291 lines
11 KiB
TeX
291 lines
11 KiB
TeX
\documentclass[a4paper]{article}
|
||
|
||
\iffalse
|
||
\usepackage[L7x,T1]{fontenc}
|
||
\usepackage[lithuanian]{babel}
|
||
\else
|
||
\usepackage[T1]{fontenc}
|
||
\usepackage[english]{babel}
|
||
\fi
|
||
|
||
\usepackage[utf8]{inputenc}
|
||
\usepackage{a4wide}
|
||
\usepackage{csquotes}
|
||
\usepackage[maxbibnames=99,style=authoryear]{biblatex}
|
||
\usepackage[pdfusetitle]{hyperref}
|
||
\usepackage{enumitem}
|
||
\addbibresource{bib.bib}
|
||
\usepackage{caption}
|
||
\usepackage{subcaption}
|
||
\usepackage{gensymb}
|
||
\usepackage{varwidth}
|
||
\usepackage{tabularx}
|
||
\usepackage{float}
|
||
\usepackage{tikz}
|
||
\usetikzlibrary{er,positioning}
|
||
\input{version}
|
||
|
||
\newcommand{\DP}{Douglas \& Peucker}
|
||
\newcommand{\VW}{Visvalingam--Whyatt}
|
||
\newcommand{\WM}{Wang--M{\"u}ller}
|
||
|
||
\title{
|
||
Cartografic Generalization of Lines \\
|
||
(example of rivers) \\ \vspace{4mm}
|
||
}
|
||
|
||
\iffalse
|
||
https://bost.ocks.org/mike/simplify/
|
||
http://bl.ocks.org/msbarry/9152218
|
||
|
||
small scale: 1:XXXXXX
|
||
large scale: 1:XXX
|
||
|
||
a4: 210x297mm
|
||
a6: 105x148xmm
|
||
a7: 74x105mm
|
||
a8: 52x74mm
|
||
|
||
connect rivers first to a single polylines:
|
||
- some algs can preserve connectivity, some not.
|
||
|
||
ideal hypothesis: mueller algorithm + topology may fully realize cartographic generalization tasks.
|
||
|
||
what scales and what distances?
|
||
|
||
= Intro: Aktualumas
|
||
FOSS nėra realizuotas tinkamas kartografinio realizavimo algoritmas (2–3 sakiniai). Kad kartografai turėtų
|
||
įrankį upių generalizavimui.
|
||
|
||
Bazė: imame tai, ką dabar turi kartografai įrankių paletėj.
|
||
|
||
Imti mažus upės vingius. Paimti mažas atkarpėles ir palyginti su originalia.
|
||
Todėl, kad nėra kilpų.
|
||
|
||
\fi
|
||
|
||
\author{Motiejus Jakštys}
|
||
|
||
\date{
|
||
\vspace{10mm}
|
||
Version: \VCDescribe \\ \vspace{4mm}
|
||
Generated At: \GeneratedAt
|
||
}
|
||
|
||
\begin{document}
|
||
\maketitle
|
||
|
||
\begin{abstract}
|
||
\label{sec:abstract}
|
||
Current open-source line generalization solutions have their roots in
|
||
mathematics and geometry, thus emit poor cartographic output. Therefore, if one
|
||
is using open-source technology to create a small-scale map, downscaled lines
|
||
(e.g. rivers) will not be professionally scale-adjusted. This paper explores
|
||
line generalization algorithms and suggests one for an avid GIS developer to
|
||
implement. Once it is usable from within open-source GIS software (e.g. QGIS or
|
||
PostGIS), rivers on these small-scale maps will look professionally downscaled.
|
||
\end{abstract}
|
||
|
||
\newpage
|
||
|
||
\tableofcontents
|
||
\listoffigures
|
||
|
||
\section{Introduction}
|
||
\label{sec:introduction}
|
||
|
||
Cartographic generalization is one of the key processes of creating small-scale
|
||
maps: how can one approximate object features, without losing its main
|
||
cartographic properties? The problem is universally challenging across many
|
||
geographical entities (\cite{muller1991generalization},
|
||
\cite{mcmaster1992generalization}). This paper focuses on line generalization
|
||
for natural rivers: which algorithm should be picked when down-scaling a river
|
||
map?
|
||
|
||
We examine readily available open-source algorithms using a concrete
|
||
cartographical example, and make a suggestion on which algorithm could be
|
||
implemented next.
|
||
|
||
\section{What's available}
|
||
|
||
Line generalization algorithms are well studied, but expose deficiencies in
|
||
large-scale reduction (\cite{monmonier1986toward}, \cite{mcmaster1993spatial}).
|
||
Most of these techniques are based on mathematical shape representation, rather
|
||
than cartographic characteristics of the line.
|
||
|
||
A number of cartographic line generalization algorithms have been researched,
|
||
which claim to better process cartographic objects like lines. These fall into
|
||
two rough categories:
|
||
\begin{itemize}
|
||
\item Cartographic knowledge was encoded to an algorithm (bottom-up
|
||
approach). One among these are \cite{wang1998line}.
|
||
\item Mathematical shape transformation which yields a more
|
||
cartographically suitable down-scaling. E.g. \cite{jiang2003line},
|
||
\cite{dyken2009simultaneous}, \cite{mustafa2006dynamic},
|
||
\cite{nollenburg2008morphing}.
|
||
\end{itemize}
|
||
|
||
During research for the mentioned papers, code has been written for all of the
|
||
algorithms above, however, is not to be found in a usable form.
|
||
\cite{wang1998line} is available in a commercial product, but the author of
|
||
this paper does not have means to try it.
|
||
|
||
To sum up, this paper will be comparing the following algorithms:
|
||
\begin{itemize}
|
||
\item \cite{douglas1973algorithms} via
|
||
\href{https://postgis.net/docs/ST_Simplify.html}{PostGIS Simplify}.
|
||
|
||
\item \cite{visvalingam1993line} via
|
||
\href{https://postgis.net/docs/ST_SimplifyVW.html}{PostGIS SimplifyVW}.
|
||
\end{itemize}
|
||
|
||
\section{Visual comparison}
|
||
|
||
Lakaja and large part of Žeimena (see figure~\ref{fig:zeimena} on
|
||
page~\pageref{fig:zeimena}) will be used, because the river exhibits both both
|
||
straight and curved shape, is a combination of two curly rivers, and author's
|
||
familiarity with the location.
|
||
|
||
\begin{figure}[H]
|
||
\centering
|
||
\includegraphics[width=148mm]{zeimena-pretty}
|
||
\caption{Lakaja and Žeimena}
|
||
\label{fig:zeimena}
|
||
\end{figure}
|
||
|
||
To visually evaluate the Žeimena sample, examples for {\DP} and {\VW}
|
||
were created using the following parameters:
|
||
|
||
\begin{enumerate}[label=(\Roman*)]
|
||
\item {\DP} tolerance: $tolerance := 125 * 2^n, n = 0,1,...,5$.
|
||
\item {\VW} tolerance: $vwtolerance = tolerance ^ 2$\label{itm:2}.
|
||
\end{enumerate}
|
||
|
||
Parameter~\ref{itm:2} requires explanation. Tolerance for {\DP} is specified in
|
||
linear units, in this case, meters. Tolerance for {\VW} is specified in area
|
||
units $m^2$. As author was not able to locate formal comparisons between the
|
||
two (i.e. how to calculate one tolerance value from the other, so the results
|
||
are comparable?), {\DP} tolerance was arbitrarily squared and fed to {\VW}. To
|
||
author's eye, this provides comparable and reasonable results, though could be
|
||
researched.
|
||
|
||
As can be observed in table~\ref{tab:comparison-zeimena} on
|
||
page~\pageref{tab:comparison-zeimena}, both simplication algorithms convert
|
||
bends to chopped lines. This is especially visible in tolerances 250 and 500.
|
||
In a more robust simplification algorithm, the larger tolerance, the larger the
|
||
bends on the original map should be retained.
|
||
|
||
\begin{figure}[H]
|
||
\renewcommand{\tabularxcolumn}[1]{>{\center\small}m{#1}}
|
||
\begin{tabularx}{\textwidth}{ p{2.1cm} | X | X | }
|
||
Tolerance DP/VW &
|
||
Douglas \& Peucker &
|
||
Visvalingam-Whyatt \tabularnewline \hline
|
||
|
||
125/15625 &
|
||
\includegraphics[width=\linewidth]{zeimena-douglas-125} &
|
||
\includegraphics[width=\linewidth]{zeimena-visvalingam-125} \tabularnewline \hline
|
||
|
||
250/62500 &
|
||
\includegraphics[width=.5\linewidth]{zeimena-douglas-250} &
|
||
\includegraphics[width=.5\linewidth]{zeimena-visvalingam-250} \tabularnewline \hline
|
||
|
||
500/250000 &
|
||
\includegraphics[width=.25\linewidth]{zeimena-douglas-500} &
|
||
\includegraphics[width=.25\linewidth]{zeimena-visvalingam-500} \tabularnewline \hline
|
||
|
||
1000/1000000 &
|
||
\includegraphics[width=.125\linewidth]{zeimena-douglas-1000} &
|
||
\includegraphics[width=.125\linewidth]{zeimena-visvalingam-1000} \tabularnewline \hline
|
||
|
||
2000/4000000 &
|
||
\includegraphics[width=.0625\linewidth]{zeimena-douglas-2000} &
|
||
\includegraphics[width=.0625\linewidth]{zeimena-visvalingam-2000} \tabularnewline \hline
|
||
|
||
4000/16000000 &
|
||
\includegraphics[width=.0625\linewidth]{zeimena-douglas-4000} &
|
||
\includegraphics[width=.0625\linewidth]{zeimena-visvalingam-4000} \tabularnewline \hline
|
||
\end{tabularx}
|
||
\caption{{\DP} and {\VW} side-by-side on Žeimena}
|
||
\label{tab:comparison-zeimena}
|
||
\end{figure}
|
||
|
||
|
||
To sum up, both {\VW} and {\DP} simplify the lines, but their cartographic
|
||
output poorly represents lines and bends. Where to look for better output?
|
||
|
||
\subsection{Combining bends}
|
||
|
||
Consecutive small bends should be combined into larger bends, and that is one
|
||
of the least developed aspects of automatic line generalization, according to
|
||
\cite{miuller1995generalization}. {\WM} encoded this process to an algorithm.
|
||
|
||
Imagine there are two small bends close to each other, similar to
|
||
figure~\ref{pic:sinewave} on page~\pageref{pic:sinewave}, and one needs
|
||
to generalize it. The bends are too large to ignore replace them with a
|
||
straight line, but too small to retain both and retain their complexity.
|
||
|
||
\begin{figure}[h]
|
||
\centering
|
||
\includegraphics[width=52mm]{sinewave}
|
||
\caption{Example river bend that should be generalized}
|
||
\label{pic:sinewave}
|
||
\end{figure}
|
||
|
||
When one applies {\DP} to figure~\ref{pic:sinewave}, either both bends remain,
|
||
or become a straight line, see table~\ref{tab:comparison-sinewave} on
|
||
page~\pageref{tab:comparison-sinewave}.
|
||
|
||
\begin{figure}[h]
|
||
\renewcommand{\tabularxcolumn}[1]{>{\center\small}m{#1}}
|
||
\begin{tabularx}{\textwidth}{ p{1.5cm} | X | X | }
|
||
Tolerance DP/VW &
|
||
Douglas \& Peucker &
|
||
Visvalingam-Whyatt \tabularnewline \hline
|
||
|
||
1/1 &
|
||
\includegraphics[width=\linewidth]{sinewave-douglas-1} &
|
||
\includegraphics[width=\linewidth]{sinewave-visvalingam-1} \tabularnewline \hline
|
||
|
||
2/4 &
|
||
\includegraphics[width=\linewidth]{sinewave-douglas-2} &
|
||
\includegraphics[width=\linewidth]{sinewave-visvalingam-2} \tabularnewline \hline
|
||
|
||
3/9 &
|
||
\includegraphics[width=\linewidth]{sinewave-douglas-3} &
|
||
\includegraphics[width=\linewidth]{sinewave-visvalingam-3} \tabularnewline \hline
|
||
|
||
4/16 &
|
||
\includegraphics[width=\linewidth]{sinewave-douglas-4} &
|
||
\includegraphics[width=\linewidth]{sinewave-visvalingam-4} \tabularnewline \hline
|
||
|
||
\end{tabularx}
|
||
\caption{{\DP} and {\VW} on example wave}
|
||
\label{tab:comparison-sinewave}
|
||
\end{figure}
|
||
|
||
\section{Related Work and future suggestions}
|
||
\label{sec:related_work}
|
||
|
||
\cite{stanislawski2012automated} studied different types of metric assessments,
|
||
such as Hausdorff distance, segment length, vector shift, surface displacement,
|
||
and tortuosity for the generalization of linear geographic elements. This
|
||
research can provide references to the appropriate settings of the line
|
||
generalization parameters for the maps at various scales.
|
||
|
||
As noted in parameter~\ref{itm:2} on page~\pageref{itm:2}, it would be useful
|
||
to have a formula mapping {\DP} tolerance to {\VW}. That way, visual
|
||
comparisons between line simplification algorithms could be more objective.
|
||
|
||
\section{Conclusions}
|
||
\label{sec:conclusions}
|
||
|
||
We have practically evaluated two readily available line simplification
|
||
algorithms with a river sample: {\VW} and {\DP}, and outlined their
|
||
deficiencies. We are suggesting to implement {\WM} and compare it to the other
|
||
two.
|
||
|
||
\printbibliography
|
||
|
||
\end{document}
|