stud/Karto/assignment4/measure.py
Motiejus Jakštys 42704ab088 comments
2019-11-30 10:47:47 +02:00

275 lines
8.3 KiB
Python
Executable File

#!/usr/bin/env python3
"""
Execute like this:
./measure.py | column -t -s $'\t'
"""
from collections import namedtuple
from decimal import Decimal as Dec
from math import sin, cos, pi
from shapely.geometry import LineString, asPolygon, Point as sPoint
import numpy as np
class Deg(namedtuple('Deg', ['deg', 'mm', 'ss'])):
def __str__(self):
return "%03d-%02d-%04.1f" % (self.deg, self.mm, self.ss)
def hms(deg):
assert isinstance(deg, Dec)
pdeg, pmm = divmod(deg, 1)
pmm = pmm * Dec(60)
pmm, pss = divmod(pmm, 1)
pss = pss * Dec(60)
return Deg(pdeg, pmm, pss)
def normalize(ang):
while ang > 180:
ang -= 360
while ang <= -180:
ang += 360
return ang
def guess(inp):
if isinstance(inp, str) and '-' in inp:
deg, mm, ss = inp.split('-')
ddeg, dmm, dss = Dec(deg), Dec(mm), Dec(ss)
return ddeg + dmm/60 + dss/3600
else:
return Dec(instr)
class Point(namedtuple('Point', ['acadx', 'acady'])):
@property
def lksx(self):
return self.acady
@property
def lksy(self):
return self.acadx
class Vertex:
def __init__(self, point, length, angle, dirang=Dec(), coords = Point(Dec(), Dec())):
self.point = point
self.len = length
self.ang = angle
self.dirang = dirang
self.coords = coords
self.dx, self.dy = Dec(), Dec()
@property
def xy(self):
"""xy returns a tuple of lksx and lksy coordinates"""
return np.array([float(self.coords.lksx), float(self.coords.lksy)])
def heptagon(d1):
angles = np.linspace(0, 2*pi, num=8)
R = float(D1)/2/sin(pi/7)
heptagon_xy = (np.array([np.cos(angles), np.sin(angles)])*R).T
return asPolygon(heptagon_xy)
juosta = namedtuple('juosta', ['plotis', 'kryptis', 'dashes', 'spalva'])
kelias = namedtuple('kelias', ['virsunes', 'plotis', 'kat', 'dashes', 'spalva', 'juostos'])
# Kategorijos
KAT0, KAT1, KAT2, KAT3, KAT4 = range(5,0,-1)
A = Dec('6.094')
B = Dec('-2.923')
C = Dec('-13.462')
N = Dec('9.512')
L1 = Dec('16.321')
# === Kelias A-05 ===
L2 = Dec('9.109')
L3 = Dec('4.819')
# === Kelias A-08 ===
L4 = Dec('2.675')
L5 = Dec('2.059')
L6 = Dec('1.262')
L7 = Dec('4.170')
L8 = Dec('6.005')
L9 = Dec('6.453')
# === Griovys G-11 ===
L10 = Dec('4.882')
L11 = Dec('3.305')
L12 = Dec('2.210')
L13 = Dec('4.381')
A03_plotis = Dec('17.401') + A
A05_plotis = Dec('13.705') + B
A08_plotis = Dec('29.006') + C
G11_plotis = Dec('14.776') + N
# Directional coords + angle
X11 = Dec('6091968.055')
Y11 = Dec('485944.146')
A11_2 = guess('70-16-17')
vertices = [
# point len angle dirangle coords
Vertex(11, Dec('164.126'), guess('103-03-03'), A11_2, Point(X11, Y11)),
Vertex(2, Dec('149.851'), guess('218-27-42')),
Vertex(19, Dec('82.384' ), guess('211-44-30')),
Vertex(3, Dec('259.022'), guess('67-26-49' )),
Vertex(24, Dec('319.331'), guess('67-33-06' )),
Vertex(12, Dec('74.764' ), guess('279-03-59')),
Vertex(13, Dec('81.640' ), guess('278-54-55')),
Vertex(14, Dec('31.888' ), guess('119-27-45')),
Vertex(15, Dec('84.073' ), guess('160-50-28')),
Vertex(16, Dec('70.072' ), guess('207-42-31')),
Vertex(17, Dec('73.378' ), guess('206-18-01')),
Vertex(10, Dec('66.625' ), guess('90-55-10' )),
Vertex(18, Dec('97.003' ), guess('100-18-10')),
Vertex(9, Dec('121.003'), guess('148-30-56')),
Vertex(8, Dec('131.915'), guess('285-20-57')),
Vertex(23, Dec('102.086'), guess('29-44-22' )),
Vertex(22, Dec('158.324'), guess('276-33-49')),
Vertex(7, Dec('72.157' ), guess('82-07-47' )),
Vertex(6, Dec('107.938'), guess('104-15-46')),
Vertex(21, Dec('104.082'), guess('234-17-37')),
Vertex(5, Dec('154.332'), guess('283-30-57')),
Vertex(20, Dec('68.972' ), guess('152-15-58')),
Vertex(1, Dec('151.531'), guess('101-20-01')),
Vertex(4, Dec('179.336'), guess('150-15-41')),
]
angle_sum = Dec(0)
for v in vertices:
angle_sum += v.ang
theoretical_angle_sum = Dec(int((len(vertices)-2)*180))
for i, v in enumerate(vertices[1:]):
prev = vertices[i]
v.dirang = prev.dirang + 180 - v.ang
v.dx = Dec(float(prev.len) * cos(float(prev.dirang) * pi/180))
v.dy = Dec(float(prev.len) * sin(float(prev.dirang) * pi/180))
v.coords = Point(prev.coords.acadx + v.dx, prev.coords.acady + v.dy)
# 9-kampio krastine D1
D1 = Dec('174.667') + C
# Daugiakampio pasukimo kampas (K1)
K1 = Dec('13.147') + B
# Atstumas iki tikrosios uzliejimo zonos (A1) (0.001 tikslumu)
A1 = Dec('67.536') + B
circle_radius = float(D1)/2/sin(pi/7)-float(A1)
heptagon_area = heptagon(float(D1)).area
circle_area = sPoint(0,0).buffer(circle_radius).area
# Points is vertice map by id
Points = {}
for v in vertices:
Points[v.point] = v
CONTINUOUS = (1,0)
DASHDOTX2 = (10,3,2,3)
DASHED = (100,20)
keliai = {
'A-08': kelias(
virsunes=[1,2,3],
plotis=A08_plotis,
kat=KAT1,
dashes=DASHDOTX2,
spalva='xkcd:red',
juostos=(
juosta(L6+L5+L4, 'right', DASHED, 'xkcd:lightgreen'),
juosta(L6+L5, 'right', DASHED, 'xkcd:lightgreen'),
juosta(L6, 'right', CONTINUOUS, 'xkcd:black'),
juosta(L7, 'left', CONTINUOUS, 'xkcd:black'),
juosta(L7+L8, 'left', DASHED, 'xkcd:lightgreen'),
juosta(L7+L8+L9, 'left', DASHED, 'xkcd:lightgreen'),
),
),
'A-05': kelias(
virsunes=[4,5,6,7,8,9,10],
plotis=A05_plotis,
kat=KAT2,
dashes=DASHDOTX2,
spalva='xkcd:red',
juostos=(
juosta(L3, 'right', CONTINUOUS, 'xkcd:brown'),
juosta(L2, 'left', CONTINUOUS, 'xkcd:brown'),
),
),
'A-03': kelias(
virsunes=[11,12,13,14,15,16,17,18],
plotis=A03_plotis,
kat=KAT3,
dashes=CONTINUOUS,
spalva='xkcd:magenta',
juostos=(
juosta(L1, 'right', DASHED, 'xkcd:magenta'),
juosta(0, 'left', DASHED, 'xkcd:white'),
),
),
'G-11': kelias(
virsunes=[19,20,21,22,23,24],
plotis=G11_plotis,
kat=KAT4,
dashes=CONTINUOUS,
spalva='xkcd:red',
juostos=(
juosta(L10+L11, 'right', CONTINUOUS, 'xkcd:blue'),
juosta(L11, 'right', CONTINUOUS, 'xkcd:lightblue'),
juosta(L12, 'left', CONTINUOUS, 'xkcd:lightblue'),
juosta(L12+L13, 'left', CONTINUOUS, 'xkcd:blue'),
),
),
}
keliu_ilgiai = {}
for id, kelias in keliai.items():
keliu_ilgiai[id] = LineString([Points[i].xy for i in kelias.virsunes]).length
if __name__ == '__main__':
print("tšk. nr.\tišmatuotas kampas\tdirekcinis kampas\tilgis\tdx\tdy\tx\ty")
for i, v in enumerate(vertices):
print("\t".join([
"%d" % v.point,
"%s" % str(hms(v.ang)),
"%s" % str(hms(v.dirang)),
"%.3f" % v.len,
"%.3f" % v.dx,
"%.3f" % v.dy,
"%.3f" % v.coords.acadx,
"%.3f" % v.coords.acady,
]))
#acad coords for drawing
"""
nxt = vertices[0 if i == len(vertices) - 1 else i+1]
pts = "%d-%d" % (v.point, nxt.point)
draw = "@%.3f<%.4f" % (v.len, normalize(90 - v.dirang))
print("%5s: %19s acadcoords:(%.3f,%.3f)" % \
(pts, draw, v.coords.acadx, v.coords.acady))
"""
# debugging & while drawing
("""
Kelio A-03 plotis = 17.401 + A = %.3f""" % A03_plotis + """
Kelio A-05 plotis = 13.705 + B = %.3f""" % A05_plotis + """
Kelio A-08 plotis = 29.006 + C = %.3f""" % A08_plotis + """
Griovio G-11 plotis = 14.776 + N = %.3f""" % G11_plotis + """
Prognozuojamo uzliejimo zona, tai taisyklingas 9-kampis
9-kampio krastine D1 = %.3f""" % D1 + """
Daugiakampio pasukimo kampas (K1) (0.0001 laipsnio tikslumu)
K1 = %.4f""" % K1 + """
Tikroji uzliejimo zona, tai taisyklingas apskritimas, kurio centras TURI SUTAPTI su daugiakampio centru.
Atstumas iki tikrosios uzliejimo zonos (A1) (0.001 tikslumu)
A1 = %.3f""" % A1 + """
A-05:
x(l) = %.3f""" % (A05_plotis*L3/(L2+L3)) + """
x(r) = %.3f""" % (A05_plotis*L2/(L2+L3)) + """
A-08:
x(l) = %.3f""" % (A08_plotis*(L7+L8+L9)/(L7+L8+L9+L6+L5+L4)) + """
x(r) = %.3f""" % (A08_plotis*(L6+L5+L4)/(L7+L8+L9+L6+L5+L4)) + """
G-11:
x(l) = %.3f""" % (G11_plotis*(L12+L13)/(L10+L11+L12+L13)) + """
x(r) = %.3f""" % (G11_plotis*(L10+L11)/(L10+L11+L12+L13)) + """
""")