1
Fork 0
turbonss/src/bmz.c

448 lines
13 KiB
C
Raw Normal View History

2004-12-23 15:16:30 +02:00
#include "bmz.h"
#include "cmph_structs.h"
#include "bmz_structs.h"
#include "hash.h"
#include "vqueue.h"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <netinet/in.h>
//#define DEBUG
#include "debug.h"
static uint32 UNDEFINED = UINT_MAX;
static const char bitmask[8] = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 };
#define GETBIT(array, i) (array[(i) / 8] & bitmask[(i) % 8])
#define SETBIT(array, i) (array[(i) / 8] |= bitmask[(i) % 8])
#define UNSETBIT(array, i) (array[(i) / 8] &= (~(bitmask[(i) % 8])))
2004-12-23 15:16:30 +02:00
static int bmz_gen_edges(mph_t *mph);
static void bmz_traverse_critical_nodes(bmz_mph_data_t *bmz, uint32 v, uint32 * biggest_g_value, uint32 * biggest_edge_value, uint8 * used_edges);
static void bmz_traverse_non_critical_nodes(bmz_mph_data_t *bmz, uint8 * used_edges);
2004-12-23 15:16:30 +02:00
mph_t *bmz_mph_new(key_source_t *key_source)
{
mph_t *mph = NULL;
bmz_mph_data_t *bmz = NULL;
mph = __mph_new(MPH_BMZ, key_source);
if (mph == NULL) return NULL;
bmz = (bmz_mph_data_t *)malloc(sizeof(bmz_mph_data_t));
if (bmz == NULL)
{
__mph_destroy(mph);
return NULL;
}
bmz->hashfuncs[0] = HASH_JENKINS;
bmz->hashfuncs[1] = HASH_JENKINS;
bmz->g = NULL;
bmz->graph = NULL;
bmz->hashes = NULL;
mph->data = bmz;
assert(mph->data);
return mph;
}
void bmz_mph_destroy(mph_t *mph)
{
bmz_mph_data_t *data = (bmz_mph_data_t *)mph->data;
DEBUGP("Destroying algorithm dependent data\n");
free(data);
__mph_destroy(mph);
}
void bmz_mph_set_hashfuncs(mph_t *mph, CMPH_HASH *hashfuncs)
{
bmz_mph_data_t *bmz = (bmz_mph_data_t *)mph->data;
CMPH_HASH *hashptr = hashfuncs;
uint32 i = 0;
while(*hashptr != HASH_COUNT)
{
if (i >= 2) break; //bmz only uses two hash functions
bmz->hashfuncs[i] = *hashptr;
++i, ++hashptr;
}
}
mphf_t *bmz_mph_create(mph_t *mph, float bmz_c)
{
mphf_t *mphf = NULL;
bmz_mphf_data_t *bmzf = NULL;
uint32 i;
uint32 iterations = 10;
uint8 *used_edges = NULL;
uint32 biggest_g_value = 0;
uint32 biggest_edge_value = 1;
DEBUGP("bmz_c: %f\n", bmz_c);
bmz_mph_data_t *bmz = (bmz_mph_data_t *)mph->data;
bmz->m = mph->key_source->nkeys;
bmz->n = ceil(bmz_c * mph->key_source->nkeys);
DEBUGP("m (edges): %u n (vertices): %u bmz_c: %f\n", bmz->m, bmz->n, bmz_c);
bmz->graph = graph_new(bmz->n, bmz->m);
DEBUGP("Created graph\n");
bmz->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*3);
for(i = 0; i < 3; ++i) bmz->hashes[i] = NULL;
// Mapping step
if (mph->verbosity)
{
fprintf(stderr, "Entering mapping step for mph creation of %u keys with graph sized %u\n", bmz->m, bmz->n);
}
while(1)
{
int ok;
DEBUGP("hash function 1\n");
bmz->hashes[0] = hash_state_new(bmz->hashfuncs[0], bmz->n);
DEBUGP("hash function 2\n");
bmz->hashes[1] = hash_state_new(bmz->hashfuncs[1], bmz->n);
DEBUGP("Generating edges\n");
ok = bmz_gen_edges(mph);
if (!ok)
{
--iterations;
hash_state_destroy(bmz->hashes[0]);
bmz->hashes[0] = NULL;
hash_state_destroy(bmz->hashes[1]);
bmz->hashes[1] = NULL;
DEBUGP("%u iterations remaining\n", iterations);
if (mph->verbosity)
{
fprintf(stderr, "simple graph creation failure - %u iterations remaining\n", iterations);
}
if (iterations == 0) break;
}
else break;
}
if (iterations == 0)
{
graph_destroy(bmz->graph);
return NULL;
}
// Ordering step
if (mph->verbosity)
{
fprintf(stderr, "Starting ordering step\n");
}
graph_obtain_critical_nodes(bmz->graph);
// Searching step
if (mph->verbosity)
{
fprintf(stderr, "Starting Searching step.\n");
2004-12-23 15:16:30 +02:00
fprintf(stderr, "\tTraversing critical vertices.\n");
}
DEBUGP("Searching step\n");
used_edges = (uint8 *)malloc((bmz->m*sizeof(uint8))/8 + 1);
memset(used_edges, 0, bmz->m/8 + 1);
2004-12-23 15:16:30 +02:00
free(bmz->g);
bmz->g = malloc(bmz->n * sizeof(uint32));
assert(bmz->g);
for (i = 0; i < bmz->n; ++i) bmz->g[i] = UNDEFINED;
for (i = 0; i < bmz->n; ++i) // critical nodes
{
if (graph_node_is_critical(bmz->graph, i) && (bmz->g[i] == UNDEFINED))
{
bmz_traverse_critical_nodes(bmz, i, &biggest_g_value, &biggest_edge_value, used_edges);
}
}
if (mph->verbosity)
{
fprintf(stderr, "\tTraversing non critical vertices.\n");
}
bmz_traverse_non_critical_nodes(bmz, used_edges); // non_critical_nodes
graph_destroy(bmz->graph);
free(used_edges);
bmz->graph = NULL;
mphf = (mphf_t *)malloc(sizeof(mphf_t));
mphf->algo = mph->algo;
bmzf = (bmz_mphf_data_t *)malloc(sizeof(bmz_mph_data_t));
bmzf->g = bmz->g;
bmz->g = NULL; //transfer memory ownership
bmzf->hashes = bmz->hashes;
bmz->hashes = NULL; //transfer memory ownership
bmzf->n = bmz->n;
bmzf->m = bmz->m;
mphf->data = bmzf;
mphf->size = bmz->m;
DEBUGP("Successfully generated minimal perfect hash\n");
if (mph->verbosity)
{
fprintf(stderr, "Successfully generated minimal perfect hash function\n");
}
return mphf;
}
static void bmz_traverse_critical_nodes(bmz_mph_data_t *bmz, uint32 v, uint32 * biggest_g_value, uint32 * biggest_edge_value, uint8 * used_edges)
{
uint32 next_g;
uint32 u; /* Auxiliary vertex */
uint32 lav; /* lookahead vertex */
uint8 collision;
vqueue_t * q = vqueue_new(graph_ncritical_nodes(bmz->graph));
graph_iterator_t it, it1;
DEBUGP("Labelling critical vertices\n");
bmz->g[v] = (uint32)ceil ((double)(*biggest_edge_value)/2) - 1;
next_g = (uint32)floor((double)(*biggest_edge_value/2)); /* next_g is incremented in the do..while statement*/
*biggest_g_value = next_g;
vqueue_insert(q, v);
while(!vqueue_is_empty(q))
{
v = vqueue_remove(q);
it = graph_neighbors_it(bmz->graph, v);
while ((u = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR)
{
if (graph_node_is_critical(bmz->graph, u) && (bmz->g[u] == UNDEFINED))
{
collision = 1;
while(collision) // lookahead to resolve collisions
{
next_g = *biggest_g_value + 1;
it1 = graph_neighbors_it(bmz->graph, u);
collision = 0;
while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
{
if (graph_node_is_critical(bmz->graph, lav) && (bmz->g[lav] != UNDEFINED))
{
assert(next_g + bmz->g[lav] < bmz->m);
if (GETBIT(used_edges, next_g + bmz->g[lav]))
2004-12-23 15:16:30 +02:00
{
collision = 1;
break;
}
}
}
if (next_g > *biggest_g_value) *biggest_g_value = next_g;
}
// Marking used edges...
it1 = graph_neighbors_it(bmz->graph, u);
while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
{
if (graph_node_is_critical(bmz->graph, lav) && (bmz->g[lav] != UNDEFINED))
{
SETBIT(used_edges,next_g + bmz->g[lav]);
2004-12-23 15:16:30 +02:00
if(next_g + bmz->g[lav] > *biggest_edge_value) *biggest_edge_value = next_g + bmz->g[lav];
}
}
bmz->g[u] = next_g; // Labelling vertex u.
vqueue_insert(q, u);
}
}
}
vqueue_destroy(q);
}
static uint32 next_unused_edge(bmz_mph_data_t *bmz, uint8 * used_edges, uint32 unused_edge_index)
{
while(1)
{
assert(unused_edge_index < bmz->m);
if(GETBIT(used_edges, unused_edge_index)) unused_edge_index ++;
2004-12-23 15:16:30 +02:00
else break;
}
return unused_edge_index;
}
static void bmz_traverse(bmz_mph_data_t *bmz, uint8 * used_edges, uint32 v, uint32 * unused_edge_index)
{
graph_iterator_t it = graph_neighbors_it(bmz->graph, v);
uint32 neighbor = 0;
while((neighbor = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR)
{
DEBUGP("Visiting neighbor %u\n", neighbor);
if(bmz->g[neighbor] != UNDEFINED) continue;
*unused_edge_index = next_unused_edge(bmz, used_edges, *unused_edge_index);
2004-12-23 15:16:30 +02:00
bmz->g[neighbor] = *unused_edge_index - bmz->g[v];
(*unused_edge_index)++;
2004-12-23 15:16:30 +02:00
bmz_traverse(bmz, used_edges, neighbor, unused_edge_index);
2004-12-23 15:16:30 +02:00
}
}
static void bmz_traverse_non_critical_nodes(bmz_mph_data_t *bmz, uint8 * used_edges)
{
uint32 i, v1, v2, unused_edge_index = 0;
2004-12-23 15:16:30 +02:00
DEBUGP("Labelling non critical vertices\n");
for(i = 0; i < bmz->m; i++)
{
v1 = graph_vertex_id(bmz->graph, i, 0);
v2 = graph_vertex_id(bmz->graph, i, 1);
if((bmz->g[v1] != UNDEFINED && bmz->g[v2] != UNDEFINED) || (bmz->g[v1] == UNDEFINED && bmz->g[v2] == UNDEFINED)) continue;
if(bmz->g[v1] != UNDEFINED) bmz_traverse(bmz, used_edges, v1, &unused_edge_index);
else bmz_traverse(bmz, used_edges, v2, &unused_edge_index);
}
for(i = 0; i < bmz->n; i++)
{
if(bmz->g[i] == UNDEFINED)
{
bmz->g[i] = 0;
bmz_traverse(bmz, used_edges, i, &unused_edge_index);
}
}
}
static int bmz_gen_edges(mph_t *mph)
{
uint32 e;
bmz_mph_data_t *bmz = (bmz_mph_data_t *)mph->data;
uint8 multiple_edges = 0;
DEBUGP("Generating edges for %u vertices\n", bmz->n);
graph_clear_edges(bmz->graph);
mph->key_source->rewind(mph->key_source->data);
for (e = 0; e < mph->key_source->nkeys; ++e)
{
uint32 h1, h2;
uint32 keylen;
char *key;
mph->key_source->read(mph->key_source->data, &key, &keylen);
h1 = hash(bmz->hashes[0], key, keylen) % bmz->n;
h2 = hash(bmz->hashes[1], key, keylen) % bmz->n;
if (h1 == h2) if (++h2 >= bmz->n) h2 = 0;
if (h1 == h2)
{
if (mph->verbosity) fprintf(stderr, "Self loop for key %e\n", e);
mph->key_source->dispose(mph->key_source->data, key, keylen);
return 0;
}
DEBUGP("Adding edge: %u -> %u for key %s\n", h1, h2, key);
mph->key_source->dispose(mph->key_source->data, key, keylen);
multiple_edges = graph_contains_edge(bmz->graph, h1, h2);
if (mph->verbosity && multiple_edges) fprintf(stderr, "A non simple graph was generated\n");
if (multiple_edges) return 0; // checking multiple edge restriction.
graph_add_edge(bmz->graph, h1, h2);
}
return !multiple_edges;
}
int bmz_mphf_dump(mphf_t *mphf, FILE *fd)
{
char *buf = NULL;
uint32 buflen;
uint32 nbuflen;
uint32 i;
uint32 two = htonl(2); //number of hash functions
bmz_mphf_data_t *data = (bmz_mphf_data_t *)mphf->data;
uint32 nn, nm;
__mphf_dump(mphf, fd);
fwrite(&two, sizeof(uint32), 1, fd);
hash_state_dump(data->hashes[0], &buf, &buflen);
DEBUGP("Dumping hash state with %u bytes to disk\n", buflen);
nbuflen = htonl(buflen);
fwrite(&nbuflen, sizeof(uint32), 1, fd);
fwrite(buf, buflen, 1, fd);
free(buf);
hash_state_dump(data->hashes[1], &buf, &buflen);
DEBUGP("Dumping hash state with %u bytes to disk\n", buflen);
nbuflen = htonl(buflen);
fwrite(&nbuflen, sizeof(uint32), 1, fd);
fwrite(buf, buflen, 1, fd);
free(buf);
nn = htonl(data->n);
fwrite(&nn, sizeof(uint32), 1, fd);
nm = htonl(data->m);
fwrite(&nm, sizeof(uint32), 1, fd);
for (i = 0; i < data->n; ++i)
{
uint32 ng = htonl(data->g[i]);
fwrite(&ng, sizeof(uint32), 1, fd);
}
#ifdef DEBUG
fprintf(stderr, "G: ");
for (i = 0; i < data->n; ++i) fprintf(stderr, "%u ", data->g[i]);
fprintf(stderr, "\n");
#endif
return 1;
}
void bmz_mphf_load(FILE *f, mphf_t *mphf)
{
uint32 nhashes;
char fbuf[BUFSIZ];
char *buf = NULL;
uint32 buflen;
uint32 i;
hash_state_t *state;
bmz_mphf_data_t *bmz = (bmz_mphf_data_t *)malloc(sizeof(bmz_mphf_data_t));
DEBUGP("Loading bmz mphf\n");
mphf->data = bmz;
fread(&nhashes, sizeof(uint32), 1, f);
nhashes = ntohl(nhashes);
bmz->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*(nhashes + 1));
bmz->hashes[nhashes] = NULL;
DEBUGP("Reading %u hashes\n", nhashes);
for (i = 0; i < nhashes; ++i)
{
hash_state_t *state = NULL;
fread(&buflen, sizeof(uint32), 1, f);
buflen = ntohl(buflen);
DEBUGP("Hash state has %u bytes\n", buflen);
buf = (char *)malloc(buflen);
fread(buf, buflen, 1, f);
state = hash_state_load(buf, buflen);
bmz->hashes[i] = state;
free(buf);
}
DEBUGP("Reading m and n\n");
fread(&(bmz->n), sizeof(uint32), 1, f);
bmz->n = ntohl(bmz->n);
fread(&(bmz->m), sizeof(uint32), 1, f);
bmz->m = ntohl(bmz->m);
bmz->g = (uint32 *)malloc(sizeof(uint32)*bmz->n);
fread(bmz->g, bmz->n*sizeof(uint32), 1, f);
for (i = 0; i < bmz->n; ++i) bmz->g[i] = ntohl(bmz->g[i]);
#ifdef DEBUG
fprintf(stderr, "G: ");
for (i = 0; i < bmz->n; ++i) fprintf(stderr, "%u ", bmz->g[i]);
fprintf(stderr, "\n");
#endif
return;
}
uint32 bmz_mphf_search(mphf_t *mphf, const char *key, uint32 keylen)
{
bmz_mphf_data_t *bmz = mphf->data;
uint32 h1 = hash(bmz->hashes[0], key, keylen) % bmz->n;
uint32 h2 = hash(bmz->hashes[1], key, keylen) % bmz->n;
DEBUGP("key: %s h1: %u h2: %u\n", key, h1, h2);
if (h1 == h2 && ++h2 > bmz->n) h2 = 0;
DEBUGP("key: %s g[h1]: %u g[h2]: %u edges: %u\n", key, bmz->g[h1], bmz->g[h2], bmz->m);
return bmz->g[h1] + bmz->g[h2];
}
void bmz_mphf_destroy(mphf_t *mphf)
{
bmz_mphf_data_t *data = (bmz_mphf_data_t *)mphf->data;
free(data->g);
hash_state_destroy(data->hashes[0]);
hash_state_destroy(data->hashes[1]);
free(data->hashes);
free(data);
free(mphf);
}