275 lines
8.3 KiB
Python
Executable File
275 lines
8.3 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
"""
|
|
Execute like this:
|
|
./measure.py | column -t -s $'\t'
|
|
"""
|
|
|
|
from collections import namedtuple
|
|
from decimal import Decimal as Dec
|
|
from math import sin, cos, pi
|
|
from shapely.geometry import LineString, asPolygon, Point as sPoint
|
|
import numpy as np
|
|
|
|
|
|
class Deg(namedtuple('Deg', ['deg', 'mm', 'ss'])):
|
|
def __str__(self):
|
|
return "%03d-%02d-%04.1f" % (self.deg, self.mm, self.ss)
|
|
|
|
def hms(deg):
|
|
assert isinstance(deg, Dec)
|
|
pdeg, pmm = divmod(deg, 1)
|
|
pmm = pmm * Dec(60)
|
|
pmm, pss = divmod(pmm, 1)
|
|
pss = pss * Dec(60)
|
|
return Deg(pdeg, pmm, pss)
|
|
|
|
def normalize(ang):
|
|
while ang > 180:
|
|
ang -= 360
|
|
while ang <= -180:
|
|
ang += 360
|
|
return ang
|
|
|
|
def guess(inp):
|
|
if isinstance(inp, str) and '-' in inp:
|
|
deg, mm, ss = inp.split('-')
|
|
ddeg, dmm, dss = Dec(deg), Dec(mm), Dec(ss)
|
|
return ddeg + dmm/60 + dss/3600
|
|
else:
|
|
return Dec(instr)
|
|
|
|
class Point(namedtuple('Point', ['acadx', 'acady'])):
|
|
@property
|
|
def lksx(self):
|
|
return self.acady
|
|
@property
|
|
def lksy(self):
|
|
return self.acadx
|
|
|
|
class Vertex:
|
|
def __init__(self, point, length, angle, dirang=Dec(), coords = Point(Dec(), Dec())):
|
|
self.point = point
|
|
self.len = length
|
|
self.ang = angle
|
|
self.dirang = dirang
|
|
self.coords = coords
|
|
self.dx, self.dy = Dec(), Dec()
|
|
|
|
@property
|
|
def xy(self):
|
|
"""xy returns a tuple of lksx and lksy coordinates"""
|
|
return np.array([float(self.coords.lksx), float(self.coords.lksy)])
|
|
|
|
def heptagon(d1):
|
|
angles = np.linspace(0, 2*pi, num=8)
|
|
R = float(D1)/2/sin(pi/7)
|
|
heptagon_xy = (np.array([np.cos(angles), np.sin(angles)])*R).T
|
|
return asPolygon(heptagon_xy)
|
|
|
|
juosta = namedtuple('juosta', ['plotis', 'kryptis', 'dashes', 'spalva'])
|
|
kelias = namedtuple('kelias', ['virsunes', 'plotis', 'kat', 'dashes', 'spalva', 'juostos'])
|
|
|
|
# Kategorijos
|
|
KAT0, KAT1, KAT2, KAT3, KAT4 = range(5,0,-1)
|
|
|
|
A = Dec('6.094')
|
|
B = Dec('-2.923')
|
|
C = Dec('-13.462')
|
|
N = Dec('9.512')
|
|
|
|
L1 = Dec('16.321')
|
|
# === Kelias A-05 ===
|
|
L2 = Dec('9.109')
|
|
L3 = Dec('4.819')
|
|
# === Kelias A-08 ===
|
|
L4 = Dec('2.675')
|
|
L5 = Dec('2.059')
|
|
L6 = Dec('1.262')
|
|
L7 = Dec('4.170')
|
|
L8 = Dec('6.005')
|
|
L9 = Dec('6.453')
|
|
# === Griovys G-11 ===
|
|
L10 = Dec('4.882')
|
|
L11 = Dec('3.305')
|
|
L12 = Dec('2.210')
|
|
L13 = Dec('4.381')
|
|
|
|
A03_plotis = Dec('17.401') + A
|
|
A05_plotis = Dec('13.705') + B
|
|
A08_plotis = Dec('29.006') + C
|
|
G11_plotis = Dec('14.776') + N
|
|
|
|
# Directional coords + angle
|
|
X11 = Dec('6091968.055')
|
|
Y11 = Dec('485944.146')
|
|
A11_2 = guess('70-16-17')
|
|
|
|
vertices = [
|
|
# point len angle dirangle coords
|
|
Vertex(11, Dec('164.126'), guess('103-03-03'), A11_2, Point(X11, Y11)),
|
|
Vertex(2, Dec('149.851'), guess('218-27-42')),
|
|
Vertex(19, Dec('82.384' ), guess('211-44-30')),
|
|
Vertex(3, Dec('259.022'), guess('67-26-49' )),
|
|
Vertex(24, Dec('319.331'), guess('67-33-06' )),
|
|
Vertex(12, Dec('74.764' ), guess('279-03-59')),
|
|
Vertex(13, Dec('81.640' ), guess('278-54-55')),
|
|
Vertex(14, Dec('31.888' ), guess('119-27-45')),
|
|
Vertex(15, Dec('84.073' ), guess('160-50-28')),
|
|
Vertex(16, Dec('70.072' ), guess('207-42-31')),
|
|
Vertex(17, Dec('73.378' ), guess('206-18-01')),
|
|
Vertex(10, Dec('66.625' ), guess('90-55-10' )),
|
|
Vertex(18, Dec('97.003' ), guess('100-18-10')),
|
|
Vertex(9, Dec('121.003'), guess('148-30-56')),
|
|
Vertex(8, Dec('131.915'), guess('285-20-57')),
|
|
Vertex(23, Dec('102.086'), guess('29-44-22' )),
|
|
Vertex(22, Dec('158.324'), guess('276-33-49')),
|
|
Vertex(7, Dec('72.157' ), guess('82-07-47' )),
|
|
Vertex(6, Dec('107.938'), guess('104-15-46')),
|
|
Vertex(21, Dec('104.082'), guess('234-17-37')),
|
|
Vertex(5, Dec('154.332'), guess('283-30-57')),
|
|
Vertex(20, Dec('68.972' ), guess('152-15-58')),
|
|
Vertex(1, Dec('151.531'), guess('101-20-01')),
|
|
Vertex(4, Dec('179.336'), guess('150-15-41')),
|
|
]
|
|
|
|
angle_sum = Dec(0)
|
|
for v in vertices:
|
|
angle_sum += v.ang
|
|
theoretical_angle_sum = Dec(int((len(vertices)-2)*180))
|
|
|
|
for i, v in enumerate(vertices[1:]):
|
|
prev = vertices[i]
|
|
v.dirang = prev.dirang + 180 - v.ang
|
|
v.dx = Dec(float(prev.len) * cos(float(prev.dirang) * pi/180))
|
|
v.dy = Dec(float(prev.len) * sin(float(prev.dirang) * pi/180))
|
|
v.coords = Point(prev.coords.acadx + v.dx, prev.coords.acady + v.dy)
|
|
|
|
# 9-kampio krastine D1
|
|
D1 = Dec('174.667') + C
|
|
# Daugiakampio pasukimo kampas (K1)
|
|
K1 = Dec('13.147') + B
|
|
# Atstumas iki tikrosios uzliejimo zonos (A1) (0.001 tikslumu)
|
|
A1 = Dec('67.536') + B
|
|
|
|
circle_radius = float(D1)/2/sin(pi/7)-float(A1)
|
|
heptagon_area = heptagon(float(D1)).area
|
|
circle_area = sPoint(0,0).buffer(circle_radius).area
|
|
|
|
# Points is vertice map by id
|
|
Points = {}
|
|
for v in vertices:
|
|
Points[v.point] = v
|
|
|
|
CONTINUOUS = (1,0)
|
|
DASHDOTX2 = (10,3,2,3)
|
|
DASHED = (100,20)
|
|
|
|
keliai = {
|
|
'A-08': kelias(
|
|
virsunes=[1,2,3],
|
|
plotis=A08_plotis,
|
|
kat=KAT1,
|
|
dashes=DASHDOTX2,
|
|
spalva='xkcd:red',
|
|
juostos=(
|
|
juosta(L6+L5+L4, 'right', DASHED, 'xkcd:lightgreen'),
|
|
juosta(L6+L5, 'right', DASHED, 'xkcd:lightgreen'),
|
|
juosta(L6, 'right', CONTINUOUS, 'xkcd:black'),
|
|
juosta(L7, 'left', CONTINUOUS, 'xkcd:black'),
|
|
juosta(L7+L8, 'left', DASHED, 'xkcd:lightgreen'),
|
|
juosta(L7+L8+L9, 'left', DASHED, 'xkcd:lightgreen'),
|
|
),
|
|
),
|
|
'A-05': kelias(
|
|
virsunes=[4,5,6,7,8,9,10],
|
|
plotis=A05_plotis,
|
|
kat=KAT2,
|
|
dashes=DASHDOTX2,
|
|
spalva='xkcd:red',
|
|
juostos=(
|
|
juosta(L3, 'right', CONTINUOUS, 'xkcd:brown'),
|
|
juosta(L2, 'left', CONTINUOUS, 'xkcd:brown'),
|
|
),
|
|
),
|
|
'A-03': kelias(
|
|
virsunes=[11,12,13,14,15,16,17,18],
|
|
plotis=A03_plotis,
|
|
kat=KAT3,
|
|
dashes=CONTINUOUS,
|
|
spalva='xkcd:magenta',
|
|
juostos=(
|
|
juosta(L1, 'right', DASHED, 'xkcd:magenta'),
|
|
juosta(0, 'left', DASHED, 'xkcd:white'),
|
|
),
|
|
),
|
|
'G-11': kelias(
|
|
virsunes=[19,20,21,22,23,24],
|
|
plotis=G11_plotis,
|
|
kat=KAT4,
|
|
dashes=CONTINUOUS,
|
|
spalva='xkcd:red',
|
|
juostos=(
|
|
juosta(L10+L11, 'right', CONTINUOUS, 'xkcd:blue'),
|
|
juosta(L11, 'right', CONTINUOUS, 'xkcd:lightblue'),
|
|
juosta(L12, 'left', CONTINUOUS, 'xkcd:lightblue'),
|
|
juosta(L12+L13, 'left', CONTINUOUS, 'xkcd:blue'),
|
|
),
|
|
),
|
|
}
|
|
|
|
keliu_ilgiai = {}
|
|
for id, kelias in keliai.items():
|
|
keliu_ilgiai[id] = LineString([Points[i].xy for i in kelias.virsunes]).length
|
|
|
|
if __name__ == '__main__':
|
|
print("tšk. nr.\tišmatuotas kampas\tdirekcinis kampas\tilgis\tdx\tdy\tx\ty")
|
|
for i, v in enumerate(vertices):
|
|
print("\t".join([
|
|
"%d" % v.point,
|
|
"%s" % str(hms(v.ang)),
|
|
"%s" % str(hms(v.dirang)),
|
|
"%.3f" % v.len,
|
|
"%.3f" % v.dx,
|
|
"%.3f" % v.dy,
|
|
"%.3f" % v.coords.acadx,
|
|
"%.3f" % v.coords.acady,
|
|
]))
|
|
|
|
#acad coords for drawing
|
|
"""
|
|
nxt = vertices[0 if i == len(vertices) - 1 else i+1]
|
|
pts = "%d-%d" % (v.point, nxt.point)
|
|
draw = "@%.3f<%.4f" % (v.len, normalize(90 - v.dirang))
|
|
print("%5s: %19s acadcoords:(%.3f,%.3f)" % \
|
|
(pts, draw, v.coords.acadx, v.coords.acady))
|
|
"""
|
|
|
|
# debugging & while drawing
|
|
("""
|
|
Kelio A-03 plotis = 17.401 + A = %.3f""" % A03_plotis + """
|
|
Kelio A-05 plotis = 13.705 + B = %.3f""" % A05_plotis + """
|
|
Kelio A-08 plotis = 29.006 + C = %.3f""" % A08_plotis + """
|
|
Griovio G-11 plotis = 14.776 + N = %.3f""" % G11_plotis + """
|
|
|
|
Prognozuojamo uzliejimo zona, tai taisyklingas 9-kampis
|
|
9-kampio krastine D1 = %.3f""" % D1 + """
|
|
Daugiakampio pasukimo kampas (K1) (0.0001 laipsnio tikslumu)
|
|
K1 = %.4f""" % K1 + """
|
|
|
|
Tikroji uzliejimo zona, tai taisyklingas apskritimas, kurio centras TURI SUTAPTI su daugiakampio centru.
|
|
Atstumas iki tikrosios uzliejimo zonos (A1) (0.001 tikslumu)
|
|
A1 = %.3f""" % A1 + """
|
|
|
|
A-05:
|
|
x(l) = %.3f""" % (A05_plotis*L3/(L2+L3)) + """
|
|
x(r) = %.3f""" % (A05_plotis*L2/(L2+L3)) + """
|
|
|
|
A-08:
|
|
x(l) = %.3f""" % (A08_plotis*(L7+L8+L9)/(L7+L8+L9+L6+L5+L4)) + """
|
|
x(r) = %.3f""" % (A08_plotis*(L6+L5+L4)/(L7+L8+L9+L6+L5+L4)) + """
|
|
|
|
G-11:
|
|
x(l) = %.3f""" % (G11_plotis*(L12+L13)/(L10+L11+L12+L13)) + """
|
|
x(r) = %.3f""" % (G11_plotis*(L10+L11)/(L10+L11+L12+L13)) + """
|
|
""")
|