stud/IV/wm.sql
2021-02-22 08:44:23 +02:00

129 lines
3.6 KiB
PL/PgSQL

\set ON_ERROR_STOP on
SET plpgsql.extra_errors TO 'all';
drop function if exists detect_bends;
-- detect_bends detects bends using the inflection angles. It does not do corrections.
create or replace function detect_bends(line geometry, OUT bends geometry[]) as $$
declare
pi real;
p geometry;
p1 geometry;
p2 geometry;
p3 geometry;
bend geometry;
prev_sign int4;
cur_sign int4;
begin
pi = radians(180);
-- the last vertex is iterated over twice, because the algorithm uses 3 vertices
-- to calculate the angle between them.
--
-- Given 3 vertices p1, p2, p3:
--
-- p1___ ...
-- /
-- ... _____/
-- p3 p2
--
-- When looping over the line, p1 will be head (lead) vertex, p2 will be the
-- measured angle, and p3 will be trailing. The line that will be added to
-- the bend will always be [p3,p2].
-- So once the p1 becomes the last vertex, the loop terminates, and the
-- [p2,p1] line will not have a chance to be added. So the loop adds the last
-- vertex twice, so it has a chance to become p2, and be added to the bend.
--
for p in (
(select geom from st_dumppoints(line) order by path[1] asc)
union all
(select geom from st_dumppoints(line) order by path[1] desc limit 1)
) loop
p3 = p2;
p2 = p1;
p1 = p;
if p3 is null then
continue;
end if;
cur_sign = sign(pi - st_angle(p1, p2, p2, p3));
if bend is null then
bend = st_makeline(p3, p2);
else
bend = st_linemerge(st_union(bend, st_makeline(p3, p2)));
end if;
if prev_sign + cur_sign = 0 then
if bend is not null then
bends = bends || bend;
end if;
bend = st_makeline(p3, p2);
end if;
prev_sign = cur_sign;
end loop;
-- the last line may be lost if there is no "final" inflection angle. Add it.
if (select count(1) >= 2 from st_dumppoints(bend)) then
bends = bends || bend;
end if;
end
$$ language plpgsql;
-- fix_gentle_inflections moves bend endpoints following "Gentle Inflection at
-- End of a Bend" section.
--
-- The text does not specify how many vertices can be "adjusted"; it can
-- equally be one or many. This function is adjusting many, as long as the
-- commulative inflection angle is less than pi/6 (30 deg).
create or replace function fix_gentle_inflections(INOUT bends geometry[]) as $$
declare
prev_bend geometry;
bend geometry;
p geometry;
p1 geometry;
p2 geometry;
p3 geometry;
begin
foreach bend in array bends loop
if prev_bend is null then
prev_bend = bend;
continue;
end if;
-- Predicate: two bends will always share an edge. Assuming (A,B,C,D,E,F)
-- is a bend:
-- C________D
-- / \
-- \________/ \_______/
-- A B E F
--
-- Then edges (A,B) and (E,F) are shared with the neighboring bends.
--
--
-- Assume this curve:
--
-- A______B
-- ---' `---.___. E
-- C D |
-- _I |
-- '---.________ |
-- H G'---+ F
--
-- After processing the curve following the definition of a bend, the bend
-- [A-G] would be detected. Assuming inflection point G and H are "small",
-- the bend would be extended by two edges to [A,I].
for p in (select geom from st_dumppoints(prev_bend) order by path[1] desc) loop
p3 = p2;
p2 = p1;
p1 = p;
if p3 is null then
continue;
end if;
-- (p2, p1) is shared with the current bend.
end loop;
prev_bend = bend;
end loop;
end
$$ language plpgsql;