(bends[i], st_npoints(bends[i])-1),
0
);
-- the next bend's adjsize is now messed up; it should not be taken
-- into consideration for other local minimas. Skip over 2.
i = i + 2;
end loop;
if dbgname is not null then
insert into wm_debug(stage, name, gen, nbend, way) values(
'helimination',
dbgname,
dbggen,
generate_subscripts(bends, 1),
unnest(bends)
);
end if;
end $$ language plpgsql;
drop function if exists ST_SimplifyWM_Estimate;
create function ST_SimplifyWM_Estimate(
geom geometry,
OUT npoints bigint,
OUT secs bigint
) as $$
declare
lines geometry[];
l_type text;
begin
l_type = st_geometrytype(geom);
if l_type = 'ST_LineString' then
lines = array[geom];
elseif l_type = 'ST_MultiLineString' then
lines = array((select a.geom from st_dump(geom) a order by path[1] asc));
else
raise 'Unknown geometry type %', l_type;
end if;
npoints = 0;
for i in 1..array_length(lines, 1) loop
npoints = npoints + st_numpoints(lines[i]);
end loop;
secs = npoints / 33;
end $$ language plpgsql;
-- ST_SimplifyWM simplifies a given geometry using Wang & Müller's
-- "Line Generalization Based on Analysis of Shape Characteristics" algorithm,
-- 1998.
-- Input parameters:
-- - geom: ST_LineString or ST_MultiLineString: the geometry to be simplified
-- - dhalfcircle: the diameter of a half-circle, whose area is an approximate
-- threshold for small bend elimination. If bend's area is larger than that,
-- the bend will be left alone.
drop function if exists ST_SimplifyWM;
create function ST_SimplifyWM(
geom geometry,
dhalfcircle float,
intersect_patience integer default 10,
dbgname text default null
) returns geometry as $$
declare
gen integer;
i integer;
j integer;
line geometry;
lines geometry[];
bends geometry[];
attrs wm_t_attrs[];
mutated boolean;
l_type text;
begin
if intersect_patience is null then
intersect_patience = 10;
end if;
l_type = st_geometrytype(geom);
if l_type = 'ST_LineString' then
lines = array[geom];
elseif l_type = 'ST_MultiLineString' then
lines = array((select a.geom from st_dump(geom) a order by path[1] asc));
else
raise 'Unknown geometry type %', l_type;
end if;
<<lineloop>>
for i in 1..array_length(lines, 1) loop
mutated = true;
gen = 1;
while mutated loop
if dbgname is not null then
insert into wm_debug (stage, name, gen, nbend, way) values(
'afigures', dbgname, gen, i, lines[i]);
end if;
bends = wm_detect_bends(lines[i], dbgname, gen);
bends = wm_fix_gentle_inflections(bends, dbgname, gen);
select * from wm_self_crossing(bends, dbgname, gen) into bends, mutated;
if not mutated then
attrs = wm_bend_attrs(bends, dbgname, gen);
select * from wm_exaggeration(bends, attrs,
dhalfcircle, intersect_patience, dbgname, gen) into bends, mutated;
end if;
-- TODO: wm_combination
if not mutated then
select * from wm_elimination(bends, attrs,
dhalfcircle, dbgname, gen) into bends, mutated;
end if;
if mutated then
lines[i] = st_linemerge(st_union(bends));
if st_geometrytype(lines[i]) != 'ST_LineString' then
-- For manual debugging:
--insert into wm_manual(name, way)
--select 'non-linestring-' || a.path[1], a.geom
--from st_dump(lines[i]) a
--order by a.path[1];
raise '[%] Got % (in %) instead of ST_LineString. '
'Does the exaggerated bend intersect with the line? '
'If so, try increasing intersect_patience.',
gen, st_geometrytype(lines[i]), dbgname;
--exit lineloop;
end if;
gen = gen + 1;
continue;
end if;
end loop;
end loop;
if l_type = 'ST_LineString' then
return st_linemerge(st_union(lines));
elseif l_type = 'ST_MultiLineString' then
return st_union(lines);
end if;
end $$ language plpgsql;