Add 'deps/cmph/' from commit 'a250982ade093f4eed0552bbdd22dd7b0432007f'
git-subtree-dir: deps/cmph git-subtree-mainline:5040f4007b
git-subtree-split:a250982ade
This commit is contained in:
commit
37e24524c2
6
deps/cmph/ALGORITHMS.t2t
vendored
Normal file
6
deps/cmph/ALGORITHMS.t2t
vendored
Normal file
@ -0,0 +1,6 @@
|
||||
|
||||
|
||||
|
||||
----------------------------------------
|
||||
| [Home index.html] | [CHD chd.html] | [BDZ bdz.html] | [BMZ bmz.html] | [CHM chm.html] | [BRZ brz.html] | [FCH fch.html]
|
||||
----------------------------------------
|
4
deps/cmph/AUTHORS
vendored
Normal file
4
deps/cmph/AUTHORS
vendored
Normal file
@ -0,0 +1,4 @@
|
||||
Davi de Castro Reis davi@users.sourceforge.net
|
||||
Djamel Belazzougui db8192@users.sourceforge.net
|
||||
Fabiano Cupertino Botelho fc_botelho@users.sourceforge.net
|
||||
Nivio Ziviani nivio@dcc.ufmg.br
|
174
deps/cmph/BDZ.t2t
vendored
Executable file
174
deps/cmph/BDZ.t2t
vendored
Executable file
@ -0,0 +1,174 @@
|
||||
BDZ Algorithm
|
||||
|
||||
|
||||
%!includeconf: CONFIG.t2t
|
||||
|
||||
----------------------------------------
|
||||
==Introduction==
|
||||
|
||||
The BDZ algorithm was designed by Fabiano C. Botelho, Djamal Belazzougui, Rasmus Pagh and Nivio Ziviani. It is a simple, efficient, near-optimal space and practical algorithm to generate a family [figs/bdz/img8.png] of PHFs and MPHFs. It is also referred to as BPZ algorithm because the work presented by Botelho, Pagh and Ziviani in [[2 #papers]]. In the Botelho's PhD. dissertation [[1 #papers]] it is also referred to as RAM algorithm because it is more suitable for key sets that can be handled in internal memory.
|
||||
|
||||
The BDZ algorithm uses //r//-uniform random hypergraphs given by function values of //r// uniform random hash functions on the input key set //S// for generating PHFs and MPHFs that require //O(n)// bits to be stored. A hypergraph is the generalization of a standard undirected graph where each edge connects [figs/bdz/img12.png] vertices. This idea is not new, see e.g. [[8 #papers]], but we have proceeded differently to achieve a space usage of //O(n)// bits rather than //O(n log n)// bits. Evaluation time for all schemes considered is constant. For //r=3// we obtain a space usage of approximately //2.6n// bits for an MPHF. More compact, and even simpler, representations can be achieved for larger //m//. For example, for //m=1.23n// we can get a space usage of //1.95n// bits.
|
||||
|
||||
Our best MPHF space upper bound is within a factor of //2// from the information theoretical lower bound of approximately //1.44// bits. We have shown that the BDZ algorithm is far more practical than previous methods with proven space complexity, both because of its simplicity, and because the constant factor of the space complexity is more than //6// times lower than its closest competitor, for plausible problem sizes. We verify the practicality experimentally, using slightly more space than in the mentioned theoretical bounds.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==The Algorithm==
|
||||
|
||||
The BDZ algorithm is a three-step algorithm that generates PHFs and MPHFs based on random //r//-partite hypergraphs. This is an approach that provides a much tighter analysis and is much more simple than the one presented in [[3 #papers]], where it was implicit how to construct similar PHFs.The fastest and most compact functions are generated when //r=3//. In this case a PHF can be stored in approximately //1.95// bits per key and an MPHF in approximately //2.62// bits per key.
|
||||
|
||||
Figure 1 gives an overview of the algorithm for //r=3//, taking as input a key set [figs/bdz/img22.png] containing three English words, i.e., //S={who,band,the}//. The edge-oriented data structure proposed in [[4 #papers]] is used to represent hypergraphs, where each edge is explicitly represented as an array of //r// vertices and, for each vertex //v//, there is a list of edges that are incident on //v//.
|
||||
|
||||
| [figs/bdz/img50.png]
|
||||
| **Figure 1:** (a) The mapping step generates a random acyclic //3//-partite hypergraph
|
||||
| with //m=6// vertices and //n=3// edges and a list [figs/bdz/img4.png] of edges obtained when we test
|
||||
| whether the hypergraph is acyclic. (b) The assigning step builds an array //g// that
|
||||
| maps values from //[0,5]// to //[0,3]// to uniquely assign an edge to a vertex. (c) The ranking
|
||||
| step builds the data structure used to compute function //rank// in //O(1)// time.
|
||||
|
||||
|
||||
|
||||
The //Mapping Step// in Figure 1(a) carries out two important tasks:
|
||||
|
||||
+ It assumes that it is possible to find three uniform hash functions //h,,0,,//, //h,,1,,// and //h,,2,,//, with ranges //{0,1}//, //{2,3}// and //{4,5}//, respectively. These functions build an one-to-one mapping of the key set //S// to the edge set //E// of a random acyclic //3//-partite hypergraph //G=(V,E)//, where //|V|=m=6// and //|E|=n=3//. In [[1,2 #papers]] it is shown that it is possible to obtain such a hypergraph with probability tending to //1// as //n// tends to infinity whenever //m=cn// and //c > 1.22//. The value of that minimizes the hypergraph size (and thereby the amount of bits to represent the resulting functions) is in the range //(1.22,1.23)//. To illustrate the mapping, key "who" is mapped to edge //{h,,0,,("who"), h,,1,,("who"), h,,2,,("who")} = {1,3,5}//, key "band" is mapped to edge //{h,,0,,("band"), h,,1,,("band"), h,,2,,("band")} = {1,2,4}//, and key "the" is mapped to edge //{h,,0,,("the"), h,,1,,("the"), h,,2,,("the")} = {0,2,5}//.
|
||||
|
||||
+ It tests whether the resulting random //3//-partite hypergraph contains cycles by iteratively deleting edges connecting vertices of degree 1. The deleted edges are stored in the order of deletion in a list [figs/bdz/img4.png] to be used in the assigning step. The first deleted edge in Figure 1(a) was //{1,2,4}//, the second one was //{1,3,5}// and the third one was //{0,2,5}//. If it ends with an empty graph, then the test succeeds, otherwise it fails.
|
||||
|
||||
|
||||
We now show how to use the Jenkins hash functions [[7 #papers]] to implement the three hash functions //h,,i,,//, which map values from //S// to //V,,i,,//, where [figs/bdz/img52.png]. These functions are used to build a random //3//-partite hypergraph, where [figs/bdz/img53.png] and [figs/bdz/img54.png]. Let [figs/bdz/img55.png] be a Jenkins hash function for [figs/bdz/img56.png], where
|
||||
//w=32 or 64// for 32-bit and 64-bit architectures, respectively.
|
||||
Let //H'// be an array of 3 //w//-bit values. The Jenkins hash function
|
||||
allow us to compute in parallel the three entries in //H'//
|
||||
and thereby the three hash functions //h,,i,,//, as follows:
|
||||
|
||||
| //H' = h'(x)//
|
||||
| //h,,0,,(x) = H'[0] mod// [figs/bdz/img136.png]
|
||||
| //h,,1,,(x) = H'[1] mod// [figs/bdz/img136.png] //+// [figs/bdz/img136.png]
|
||||
| //h,,2,,(x) = H'[2] mod// [figs/bdz/img136.png] //+ 2//[figs/bdz/img136.png]
|
||||
|
||||
|
||||
The //Assigning Step// in Figure 1(b) outputs a PHF that maps the key set //S// into the range //[0,m-1]// and is represented by an array //g// storing values from the range //[0,3]//. The array //g// allows to select one out of the //3// vertices of a given edge, which is associated with a key //k//. A vertex for a key //k// is given by either //h,,0,,(k)//, //h,,1,,(k)// or //h,,2,,(k)//. The function //h,,i,,(k)// to be used for //k// is chosen by calculating //i = (g[h,,0,,(k)] + g[h,,1,,(k)] + g[h,,2,,(k)]) mod 3//. For instance, the values 1 and 4 represent the keys "who" and "band" because //i = (g[1] + g[3] + g[5]) mod 3 = 0// and //h,,0,,("who") = 1//, and //i = (g[1] + g[2] + g[4]) mod 3 = 2// and //h,,2,,("band") = 4//, respectively. The assigning step firstly initializes //g[i]=3// to mark every vertex as unassigned and //Visited[i]= false//, [figs/bdz/img88.png]. Let //Visited// be a boolean vector of size //m// to indicate whether a vertex has been visited. Then, for each edge [figs/bdz/img90.png] from tail to head, it looks for the first vertex //u// belonging //e// not yet visited. This is a sufficient condition for success [[1,2,8 #papers]]. Let //j// be the index of //u// in //e// for //j// in the range //[0,2]//. Then, it assigns [figs/bdz/img95.png]. Whenever it passes through a vertex //u// from //e//, if //u// has not yet been visited, it sets //Visited[u] = true//.
|
||||
|
||||
|
||||
If we stop the BDZ algorithm in the assigning step we obtain a PHF with range //[0,m-1]//. The PHF has the following form: //phf(x) = h,,i(x),,(x)//, where key //x// is in //S// and //i(x) = (g[h,,0,,(x)] + g[h,,1,,(x)] + g[h,,2,,(x)]) mod 3//. In this case we do not need information for ranking and can set //g[i] = 0// whenever //g[i]// is equal to //3//, where //i// is in the range //[0,m-1]//. Therefore, the range of the values stored in //g// is narrowed from //[0,3]// to //[0,2]//. By using arithmetic coding as block of values (see [[1,2 #papers]] for details), or any compression technique that allows to perform random access in constant time to an array of compressed values [[5,6,12 #papers]], we can store the resulting PHFs in //mlog 3 = cnlog 3// bits, where //c > 1.22//. For //c = 1.23//, the space requirement is //1.95n// bits.
|
||||
|
||||
The //Ranking Step// in Figure 1 (c) outputs a data structure that permits to narrow the range of a PHF generated in the assigning step from //[0,m-1]// to //[0,n-1]// and thereby an MPHF is produced. The data structure allows to compute in constant time a function //rank// from //[0,m-1]// to //[0,n-1]// that counts the number of assigned positions before a given position //v// in //g//. For instance, //rank(4) = 2// because the positions //0// and //1// are assigned since //g[0]// and //g[1]// are not equal to //3//.
|
||||
|
||||
|
||||
For the implementation of the ranking step we have borrowed a simple and efficient implementation from [[10 #papers]]. It requires [figs/bdz/img111.png] additional bits of space, where [figs/bdz/img112.png], and is obtained by storing explicitly the //rank// of every //k//th index in a rankTable, where [figs/bdz/img114.png]. The larger is //k// the more compact is the resulting MPHF. Therefore, the users can tradeoff space for evaluation time by setting //k// appropriately in the implementation. We only allow values for //k// that are power of two (i.e., //k=2^^b,,k,,^^// for some constant //b,,k,,// in order to replace the expensive division and modulo operations by bit-shift and bitwise "and" operations, respectively. We have used //k=256// in the experiments for generating more succinct MPHFs. We remark that it is still possible to obtain a more compact data structure by using the results presented in [[9,11 #papers]], but at the cost of a much more complex implementation.
|
||||
|
||||
|
||||
We need to use an additional lookup table //T,,r,,// to guarantee the constant evaluation time of //rank(u)//. Let us illustrate how //rank(u)// is computed using both the rankTable and the lookup table //T,,r,,//. We first look up the rank of the largest precomputed index //v// lower than or equal to //u// in the rankTable, and use //T,,r,,// to count the number of assigned vertices from position //v// to //u-1//. The lookup table //T_r// allows us to count in constant time the number of assigned vertices in [figs/bdz/img122.png] bits, where [figs/bdz/img112.png]. Thus the actual evaluation time is [figs/bdz/img123.png]. For simplicity and without loss of generality we let [figs/bdz/img124.png] be a multiple of the number of bits [figs/bdz/img125.png] used to encode each entry of //g//. As the values in //g// come from the range //[0,3]//,
|
||||
then [figs/bdz/img126.png] bits and we have tried [figs/bdz/img124.png] equal to //8// and //16//. We would expect that [figs/bdz/img124.png] equal to 16 should provide a faster evaluation time because we would need to carry out fewer lookups in //T,,r,,//. But, for both values the lookup table //T,,r,,// fits entirely in the CPU cache and we did not realize any significant difference in the evaluation times. Therefore we settle for the value //8//. We remark that each value of //r// requires a different lookup table //T,,r,, that can be generated a priori.
|
||||
|
||||
The resulting MPHFs have the following form: //h(x) = rank(phf(x))//. Then, we cannot get rid of the raking information by replacing the values 3 by 0 in the entries of //g//. In this case each entry in the array //g// is encoded with //2// bits and we need [figs/bdz/img133.png] additional bits to compute function //rank// in constant time. Then, the total space to store the resulting functions is [figs/bdz/img134.png] bits. By using //c = 1.23// and [figs/bdz/img135.png] we have obtained MPHFs that require approximately //2.62// bits per key to be stored.
|
||||
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==Memory Consumption==
|
||||
|
||||
Now we detail the memory consumption to generate and to store minimal perfect hash functions
|
||||
using the BDZ algorithm. The structures responsible for memory consumption are in the
|
||||
following:
|
||||
- 3-graph:
|
||||
+ **first**: is a vector that stores //cn// integer numbers, each one representing
|
||||
the first edge (index in the vector edges) in the list of
|
||||
incident edges of each vertex. The integer numbers are 4 bytes long. Therefore,
|
||||
the vector first is stored in //4cn// bytes.
|
||||
|
||||
+ **edges**: is a vector to represent the edges of the graph. As each edge
|
||||
is compounded by three vertices, each entry stores three integer numbers
|
||||
of 4 bytes that represent the vertices. As there are //n// edges, the
|
||||
vector edges is stored in //12n// bytes.
|
||||
|
||||
+ **next**: given a vertex [figs/img139.png], we can discover the edges that
|
||||
contain [figs/img139.png] following its list of incident edges,
|
||||
which starts on first[[figs/img139.png]] and the next
|
||||
edges are given by next[...first[[figs/img139.png]]...]. Therefore, the vectors first and next represent
|
||||
the linked lists of edges of each vertex. As there are three vertices for each edge,
|
||||
when an edge is iserted in the 3-graph, it must be inserted in the three linked lists
|
||||
of the vertices in its composition. Therefore, there are //3n// entries of integer
|
||||
numbers in the vector next, so it is stored in //4*3n = 12n// bytes.
|
||||
|
||||
+ **Vertices degree (vert_degree vector)**: is a vector of //cn// bytes
|
||||
that represents the degree of each vertex. We can use just one byte for each
|
||||
vertex because the 3-graph is sparse, once it has more vertices than edges.
|
||||
Therefore, the vertices degree is represented in //cn// bytes.
|
||||
|
||||
- Acyclicity test:
|
||||
+ **List of deleted edges obtained when we test whether the 3-graph is a forest (queue vector)**:
|
||||
is a vector of //n// integer numbers containing indexes of vector edges. Therefore, it
|
||||
requires //4n// bytes in internal memory.
|
||||
|
||||
+ **Marked edges in the acyclicity test (marked_edges vector)**:
|
||||
is a bit vector of //n// bits to indicate the edges that have already been deleted during
|
||||
the acyclicity test. Therefore, it requires //n/8// bytes in internal memory.
|
||||
|
||||
- MPHF description
|
||||
+ **function //g//**: is represented by a vector of //2cn// bits. Therefore, it is
|
||||
stored in //0.25cn// bytes
|
||||
+ **ranktable**: is a lookup table used to store some precomputed ranking information.
|
||||
It has //(cn)/(2^b)// entries of 4-byte integer numbers. Therefore it is stored in
|
||||
//(4cn)/(2^b)// bytes. The larger is b, the more compact is the resulting MPHFs and
|
||||
the slower are the functions. So b imposes a trade-of between space and time.
|
||||
+ **Total**: 0.25cn + (4cn)/(2^b) bytes
|
||||
|
||||
|
||||
Thus, the total memory consumption of BDZ algorithm for generating a minimal
|
||||
perfect hash function (MPHF) is: //(28.125 + 5c)n + 0.25cn + (4cn)/(2^b) + O(1)// bytes.
|
||||
As the value of constant //c// may be larger than or equal to 1.23 we have:
|
||||
|| //c// | //b// | Memory consumption to generate a MPHF (in bytes) |
|
||||
| 1.23 | //7// | //34.62n + O(1)// |
|
||||
| 1.23 | //8// | //34.60n + O(1)// |
|
||||
|
||||
| **Table 1:** Memory consumption to generate a MPHF using the BDZ algorithm.
|
||||
|
||||
Now we present the memory consumption to store the resulting function.
|
||||
So we have:
|
||||
|| //c// | //b// | Memory consumption to store a MPHF (in bits) |
|
||||
| 1.23 | //7// | //2.77n + O(1)// |
|
||||
| 1.23 | //8// | //2.61n + O(1)// |
|
||||
|
||||
| **Table 2:** Memory consumption to store a MPHF generated by the BDZ algorithm.
|
||||
----------------------------------------
|
||||
|
||||
==Experimental Results==
|
||||
|
||||
Experimental results to compare the BDZ algorithm with the other ones in the CMPH
|
||||
library are presented in Botelho, Pagh and Ziviani [[1,2 #papers]].
|
||||
----------------------------------------
|
||||
|
||||
==Papers==[papers]
|
||||
|
||||
+ [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho]. [Near-Optimal Space Perfect Hashing Algorithms papers/thesis.pdf]. //PhD. Thesis//, //Department of Computer Science//, //Federal University of Minas Gerais//, September 2008. Supervised by [N. Ziviani http://www.dcc.ufmg.br/~nivio].
|
||||
|
||||
+ [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], [R. Pagh http://www.itu.dk/~pagh/], [N. Ziviani http://www.dcc.ufmg.br/~nivio]. [Simple and space-efficient minimal perfect hash functions papers/wads07.pdf]. //In Proceedings of the 10th International Workshop on Algorithms and Data Structures (WADs'07),// Springer-Verlag Lecture Notes in Computer Science, vol. 4619, Halifax, Canada, August 2007, 139-150.
|
||||
|
||||
+ B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier filter: An efficient data structure for static support lookup tables. //In Proceedings of the 15th annual ACM-SIAM symposium on Discrete algorithms (SODA'04)//, pages 30–39, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.
|
||||
|
||||
+ J. Ebert. A versatile data structure for edges oriented graph algorithms. //Communication of The ACM//, (30):513–519, 1987.
|
||||
|
||||
+ K. Fredriksson and F. Nikitin. Simple compression code supporting random access and fast string matching. //In Proceedings of the 6th International Workshop on Efficient and Experimental Algorithms (WEA’07)//, pages 203–216, 2007.
|
||||
|
||||
+ R. Gonzalez and G. Navarro. Statistical encoding of succinct data structures. //In Proceedings of the 19th Annual Symposium on Combinatorial Pattern Matching (CPM’06)//, pages 294–305, 2006.
|
||||
|
||||
+ B. Jenkins. Algorithm alley: Hash functions. //Dr. Dobb's Journal of Software Tools//, 22(9), september 1997. Extended version available at [http://burtleburtle.net/bob/hash/doobs.html http://burtleburtle.net/bob/hash/doobs.html].
|
||||
|
||||
+ B.S. Majewski, N.C. Wormald, G. Havas, and Z.J. Czech. A family of perfect hashing methods. //The Computer Journal//, 39(6):547–554, 1996.
|
||||
|
||||
+ D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary. //In Proceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX’07)//, 2007.
|
||||
|
||||
+ [R. Pagh http://www.itu.dk/~pagh/]. Low redundancy in static dictionaries with constant query time. //SIAM Journal on Computing//, 31(2):353–363, 2001.
|
||||
|
||||
+ R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. //In Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms (SODA’02)//, pages 233–242, Philadelphia PA, USA, 2002. Society for Industrial and Applied Mathematics.
|
||||
|
||||
+ K. Sadakane and R. Grossi. Squeezing succinct data structures into entropy bounds. //In Proceedings of the 17th annual ACM-SIAM symposium on Discrete algorithms (SODA’06)//, pages 1230–1239, 2006.
|
||||
|
||||
|
||||
%!include: ALGORITHMS.t2t
|
||||
|
||||
%!include: FOOTER.t2t
|
||||
|
||||
%!include(html): ''GOOGLEANALYTICS.t2t''
|
405
deps/cmph/BMZ.t2t
vendored
Normal file
405
deps/cmph/BMZ.t2t
vendored
Normal file
@ -0,0 +1,405 @@
|
||||
BMZ Algorithm
|
||||
|
||||
|
||||
%!includeconf: CONFIG.t2t
|
||||
|
||||
----------------------------------------
|
||||
==History==
|
||||
|
||||
At the end of 2003, professor [Nivio Ziviani http://www.dcc.ufmg.br/~nivio] was
|
||||
finishing the second edition of his [book http://www.dcc.ufmg.br/algoritmos/].
|
||||
During the [book http://www.dcc.ufmg.br/algoritmos/] writing,
|
||||
professor [Nivio Ziviani http://www.dcc.ufmg.br/~nivio] studied the problem of generating
|
||||
[minimal perfect hash functions concepts.html]
|
||||
(if you are not familiarized with this problem, see [[1 #papers]][[2 #papers]]).
|
||||
Professor [Nivio Ziviani http://www.dcc.ufmg.br/~nivio] coded a modified version of
|
||||
the [CHM algorithm chm.html], which was proposed by
|
||||
Czech, Havas and Majewski, and put it in his [book http://www.dcc.ufmg.br/algoritmos/].
|
||||
The [CHM algorithm chm.html] is based on acyclic random graphs to generate
|
||||
[order preserving minimal perfect hash functions concepts.html] in linear time.
|
||||
Professor [Nivio Ziviani http://www.dcc.ufmg.br/~nivio]
|
||||
argued himself, why must the random graph
|
||||
be acyclic? In the modified version availalbe in his [book http://www.dcc.ufmg.br/algoritmos/] he got rid of this restriction.
|
||||
|
||||
The modification presented a problem, it was impossible to generate minimal perfect hash functions
|
||||
for sets with more than 1000 keys.
|
||||
At the same time, [Fabiano C. Botelho http://www.dcc.ufmg.br/~fbotelho],
|
||||
a master degree student at [Departament of Computer Science http://www.dcc.ufmg.br] in
|
||||
[Federal University of Minas Gerais http://www.ufmg.br],
|
||||
started to be advised by [Nivio Ziviani http://www.dcc.ufmg.br/~nivio] who presented the problem
|
||||
to [Fabiano http://www.dcc.ufmg.br/~fbotelho].
|
||||
|
||||
During the master, [Fabiano http://www.dcc.ufmg.br/~fbotelho] and
|
||||
[Nivio Ziviani http://www.dcc.ufmg.br/~nivio] faced lots of problems.
|
||||
In april of 2004, [Fabiano http://www.dcc.ufmg.br/~fbotelho] was talking with a
|
||||
friend of him (David Menoti) about the problems
|
||||
and many ideas appeared.
|
||||
The ideas were implemented and a very fast algorithm to generate
|
||||
minimal perfect hash functions had been designed.
|
||||
We refer the algorithm to as **BMZ**, because it was conceived by Fabiano C. **B**otelho,
|
||||
David **M**enoti and Nivio **Z**iviani. The algorithm is described in [[1 #papers]].
|
||||
To analyse BMZ algorithm we needed some results from the random graph theory, so
|
||||
we invited professor [Yoshiharu Kohayakawa http://www.ime.usp.br/~yoshi] to help us.
|
||||
The final description and analysis of BMZ algorithm is presented in [[2 #papers]].
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==The Algorithm==
|
||||
|
||||
The BMZ algorithm shares several features with the [CHM algorithm chm.html].
|
||||
In particular, BMZ algorithm is also
|
||||
based on the generation of random graphs [figs/img27.png], where [figs/img28.png] is in
|
||||
one-to-one correspondence with the key set [figs/img20.png] for which we wish to
|
||||
generate a [minimal perfect hash function concepts.html].
|
||||
The two main differences between BMZ algorithm and CHM algorithm
|
||||
are as follows: (//i//) BMZ algorithm generates random
|
||||
graphs [figs/img27.png] with [figs/img29.png] and [figs/img30.png], where [figs/img31.png],
|
||||
and hence [figs/img32.png] necessarily contains cycles,
|
||||
while CHM algorithm generates //acyclic// random
|
||||
graphs [figs/img27.png] with [figs/img29.png] and [figs/img30.png],
|
||||
with a greater number of vertices: [figs/img33.png];
|
||||
(//ii//) CHM algorithm generates [order preserving minimal perfect hash functions concepts.html]
|
||||
while BMZ algorithm does not preserve order. Thus, BMZ algorithm improves
|
||||
the space requirement at the expense of generating functions that are not
|
||||
order preserving.
|
||||
|
||||
Suppose [figs/img14.png] is a universe of //keys//.
|
||||
Let [figs/img17.png] be a set of [figs/img8.png] keys from [figs/img14.png].
|
||||
Let us show how the BMZ algorithm constructs a minimal perfect hash function [figs/img7.png].
|
||||
We make use of two auxiliary random functions [figs/img41.png] and [figs/img55.png],
|
||||
where [figs/img56.png] for some suitably chosen integer [figs/img57.png],
|
||||
where [figs/img58.png].We build a random graph [figs/img59.png] on [figs/img60.png],
|
||||
whose edge set is [figs/img61.png]. There is an edge in [figs/img32.png] for each
|
||||
key in the set of keys [figs/img20.png].
|
||||
|
||||
In what follows, we shall be interested in the //2-core// of
|
||||
the random graph [figs/img32.png], that is, the maximal subgraph
|
||||
of [figs/img32.png] with minimal degree at
|
||||
least 2 (see [[2 #papers]] for details).
|
||||
Because of its importance in our context, we call the 2-core the
|
||||
//critical// subgraph of [figs/img32.png] and denote it by [figs/img63.png].
|
||||
The vertices and edges in [figs/img63.png] are said to be //critical//.
|
||||
We let [figs/img64.png] and [figs/img65.png].
|
||||
Moreover, we let [figs/img66.png] be the set of //non-critical//
|
||||
vertices in [figs/img32.png].
|
||||
We also let [figs/img67.png] be the set of all critical
|
||||
vertices that have at least one non-critical vertex as a neighbour.
|
||||
Let [figs/img68.png] be the set of //non-critical// edges in [figs/img32.png].
|
||||
Finally, we let [figs/img69.png] be the //non-critical// subgraph
|
||||
of [figs/img32.png].
|
||||
The non-critical subgraph [figs/img70.png] corresponds to the //acyclic part//
|
||||
of [figs/img32.png].
|
||||
We have [figs/img71.png].
|
||||
|
||||
We then construct a suitable labelling [figs/img72.png] of the vertices
|
||||
of [figs/img32.png]: we choose [figs/img73.png] for each [figs/img74.png] in such
|
||||
a way that [figs/img75.png] ([figs/img18.png]) is a
|
||||
minimal perfect hash function for [figs/img20.png].
|
||||
This labelling [figs/img37.png] can be found in linear time
|
||||
if the number of edges in [figs/img63.png] is at most [figs/img76.png] (see [[2 #papers]]
|
||||
for details).
|
||||
|
||||
Figure 1 presents a pseudo code for the BMZ algorithm.
|
||||
The procedure BMZ ([figs/img20.png], [figs/img37.png]) receives as input the set of
|
||||
keys [figs/img20.png] and produces the labelling [figs/img37.png].
|
||||
The method uses a mapping, ordering and searching approach.
|
||||
We now describe each step.
|
||||
| procedure BMZ ([figs/img20.png], [figs/img37.png])
|
||||
| Mapping ([figs/img20.png], [figs/img32.png]);
|
||||
| Ordering ([figs/img32.png], [figs/img63.png], [figs/img70.png]);
|
||||
| Searching ([figs/img32.png], [figs/img63.png], [figs/img70.png], [figs/img37.png]);
|
||||
| **Figure 1**: Main steps of BMZ algorithm for constructing a minimal perfect hash function
|
||||
|
||||
----------------------------------------
|
||||
|
||||
===Mapping Step===
|
||||
|
||||
The procedure Mapping ([figs/img20.png], [figs/img32.png]) receives as input the set
|
||||
of keys [figs/img20.png] and generates the random graph [figs/img59.png], by generating
|
||||
two auxiliary functions [figs/img41.png], [figs/img78.png].
|
||||
|
||||
The functions [figs/img41.png] and [figs/img42.png] are constructed as follows.
|
||||
We impose some upper bound [figs/img79.png] on the lengths of the keys in [figs/img20.png].
|
||||
To define [figs/img80.png] ([figs/img81.png], [figs/img62.png]), we generate
|
||||
an [figs/img82.png] table of random integers [figs/img83.png].
|
||||
For a key [figs/img18.png] of length [figs/img84.png] and [figs/img85.png], we let
|
||||
|
||||
| [figs/img86.png]
|
||||
|
||||
The random graph [figs/img59.png] has vertex set [figs/img56.png] and
|
||||
edge set [figs/img61.png]. We need [figs/img32.png] to be
|
||||
simple, i.e., [figs/img32.png] should have neither loops nor multiple edges.
|
||||
A loop occurs when [figs/img87.png] for some [figs/img18.png].
|
||||
We solve this in an ad hoc manner: we simply let [figs/img88.png] in this case.
|
||||
If we still find a loop after this, we generate another pair [figs/img89.png].
|
||||
When a multiple edge occurs we abort and generate a new pair [figs/img89.png].
|
||||
Although the function above causes [collisions concepts.html] with probability //1/t//,
|
||||
in [cmph library index.html] we use faster hash
|
||||
functions ([DJB2 hash http://www.cs.yorku.ca/~oz/hash.html], [FNV hash http://www.isthe.com/chongo/tech/comp/fnv/],
|
||||
[Jenkins hash http://burtleburtle.net/bob/hash/doobs.html] and [SDBM hash http://www.cs.yorku.ca/~oz/hash.html])
|
||||
in which we do not need to impose any upper bound [figs/img79.png] on the lengths of the keys in [figs/img20.png].
|
||||
|
||||
As mentioned before, for us to find the labelling [figs/img72.png] of the
|
||||
vertices of [figs/img59.png] in linear time,
|
||||
we require that [figs/img108.png].
|
||||
The crucial step now is to determine the value
|
||||
of [figs/img1.png] (in [figs/img57.png]) to obtain a random
|
||||
graph [figs/img71.png] with [figs/img109.png].
|
||||
Botelho, Menoti an Ziviani determinded emprically in [[1 #papers]] that
|
||||
the value of [figs/img1.png] is //1.15//. This value is remarkably
|
||||
close to the theoretical value determined in [[2 #papers]],
|
||||
which is around [figs/img112.png].
|
||||
|
||||
----------------------------------------
|
||||
|
||||
===Ordering Step===
|
||||
|
||||
The procedure Ordering ([figs/img32.png], [figs/img63.png], [figs/img70.png]) receives
|
||||
as input the graph [figs/img32.png] and partitions [figs/img32.png] into the two
|
||||
subgraphs [figs/img63.png] and [figs/img70.png], so that [figs/img71.png].
|
||||
|
||||
Figure 2 presents a sample graph with 9 vertices
|
||||
and 8 edges, where the degree of a vertex is shown besides each vertex.
|
||||
Initially, all vertices with degree 1 are added to a queue [figs/img136.png].
|
||||
For the example shown in Figure 2(a), [figs/img137.png] after the initialization step.
|
||||
|
||||
| [figs/img138.png]
|
||||
| **Figure 2:** Ordering step for a graph with 9 vertices and 8 edges.
|
||||
|
||||
Next, we remove one vertex [figs/img139.png] from the queue, decrement its degree and
|
||||
the degree of the vertices with degree greater than 0 in the adjacent
|
||||
list of [figs/img139.png], as depicted in Figure 2(b) for [figs/img140.png].
|
||||
At this point, the adjacencies of [figs/img139.png] with degree 1 are
|
||||
inserted into the queue, such as vertex 1.
|
||||
This process is repeated until the queue becomes empty.
|
||||
All vertices with degree 0 are non-critical vertices and the others are
|
||||
critical vertices, as depicted in Figure 2(c).
|
||||
Finally, to determine the vertices in [figs/img141.png] we collect all
|
||||
vertices [figs/img142.png] with at least one vertex [figs/img143.png] that
|
||||
is in Adj[figs/img144.png] and in [figs/img145.png], as the vertex 8 in Figure 2(c).
|
||||
|
||||
----------------------------------------
|
||||
|
||||
===Searching Step===
|
||||
|
||||
In the searching step, the key part is
|
||||
the //perfect assignment problem//: find [figs/img153.png] such that
|
||||
the function [figs/img154.png] defined by
|
||||
|
||||
| [figs/img155.png]
|
||||
|
||||
is a bijection from [figs/img156.png] to [figs/img157.png] (recall [figs/img158.png]).
|
||||
We are interested in a labelling [figs/img72.png] of
|
||||
the vertices of the graph [figs/img59.png] with
|
||||
the property that if [figs/img11.png] and [figs/img22.png] are keys
|
||||
in [figs/img20.png], then [figs/img159.png]; that is, if we associate
|
||||
to each edge the sum of the labels on its endpoints, then these values
|
||||
should be all distinct.
|
||||
Moreover, we require that all the sums [figs/img160.png] ([figs/img18.png])
|
||||
fall between [figs/img115.png] and [figs/img161.png], and thus we have a bijection
|
||||
between [figs/img20.png] and [figs/img157.png].
|
||||
|
||||
The procedure Searching ([figs/img32.png], [figs/img63.png], [figs/img70.png], [figs/img37.png])
|
||||
receives as input [figs/img32.png], [figs/img63.png], [figs/img70.png] and finds a
|
||||
suitable [figs/img162.png] bit value for each vertex [figs/img74.png], stored in the
|
||||
array [figs/img37.png].
|
||||
This step is first performed for the vertices in the
|
||||
critical subgraph [figs/img63.png] of [figs/img32.png] (the 2-core of [figs/img32.png])
|
||||
and then it is performed for the vertices in [figs/img70.png] (the non-critical subgraph
|
||||
of [figs/img32.png] that contains the "acyclic part" of [figs/img32.png]).
|
||||
The reason the assignment of the [figs/img37.png] values is first
|
||||
performed on the vertices in [figs/img63.png] is to resolve reassignments
|
||||
as early as possible (such reassignments are consequences of the cycles
|
||||
in [figs/img63.png] and are depicted hereinafter).
|
||||
|
||||
----------------------------------------
|
||||
|
||||
====Assignment of Values to Critical Vertices====
|
||||
|
||||
The labels [figs/img73.png] ([figs/img142.png])
|
||||
are assigned in increasing order following a greedy
|
||||
strategy where the critical vertices [figs/img139.png] are considered one at a time,
|
||||
according to a breadth-first search on [figs/img63.png].
|
||||
If a candidate value [figs/img11.png] for [figs/img73.png] is forbidden
|
||||
because setting [figs/img163.png] would create two edges with the same sum,
|
||||
we try [figs/img164.png] for [figs/img73.png]. This fact is referred to
|
||||
as a //reassignment//.
|
||||
|
||||
Let [figs/img165.png] be the set of addresses assigned to edges in [figs/img166.png].
|
||||
Initially [figs/img167.png].
|
||||
Let [figs/img11.png] be a candidate value for [figs/img73.png].
|
||||
Initially [figs/img168.png].
|
||||
Considering the subgraph [figs/img63.png] in Figure 2(c),
|
||||
a step by step example of the assignment of values to vertices in [figs/img63.png] is
|
||||
presented in Figure 3.
|
||||
Initially, a vertex [figs/img139.png] is chosen, the assignment [figs/img163.png] is made
|
||||
and [figs/img11.png] is set to [figs/img164.png].
|
||||
For example, suppose that vertex [figs/img169.png] in Figure 3(a) is
|
||||
chosen, the assignment [figs/img170.png] is made and [figs/img11.png] is set to [figs/img96.png].
|
||||
|
||||
| [figs/img171.png]
|
||||
| **Figure 3:** Example of the assignment of values to critical vertices.
|
||||
|
||||
In Figure 3(b), following the adjacent list of vertex [figs/img169.png],
|
||||
the unassigned vertex [figs/img115.png] is reached.
|
||||
At this point, we collect in the temporary variable [figs/img172.png] all adjacencies
|
||||
of vertex [figs/img115.png] that have been assigned an [figs/img11.png] value,
|
||||
and [figs/img173.png].
|
||||
Next, for all [figs/img174.png], we check if [figs/img175.png].
|
||||
Since [figs/img176.png], then [figs/img177.png] is set
|
||||
to [figs/img96.png], [figs/img11.png] is incremented
|
||||
by 1 (now [figs/img178.png]) and [figs/img179.png].
|
||||
Next, vertex [figs/img180.png] is reached, [figs/img181.png] is set
|
||||
to [figs/img62.png], [figs/img11.png] is set to [figs/img180.png] and [figs/img182.png].
|
||||
Next, vertex [figs/img183.png] is reached and [figs/img184.png].
|
||||
Since [figs/img185.png] and [figs/img186.png], then [figs/img187.png] is
|
||||
set to [figs/img180.png], [figs/img11.png] is set to [figs/img183.png] and [figs/img188.png].
|
||||
Finally, vertex [figs/img189.png] is reached and [figs/img190.png].
|
||||
Since [figs/img191.png], [figs/img11.png] is incremented by 1 and set to 5, as depicted in
|
||||
Figure 3(c).
|
||||
Since [figs/img192.png], [figs/img11.png] is again incremented by 1 and set to 6,
|
||||
as depicted in Figure 3(d).
|
||||
These two reassignments are indicated by the arrows in Figure 3.
|
||||
Since [figs/img193.png] and [figs/img194.png], then [figs/img195.png] is set
|
||||
to [figs/img196.png] and [figs/img197.png]. This finishes the algorithm.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
====Assignment of Values to Non-Critical Vertices====
|
||||
|
||||
As [figs/img70.png] is acyclic, we can impose the order in which addresses are
|
||||
associated with edges in [figs/img70.png], making this step simple to solve
|
||||
by a standard depth first search algorithm.
|
||||
Therefore, in the assignment of values to vertices in [figs/img70.png] we
|
||||
benefit from the unused addresses in the gaps left by the assignment of values
|
||||
to vertices in [figs/img63.png].
|
||||
For that, we start the depth-first search from the vertices in [figs/img141.png] because
|
||||
the [figs/img37.png] values for these critical vertices were already assigned
|
||||
and cannot be changed.
|
||||
|
||||
Considering the subgraph [figs/img70.png] in Figure 2(c),
|
||||
a step by step example of the assignment of values to vertices in [figs/img70.png] is
|
||||
presented in Figure 4.
|
||||
Figure 4(a) presents the initial state of the algorithm.
|
||||
The critical vertex 8 is the only one that has non-critical vertices as
|
||||
adjacent.
|
||||
In the example presented in Figure 3, the addresses [figs/img198.png] were not used.
|
||||
So, taking the first unused address [figs/img115.png] and the vertex [figs/img96.png],
|
||||
which is reached from the vertex [figs/img169.png], [figs/img199.png] is set
|
||||
to [figs/img200.png], as shown in Figure 4(b).
|
||||
The only vertex that is reached from vertex [figs/img96.png] is vertex [figs/img62.png], so
|
||||
taking the unused address [figs/img183.png] we set [figs/img201.png] to [figs/img202.png],
|
||||
as shown in Figure 4(c).
|
||||
This process is repeated until the UnAssignedAddresses list becomes empty.
|
||||
|
||||
| [figs/img203.png]
|
||||
| **Figure 4:** Example of the assignment of values to non-critical vertices.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==The Heuristic==[heuristic]
|
||||
|
||||
We now present an heuristic for BMZ algorithm that
|
||||
reduces the value of [figs/img1.png] to any given value between //1.15// and //0.93//.
|
||||
This reduces the space requirement to store the resulting function
|
||||
to any given value between [figs/img12.png] words and [figs/img13.png] words.
|
||||
The heuristic reuses, when possible, the set
|
||||
of [figs/img11.png] values that caused reassignments, just before
|
||||
trying [figs/img164.png].
|
||||
Decreasing the value of [figs/img1.png] leads to an increase in the number of
|
||||
iterations to generate [figs/img32.png].
|
||||
For example, for [figs/img244.png] and [figs/img6.png], the analytical expected number
|
||||
of iterations are [figs/img245.png] and [figs/img246.png], respectively (see [[2 #papers]]
|
||||
for details),
|
||||
while for [figs/img128.png] the same value is around //2.13//.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==Memory Consumption==
|
||||
|
||||
Now we detail the memory consumption to generate and to store minimal perfect hash functions
|
||||
using the BMZ algorithm. The structures responsible for memory consumption are in the
|
||||
following:
|
||||
- Graph:
|
||||
+ **first**: is a vector that stores //cn// integer numbers, each one representing
|
||||
the first edge (index in the vector edges) in the list of
|
||||
edges of each vertex.
|
||||
The integer numbers are 4 bytes long. Therefore,
|
||||
the vector first is stored in //4cn// bytes.
|
||||
|
||||
+ **edges**: is a vector to represent the edges of the graph. As each edge
|
||||
is compounded by a pair of vertices, each entry stores two integer numbers
|
||||
of 4 bytes that represent the vertices. As there are //n// edges, the
|
||||
vector edges is stored in //8n// bytes.
|
||||
|
||||
+ **next**: given a vertex [figs/img139.png], we can discover the edges that
|
||||
contain [figs/img139.png] following its list of edges,
|
||||
which starts on first[[figs/img139.png]] and the next
|
||||
edges are given by next[...first[[figs/img139.png]]...]. Therefore, the vectors first and next represent
|
||||
the linked lists of edges of each vertex. As there are two vertices for each edge,
|
||||
when an edge is iserted in the graph, it must be inserted in the two linked lists
|
||||
of the vertices in its composition. Therefore, there are //2n// entries of integer
|
||||
numbers in the vector next, so it is stored in //4*2n = 8n// bytes.
|
||||
|
||||
+ **critical vertices(critical_nodes vector)**: is a vector of //cn// bits,
|
||||
where each bit indicates if a vertex is critical (1) or non-critical (0).
|
||||
Therefore, the critical and non-critical vertices are represented in //cn/8// bytes.
|
||||
|
||||
+ **critical edges (used_edges vector)**: is a vector of //n// bits, where each
|
||||
bit indicates if an edge is critical (1) or non-critical (0). Therefore, the
|
||||
critical and non-critical edges are represented in //n/8// bytes.
|
||||
|
||||
- Other auxiliary structures
|
||||
+ **queue**: is a queue of integer numbers used in the breadth-first search of the
|
||||
assignment of values to critical vertices. There is an entry in the queue for
|
||||
each two critical vertices. Let [figs/img110.png] be the expected number of critical
|
||||
vertices. Therefore, the queue is stored in //4*0.5*[figs/img110.png]=2[figs/img110.png]//.
|
||||
|
||||
+ **visited**: is a vector of //cn// bits, where each bit indicates if the g value of
|
||||
a given vertex was already defined. Therefore, the vector visited is stored
|
||||
in //cn/8// bytes.
|
||||
|
||||
+ **function //g//**: is represented by a vector of //cn// integer numbers.
|
||||
As each integer number is 4 bytes long, the function //g// is stored in
|
||||
//4cn// bytes.
|
||||
|
||||
|
||||
Thus, the total memory consumption of BMZ algorithm for generating a minimal
|
||||
perfect hash function (MPHF) is: //(8.25c + 16.125)n +2[figs/img110.png] + O(1)// bytes.
|
||||
As the value of constant //c// may be 1.15 and 0.93 we have:
|
||||
|| //c// | [figs/img110.png] | Memory consumption to generate a MPHF |
|
||||
| 0.93 | //0.497n// | //24.80n + O(1)// |
|
||||
| 1.15 | //0.401n// | //26.42n + O(1)// |
|
||||
|
||||
| **Table 1:** Memory consumption to generate a MPHF using the BMZ algorithm.
|
||||
|
||||
The values of [figs/img110.png] were calculated using Eq.(1) presented in [[2 #papers]].
|
||||
|
||||
Now we present the memory consumption to store the resulting function.
|
||||
We only need to store the //g// function. Thus, we need //4cn// bytes.
|
||||
Again we have:
|
||||
|| //c// | Memory consumption to store a MPHF |
|
||||
| 0.93 | //3.72n// |
|
||||
| 1.15 | //4.60n// |
|
||||
|
||||
| **Table 2:** Memory consumption to store a MPHF generated by the BMZ algorithm.
|
||||
----------------------------------------
|
||||
|
||||
==Experimental Results==
|
||||
|
||||
[CHM x BMZ comparison.html]
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==Papers==[papers]
|
||||
|
||||
+ [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], D. Menoti, [N. Ziviani http://www.dcc.ufmg.br/~nivio]. [A New algorithm for constructing minimal perfect hash functions papers/bmz_tr004_04.ps], Technical Report TR004/04, Department of Computer Science, Federal University of Minas Gerais, 2004.
|
||||
|
||||
+ [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], Y. Kohayakawa, and [N. Ziviani http://www.dcc.ufmg.br/~nivio]. [A Practical Minimal Perfect Hashing Method papers/wea05.pdf]. //4th International Workshop on efficient and Experimental Algorithms (WEA05),// Springer-Verlag Lecture Notes in Computer Science, vol. 3505, Santorini Island, Greece, May 2005, 488-500.
|
||||
|
||||
|
||||
%!include: ALGORITHMS.t2t
|
||||
|
||||
%!include: FOOTER.t2t
|
||||
|
||||
%!include(html): ''GOOGLEANALYTICS.t2t''
|
After Width: | Height: | Size: 21 KiB |
440
deps/cmph/BRZ.t2t
vendored
Normal file
440
deps/cmph/BRZ.t2t
vendored
Normal file
@ -0,0 +1,440 @@
|
||||
External Memory Based Algorithm
|
||||
|
||||
|
||||
%!includeconf: CONFIG.t2t
|
||||
|
||||
----------------------------------------
|
||||
==Introduction==
|
||||
|
||||
Until now, because of the limitations of current algorithms,
|
||||
the use of MPHFs is restricted to scenarios where the set of keys being hashed is
|
||||
relatively small.
|
||||
However, in many cases it is crucial to deal in an efficient way with very large
|
||||
sets of keys.
|
||||
Due to the exponential growth of the Web, the work with huge collections is becoming
|
||||
a daily task.
|
||||
For instance, the simple assignment of number identifiers to web pages of a collection
|
||||
can be a challenging task.
|
||||
While traditional databases simply cannot handle more traffic once the working
|
||||
set of URLs does not fit in main memory anymore[[4 #papers]], the algorithm we propose here to
|
||||
construct MPHFs can easily scale to billions of entries.
|
||||
|
||||
As there are many applications for MPHFs, it is
|
||||
important to design and implement space and time efficient algorithms for
|
||||
constructing such functions.
|
||||
The attractiveness of using MPHFs depends on the following issues:
|
||||
|
||||
+ The amount of CPU time required by the algorithms for constructing MPHFs.
|
||||
|
||||
+ The space requirements of the algorithms for constructing MPHFs.
|
||||
|
||||
+ The amount of CPU time required by a MPHF for each retrieval.
|
||||
|
||||
+ The space requirements of the description of the resulting MPHFs to be used at retrieval time.
|
||||
|
||||
|
||||
We present here a novel external memory based algorithm for constructing MPHFs that
|
||||
are very efficient in the four requirements mentioned previously.
|
||||
First, the algorithm is linear on the size of keys to construct a MPHF,
|
||||
which is optimal.
|
||||
For instance, for a collection of 1 billion URLs
|
||||
collected from the web, each one 64 characters long on average, the time to construct a
|
||||
MPHF using a 2.4 gigahertz PC with 500 megabytes of available main memory
|
||||
is approximately 3 hours.
|
||||
Second, the algorithm needs a small a priori defined vector of [figs/brz/img23.png] one
|
||||
byte entries in main memory to construct a MPHF.
|
||||
For the collection of 1 billion URLs and using [figs/brz/img4.png], the algorithm needs only
|
||||
5.45 megabytes of internal memory.
|
||||
Third, the evaluation of the MPHF for each retrieval requires three memory accesses and
|
||||
the computation of three universal hash functions.
|
||||
This is not optimal as any MPHF requires at least one memory access and the computation
|
||||
of two universal hash functions.
|
||||
Fourth, the description of a MPHF takes a constant number of bits for each key, which is optimal.
|
||||
For the collection of 1 billion URLs, it needs 8.1 bits for each key,
|
||||
while the theoretical lower bound is [figs/brz/img24.png] bits per key.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
|
||||
==The Algorithm==
|
||||
|
||||
The main idea supporting our algorithm is the classical divide and conquer technique.
|
||||
The algorithm is a two-step external memory based algorithm
|
||||
that generates a MPHF //h// for a set //S// of //n// keys.
|
||||
Figure 1 illustrates the two steps of the
|
||||
algorithm: the partitioning step and the searching step.
|
||||
|
||||
| [figs/brz/brz.png]
|
||||
| **Figure 1:** Main steps of our algorithm.
|
||||
|
||||
The partitioning step takes a key set //S// and uses a universal hash
|
||||
function [figs/brz/img42.png] proposed by Jenkins[[5 #papers]]
|
||||
to transform each key [figs/brz/img43.png] into an integer [figs/brz/img44.png].
|
||||
Reducing [figs/brz/img44.png] modulo [figs/brz/img23.png], we partition //S//
|
||||
into [figs/brz/img23.png] buckets containing at most 256 keys in each bucket (with high
|
||||
probability).
|
||||
|
||||
The searching step generates a MPHF[figs/brz/img46.png] for each bucket //i//, [figs/brz/img47.png].
|
||||
The resulting MPHF //h(k)//, [figs/brz/img43.png], is given by
|
||||
|
||||
| [figs/brz/img49.png]
|
||||
|
||||
where [figs/brz/img50.png].
|
||||
The //i//th entry //offset[i]// of the displacement vector
|
||||
//offset//, [figs/brz/img47.png], contains the total number
|
||||
of keys in the buckets from 0 to //i-1//, that is, it gives the interval of the
|
||||
keys in the hash table addressed by the MPHF[figs/brz/img46.png]. In the following we explain
|
||||
each step in detail.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
=== Partitioning step ===
|
||||
|
||||
The set //S// of //n// keys is partitioned into [figs/brz/img23.png],
|
||||
where //b// is a suitable parameter chosen to guarantee
|
||||
that each bucket has at most 256 keys with high probability
|
||||
(see [[2 #papers]] for details).
|
||||
The partitioning step works as follows:
|
||||
|
||||
| [figs/brz/img54.png]
|
||||
| **Figure 2:** Partitioning step.
|
||||
|
||||
Statement 1.1 of the **for** loop presented in Figure 2
|
||||
reads sequentially all the keys of block [figs/brz/img55.png] from disk into an internal area
|
||||
of size [figs/brz/img8.png].
|
||||
|
||||
Statement 1.2 performs an indirect bucket sort of the keys in block [figs/brz/img55.png] and
|
||||
at the same time updates the entries in the vector //size//.
|
||||
Let us briefly describe how [figs/brz/img55.png] is partitioned among
|
||||
the [figs/brz/img23.png] buckets.
|
||||
We use a local array of [figs/brz/img23.png] counters to store a
|
||||
count of how many keys from [figs/brz/img55.png] belong to each bucket.
|
||||
The pointers to the keys in each bucket //i//, [figs/brz/img47.png],
|
||||
are stored in contiguous positions in an array.
|
||||
For this we first reserve the required number of entries
|
||||
in this array of pointers using the information from the array of counters.
|
||||
Next, we place the pointers to the keys in each bucket into the respective
|
||||
reserved areas in the array (i.e., we place the pointers to the keys in bucket 0,
|
||||
followed by the pointers to the keys in bucket 1, and so on).
|
||||
|
||||
To find the bucket address of a given key
|
||||
we use the universal hash function [figs/brz/img44.png][[5 #papers]].
|
||||
Key //k// goes into bucket //i//, where
|
||||
|
||||
| [figs/brz/img57.png] (1)
|
||||
|
||||
Figure 3(a) shows a //logical// view of the [figs/brz/img23.png] buckets
|
||||
generated in the partitioning step.
|
||||
In reality, the keys belonging to each bucket are distributed among many files,
|
||||
as depicted in Figure 3(b).
|
||||
In the example of Figure 3(b), the keys in bucket 0
|
||||
appear in files 1 and //N//, the keys in bucket 1 appear in files 1, 2
|
||||
and //N//, and so on.
|
||||
|
||||
| [figs/brz/brz-partitioning.png]
|
||||
| **Figure 3:** Situation of the buckets at the end of the partitioning step: (a) Logical view (b) Physical view.
|
||||
|
||||
This scattering of the keys in the buckets could generate a performance
|
||||
problem because of the potential number of seeks
|
||||
needed to read the keys in each bucket from the //N// files in disk
|
||||
during the searching step.
|
||||
But, as we show in [[2 #papers]], the number of seeks
|
||||
can be kept small using buffering techniques.
|
||||
Considering that only the vector //size//, which has [figs/brz/img23.png] one-byte
|
||||
entries (remember that each bucket has at most 256 keys),
|
||||
must be maintained in main memory during the searching step,
|
||||
almost all main memory is available to be used as disk I/O buffer.
|
||||
|
||||
The last step is to compute the //offset// vector and dump it to the disk.
|
||||
We use the vector //size// to compute the
|
||||
//offset// displacement vector.
|
||||
The //offset[i]// entry contains the number of keys
|
||||
in the buckets //0, 1, ..., i-1//.
|
||||
As //size[i]// stores the number of keys
|
||||
in bucket //i//, where [figs/brz/img47.png], we have
|
||||
|
||||
| [figs/brz/img63.png]
|
||||
|
||||
----------------------------------------
|
||||
|
||||
=== Searching step ===
|
||||
|
||||
The searching step is responsible for generating a MPHF for each
|
||||
bucket. Figure 4 presents the searching step algorithm.
|
||||
|
||||
| [figs/brz/img64.png]
|
||||
| **Figure 4:** Searching step.
|
||||
|
||||
Statement 1 of Figure 4 inserts one key from each file
|
||||
in a minimum heap //H// of size //N//.
|
||||
The order relation in //H// is given by the bucket address //i// given by
|
||||
Eq. (1).
|
||||
|
||||
Statement 2 has two important steps.
|
||||
In statement 2.1, a bucket is read from disk,
|
||||
as described below.
|
||||
In statement 2.2, a MPHF is generated for each bucket //i//, as described
|
||||
in the following.
|
||||
The description of MPHF[figs/brz/img46.png] is a vector [figs/brz/img66.png] of 8-bit integers.
|
||||
Finally, statement 2.3 writes the description [figs/brz/img66.png] of MPHF[figs/brz/img46.png] to disk.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==== Reading a bucket from disk ====
|
||||
|
||||
In this section we present the refinement of statement 2.1 of
|
||||
Figure 4.
|
||||
The algorithm to read bucket //i// from disk is presented
|
||||
in Figure 5.
|
||||
|
||||
| [figs/brz/img67.png]
|
||||
| **Figure 5:** Reading a bucket.
|
||||
|
||||
Bucket //i// is distributed among many files and the heap //H// is used to drive a
|
||||
multiway merge operation.
|
||||
In Figure 5, statement 1.1 extracts and removes triple
|
||||
//(i, j, k)// from //H//, where //i// is a minimum value in //H//.
|
||||
Statement 1.2 inserts key //k// in bucket //i//.
|
||||
Notice that the //k// in the triple //(i, j, k)// is in fact a pointer to
|
||||
the first byte of the key that is kept in contiguous positions of an array of characters
|
||||
(this array containing the keys is initialized during the heap construction
|
||||
in statement 1 of Figure 4).
|
||||
Statement 1.3 performs a seek operation in File //j// on disk for the first
|
||||
read operation and reads sequentially all keys //k// that have the same //i//
|
||||
and inserts them all in bucket //i//.
|
||||
Finally, statement 1.4 inserts in //H// the triple //(i, j, x)//,
|
||||
where //x// is the first key read from File //j// (in statement 1.3)
|
||||
that does not have the same bucket address as the previous keys.
|
||||
|
||||
The number of seek operations on disk performed in statement 1.3 is discussed
|
||||
in [[2, Section 5.1 #papers]],
|
||||
where we present a buffering technique that brings down
|
||||
the time spent with seeks.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==== Generating a MPHF for each bucket ====
|
||||
|
||||
To the best of our knowledge the [BMZ algorithm bmz.html] we have designed in
|
||||
our previous works [[1,3 #papers]] is the fastest published algorithm for
|
||||
constructing MPHFs.
|
||||
That is why we are using that algorithm as a building block for the
|
||||
algorithm presented here. In reality, we are using
|
||||
an optimized version of BMZ (BMZ8) for small set of keys (at most 256 keys).
|
||||
[Click here to see details about BMZ algorithm bmz.html].
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==Analysis of the Algorithm==
|
||||
|
||||
Analytical results and the complete analysis of the external memory based algorithm
|
||||
can be found in [[2 #papers]].
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==Experimental Results==
|
||||
|
||||
In this section we present the experimental results.
|
||||
We start presenting the experimental setup.
|
||||
We then present experimental results for
|
||||
the internal memory based algorithm ([the BMZ algorithm bmz.html])
|
||||
and for our external memory based algorithm.
|
||||
Finally, we discuss how the amount of internal memory available
|
||||
affects the runtime of the external memory based algorithm.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
===The data and the experimental setup===
|
||||
|
||||
All experiments were carried out on
|
||||
a computer running the Linux operating system, version 2.6,
|
||||
with a 2.4 gigahertz processor and
|
||||
1 gigabyte of main memory.
|
||||
In the experiments related to the new
|
||||
algorithm we limited the main memory in 500 megabytes.
|
||||
|
||||
Our data consists of a collection of 1 billion
|
||||
URLs collected from the Web, each URL 64 characters long on average.
|
||||
The collection is stored on disk in 60.5 gigabytes.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
===Performance of the BMZ Algorithm===
|
||||
|
||||
[The BMZ algorithm bmz.html] is used for constructing a MPHF for each bucket.
|
||||
It is a randomized algorithm because it needs to generate a simple random graph
|
||||
in its first step.
|
||||
Once the graph is obtained the other two steps are deterministic.
|
||||
|
||||
Thus, we can consider the runtime of the algorithm to have
|
||||
the form [figs/brz/img159.png] for an input of //n// keys,
|
||||
where [figs/brz/img160.png] is some machine dependent
|
||||
constant that further depends on the length of the keys and //Z// is a random
|
||||
variable with geometric distribution with mean [figs/brz/img162.png]. All results
|
||||
in our experiments were obtained taking //c=1//; the value of //c//, with //c// in //[0.93,1.15]//,
|
||||
in fact has little influence in the runtime, as shown in [[3 #papers]].
|
||||
|
||||
The values chosen for //n// were 1, 2, 4, 8, 16 and 32 million.
|
||||
Although we have a dataset with 1 billion URLs, on a PC with
|
||||
1 gigabyte of main memory, the algorithm is able
|
||||
to handle an input with at most 32 million keys.
|
||||
This is mainly because of the graph we need to keep in main memory.
|
||||
The algorithm requires //25n + O(1)// bytes for constructing
|
||||
a MPHF ([click here to get details about the data structures used by the BMZ algorithm bmz.html]).
|
||||
|
||||
In order to estimate the number of trials for each value of //n// we use
|
||||
a statistical method for determining a suitable sample size (see, e.g., [[6, Chapter 13 #papers]]).
|
||||
As we obtained different values for each //n//,
|
||||
we used the maximal value obtained, namely, 300 trials in order to have
|
||||
a confidence level of 95 %.
|
||||
|
||||
|
||||
Table 1 presents the runtime average for each //n//,
|
||||
the respective standard deviations, and
|
||||
the respective confidence intervals given by
|
||||
the average time [figs/brz/img167.png] the distance from average time
|
||||
considering a confidence level of 95 %.
|
||||
Observing the runtime averages one sees that
|
||||
the algorithm runs in expected linear time,
|
||||
as shown in [[3 #papers]].
|
||||
|
||||
%!include(html): ''TABLEBRZ1.t2t''
|
||||
| **Table 1:** Internal memory based algorithm: average time in seconds for constructing a MPHF, the standard deviation (SD), and the confidence intervals considering a confidence level of 95 %.
|
||||
|
||||
Figure 6 presents the runtime for each trial. In addition,
|
||||
the solid line corresponds to a linear regression model
|
||||
obtained from the experimental measurements.
|
||||
As we can see, the runtime for a given //n// has a considerable
|
||||
fluctuation. However, the fluctuation also grows linearly with //n//.
|
||||
|
||||
| [figs/brz/bmz_temporegressao.png]
|
||||
| **Figure 6:** Time versus number of keys in //S// for the internal memory based algorithm. The solid line corresponds to a linear regression model.
|
||||
|
||||
The observed fluctuation in the runtimes is as expected; recall that this
|
||||
runtime has the form [figs/brz/img159.png] with //Z// a geometric random variable with
|
||||
mean //1/p=e//. Thus, the runtime has mean [figs/brz/img181.png] and standard
|
||||
deviation [figs/brz/img182.png].
|
||||
Therefore, the standard deviation also grows
|
||||
linearly with //n//, as experimentally verified
|
||||
in Table 1 and in Figure 6.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
===Performance of the External Memory Based Algorithm===
|
||||
|
||||
The runtime of the external memory based algorithm is also a random variable,
|
||||
but now it follows a (highly concentrated) normal distribution, as we discuss at the end of this
|
||||
section. Again, we are interested in verifying the linearity claim made in
|
||||
[[2, Section 5.1 #papers]]. Therefore, we ran the algorithm for
|
||||
several numbers //n// of keys in //S//.
|
||||
|
||||
The values chosen for //n// were 1, 2, 4, 8, 16, 32, 64, 128, 512 and 1000
|
||||
million.
|
||||
We limited the main memory in 500 megabytes for the experiments.
|
||||
The size [figs/brz/img8.png] of the a priori reserved internal memory area
|
||||
was set to 250 megabytes, the parameter //b// was set to //175// and
|
||||
the building block algorithm parameter //c// was again set to //1//.
|
||||
We show later on how [figs/brz/img8.png] affects the runtime of the algorithm. The other two parameters
|
||||
have insignificant influence on the runtime.
|
||||
|
||||
We again use a statistical method for determining a suitable sample size
|
||||
to estimate the number of trials to be run for each value of //n//. We got that
|
||||
just one trial for each //n// would be enough with a confidence level of 95 %.
|
||||
However, we made 10 trials. This number of trials seems rather small, but, as
|
||||
shown below, the behavior of our algorithm is very stable and its runtime is
|
||||
almost deterministic (i.e., the standard deviation is very small).
|
||||
|
||||
Table 2 presents the runtime average for each //n//,
|
||||
the respective standard deviations, and
|
||||
the respective confidence intervals given by
|
||||
the average time [figs/brz/img167.png] the distance from average time
|
||||
considering a confidence level of 95 %.
|
||||
Observing the runtime averages we noticed that
|
||||
the algorithm runs in expected linear time,
|
||||
as shown in [[2, Section 5.1 #papers]]. Better still,
|
||||
it is only approximately 60 % slower than the BMZ algorithm.
|
||||
To get that value we used the linear regression model obtained for the runtime of
|
||||
the internal memory based algorithm to estimate how much time it would require
|
||||
for constructing a MPHF for a set of 1 billion keys.
|
||||
We got 2.3 hours for the internal memory based algorithm and we measured
|
||||
3.67 hours on average for the external memory based algorithm.
|
||||
Increasing the size of the internal memory area
|
||||
from 250 to 600 megabytes,
|
||||
we have brought the time to 3.09 hours. In this case, the external memory based algorithm is
|
||||
just 34 % slower in this setup.
|
||||
|
||||
%!include(html): ''TABLEBRZ2.t2t''
|
||||
| **Table 2:**The external memory based algorithm: average time in seconds for constructing a MPHF, the standard deviation (SD), and the confidence intervals considering a confidence level of 95 %.
|
||||
|
||||
Figure 7 presents the runtime for each trial. In addition,
|
||||
the solid line corresponds to a linear regression model
|
||||
obtained from the experimental measurements.
|
||||
As we were expecting the runtime for a given //n// has almost no
|
||||
variation.
|
||||
|
||||
| [figs/brz/brz_temporegressao.png]
|
||||
| **Figure 7:** Time versus number of keys in //S// for our algorithm. The solid line corresponds to a linear regression model.
|
||||
|
||||
An intriguing observation is that the runtime of the algorithm is almost
|
||||
deterministic, in spite of the fact that it uses as building block an
|
||||
algorithm with a considerable fluctuation in its runtime. A given bucket
|
||||
//i//, [figs/brz/img47.png], is a small set of keys (at most 256 keys) and,
|
||||
as argued in last Section, the runtime of the
|
||||
building block algorithm is a random variable [figs/brz/img207.png] with high fluctuation.
|
||||
However, the runtime //Y// of the searching step of the external memory based algorithm is given
|
||||
by [figs/brz/img209.png]. Under the hypothesis that
|
||||
the [figs/brz/img207.png] are independent and bounded, the {\it law of large numbers} (see,
|
||||
e.g., [[6 #papers]]) implies that the random variable [figs/brz/img210.png] converges
|
||||
to a constant as [figs/brz/img83.png]. This explains why the runtime of our
|
||||
algorithm is almost deterministic.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
=== Controlling disk accesses ===
|
||||
|
||||
In order to bring down the number of seek operations on disk
|
||||
we benefit from the fact that our algorithm leaves almost all main
|
||||
memory available to be used as disk I/O buffer.
|
||||
In this section we evaluate how much the parameter [figs/brz/img8.png] affects the runtime of our algorithm.
|
||||
For that we fixed //n// in 1 billion of URLs,
|
||||
set the main memory of the machine used for the experiments
|
||||
to 1 gigabyte and used [figs/brz/img8.png] equal to 100, 200, 300, 400, 500 and 600
|
||||
megabytes.
|
||||
|
||||
Table 3 presents the number of files //N//,
|
||||
the buffer size used for all files, the number of seeks in the worst case considering
|
||||
the pessimistic assumption mentioned in [[2, Section 5.1 #papers]], and
|
||||
the time to generate a MPHF for 1 billion of keys as a function of the amount of internal
|
||||
memory available. Observing Table 3 we noticed that the time spent in the construction
|
||||
decreases as the value of [figs/brz/img8.png] increases. However, for [figs/brz/img213.png], the variation
|
||||
on the time is not as significant as for [figs/brz/img214.png].
|
||||
This can be explained by the fact that the kernel 2.6 I/O scheduler of Linux
|
||||
has smart policies for avoiding seeks and diminishing the average seek time
|
||||
(see [http://www.linuxjournal.com/article/6931 http://www.linuxjournal.com/article/6931]).
|
||||
|
||||
%!include(html): ''TABLEBRZ3.t2t''
|
||||
| **Table 3:**Influence of the internal memory area size ([figs/brz/img8.png]) in the external memory based algorithm runtime.
|
||||
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==Papers==[papers]
|
||||
|
||||
+ [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], D. Menoti, [N. Ziviani http://www.dcc.ufmg.br/~nivio]. [A New algorithm for constructing minimal perfect hash functions papers/bmz_tr004_04.ps], Technical Report TR004/04, Department of Computer Science, Federal University of Minas Gerais, 2004.
|
||||
|
||||
+ [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], Y. Kohayakawa, [N. Ziviani http://www.dcc.ufmg.br/~nivio]. [An Approach for Minimal Perfect Hash Functions for Very Large Databases papers/tr06.pdf], Technical Report TR003/06, Department of Computer Science, Federal University of Minas Gerais, 2004.
|
||||
|
||||
+ [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], Y. Kohayakawa, and [N. Ziviani http://www.dcc.ufmg.br/~nivio]. [A Practical Minimal Perfect Hashing Method papers/wea05.pdf]. //4th International Workshop on efficient and Experimental Algorithms (WEA05),// Springer-Verlag Lecture Notes in Computer Science, vol. 3505, Santorini Island, Greece, May 2005, 488-500.
|
||||
|
||||
+ [M. Seltzer. Beyond relational databases. ACM Queue, 3(3), April 2005. http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=299]
|
||||
|
||||
+ [Bob Jenkins. Algorithm alley: Hash functions. Dr. Dobb's Journal of Software Tools, 22(9), september 1997. http://burtleburtle.net/bob/hash/doobs.html]
|
||||
|
||||
+ R. Jain. The art of computer systems performance analysis: techniques for experimental design, measurement, simulation, and modeling. John Wiley, first edition, 1991.
|
||||
|
||||
|
||||
%!include: ALGORITHMS.t2t
|
||||
|
||||
%!include: FOOTER.t2t
|
||||
|
||||
%!include(html): ''GOOGLEANALYTICS.t2t''
|
44
deps/cmph/CHD.t2t
vendored
Normal file
44
deps/cmph/CHD.t2t
vendored
Normal file
@ -0,0 +1,44 @@
|
||||
Compress, Hash and Displace: CHD Algorithm
|
||||
|
||||
|
||||
%!includeconf: CONFIG.t2t
|
||||
|
||||
----------------------------------------
|
||||
==Introduction==
|
||||
|
||||
The important performance parameters of a PHF are representation size, evaluation time and construction time. The representation size plays an important role when the whole function fits in a faster memory and the actual data is stored in a slower memory. For instace, compact PHFs can be entirely fit in a CPU cache and this makes their computation really fast by avoiding cache misses. The CHD algorithm plays an important role in this context. It was designed by Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger in [[2 #papers]].
|
||||
|
||||
|
||||
The CHD algorithm permits to obtain PHFs with representation size very close to optimal while retaining //O(n)// construction time and //O(1)// evaluation time. For example, in the case //m=2n// we obtain a PHF that uses space //0.67// bits per key, and for //m=1.23n// we obtain space //1.4// bits per key, which was not achievable with previously known methods. The CHD algorithm is inspired by several known algorithms; the main new feature is that it combines a modification of Pagh's ``hash-and-displace'' approach with data compression on a sequence of hash function indices. That combination makes it possible to significantly reduce space usage while retaining linear construction time and constant query time. The CHD algorithm can also be used for //k//-perfect hashing, where at most //k// keys may be mapped to the same value. For the analysis we assume that fully random hash functions are given for free; such assumptions can be justified and were made in previous papers.
|
||||
|
||||
The compact PHFs generated by the CHD algorithm can be used in many applications in which we want to assign a unique identifier to each key without storing any information on the key. One of the most obvious applications of those functions (or //k//-perfect hash functions) is when we have a small fast memory in which we can store the perfect hash function while the keys and associated satellite data are stored in slower but larger memory. The size of a block or a transfer unit may be chosen so that //k// data items can be retrieved in one read access. In this case we can ensure that data associated with a key can be retrieved in a single probe to slower memory. This has been used for example in hardware routers [[4 #papers]].
|
||||
|
||||
|
||||
The CHD algorithm generates the most compact PHFs and MPHFs we know of in //O(n)// time. The time required to evaluate the generated functions is constant (in practice less than //1.4// microseconds). The storage space of the resulting PHFs and MPHFs are distant from the information theoretic lower bound by a factor of //1.43//. The closest competitor is the algorithm by Martin and Pagh [[3 #papers]] but their algorithm do not work in linear time. Furthermore, the CHD algorithm can be tuned to run faster than the BPZ algorithm [[1 #papers]] (the fastest algorithm available in the literature so far) and to obtain more compact functions. The most impressive characteristic is that it has the ability, in principle, to approximate the information theoretic lower bound while being practical. A detailed description of the CHD algorithm can be found in [[2 #papers]].
|
||||
|
||||
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==Experimental Results==
|
||||
|
||||
Experimental results comparing the CHD algorithm with [the BDZ algorithm bdz.html]
|
||||
and others available in the CMPH library are presented in [[2 #papers]].
|
||||
----------------------------------------
|
||||
|
||||
==Papers==[papers]
|
||||
|
||||
+ [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], [R. Pagh http://www.itu.dk/~pagh/], [N. Ziviani http://www.dcc.ufmg.br/~nivio]. [Simple and space-efficient minimal perfect hash functions papers/wads07.pdf]. //In Proceedings of the 10th International Workshop on Algorithms and Data Structures (WADs'07),// Springer-Verlag Lecture Notes in Computer Science, vol. 4619, Halifax, Canada, August 2007, 139-150.
|
||||
|
||||
+ [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], D. Belazzougui and M. Dietzfelbinger. [Compress, hash and displace papers/esa09.pdf]. //In Proceedings of the 17th European Symposium on Algorithms (ESA’09)//. Springer LNCS, 2009.
|
||||
|
||||
+ M. Dietzfelbinger and [R. Pagh http://www.itu.dk/~pagh/]. Succinct data structures for retrieval and approximate membership. //In Proceedings of the 35th international colloquium on Automata, Languages and Programming (ICALP’08)//, pages 385–396, Berlin, Heidelberg, 2008. Springer-Verlag.
|
||||
|
||||
+ B. Prabhakar and F. Bonomi. Perfect hashing for network applications. //In Proceedings of the IEEE International Symposium on Information Theory//. IEEE Press, 2006.
|
||||
|
||||
|
||||
%!include: ALGORITHMS.t2t
|
||||
|
||||
%!include: FOOTER.t2t
|
||||
|
||||
%!include(html): ''GOOGLEANALYTICS.t2t''
|
88
deps/cmph/CHM.t2t
vendored
Normal file
88
deps/cmph/CHM.t2t
vendored
Normal file
@ -0,0 +1,88 @@
|
||||
CHM Algorithm
|
||||
|
||||
|
||||
%!includeconf: CONFIG.t2t
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==The Algorithm==
|
||||
The algorithm is presented in [[1,2,3 #papers]].
|
||||
----------------------------------------
|
||||
|
||||
==Memory Consumption==
|
||||
|
||||
Now we detail the memory consumption to generate and to store minimal perfect hash functions
|
||||
using the CHM algorithm. The structures responsible for memory consumption are in the
|
||||
following:
|
||||
- Graph:
|
||||
+ **first**: is a vector that stores //cn// integer numbers, each one representing
|
||||
the first edge (index in the vector edges) in the list of
|
||||
edges of each vertex.
|
||||
The integer numbers are 4 bytes long. Therefore,
|
||||
the vector first is stored in //4cn// bytes.
|
||||
|
||||
+ **edges**: is a vector to represent the edges of the graph. As each edge
|
||||
is compounded by a pair of vertices, each entry stores two integer numbers
|
||||
of 4 bytes that represent the vertices. As there are //n// edges, the
|
||||
vector edges is stored in //8n// bytes.
|
||||
|
||||
+ **next**: given a vertex [figs/img139.png], we can discover the edges that
|
||||
contain [figs/img139.png] following its list of edges, which starts on
|
||||
first[[figs/img139.png]] and the next
|
||||
edges are given by next[...first[[figs/img139.png]]...]. Therefore,
|
||||
the vectors first and next represent
|
||||
the linked lists of edges of each vertex. As there are two vertices for each edge,
|
||||
when an edge is iserted in the graph, it must be inserted in the two linked lists
|
||||
of the vertices in its composition. Therefore, there are //2n// entries of integer
|
||||
numbers in the vector next, so it is stored in //4*2n = 8n// bytes.
|
||||
|
||||
- Other auxiliary structures
|
||||
+ **visited**: is a vector of //cn// bits, where each bit indicates if the g value of
|
||||
a given vertex was already defined. Therefore, the vector visited is stored
|
||||
in //cn/8// bytes.
|
||||
|
||||
+ **function //g//**: is represented by a vector of //cn// integer numbers.
|
||||
As each integer number is 4 bytes long, the function //g// is stored in
|
||||
//4cn// bytes.
|
||||
|
||||
|
||||
Thus, the total memory consumption of CHM algorithm for generating a minimal
|
||||
perfect hash function (MPHF) is: //(8.125c + 16)n + O(1)// bytes.
|
||||
As the value of constant //c// must be at least 2.09 we have:
|
||||
|| //c// | Memory consumption to generate a MPHF |
|
||||
| 2.09 | //33.00n + O(1)// |
|
||||
|
||||
| **Table 1:** Memory consumption to generate a MPHF using the CHM algorithm.
|
||||
|
||||
Now we present the memory consumption to store the resulting function.
|
||||
We only need to store the //g// function. Thus, we need //4cn// bytes.
|
||||
Again we have:
|
||||
|| //c// | Memory consumption to store a MPHF |
|
||||
| 2.09 | //8.36n// |
|
||||
|
||||
| **Table 2:** Memory consumption to store a MPHF generated by the CHM algorithm.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==Experimental Results==
|
||||
|
||||
[CHM x BMZ comparison.html]
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==Papers==[papers]
|
||||
|
||||
+ Z.J. Czech, G. Havas, and B.S. Majewski. [An optimal algorithm for generating minimal perfect hash functions. papers/chm92.pdf], Information Processing Letters, 43(5):257-264, 1992.
|
||||
|
||||
+ Z.J. Czech, G. Havas, and B.S. Majewski. Fundamental study perfect hashing.
|
||||
Theoretical Computer Science, 182:1-143, 1997.
|
||||
|
||||
+ B.S. Majewski, N.C. Wormald, G. Havas, and Z.J. Czech. A family of perfect hashing methods.
|
||||
The Computer Journal, 39(6):547--554, 1996.
|
||||
|
||||
|
||||
%!include: ALGORITHMS.t2t
|
||||
|
||||
%!include: FOOTER.t2t
|
||||
|
||||
%!include(html): ''GOOGLEANALYTICS.t2t''
|
111
deps/cmph/COMPARISON.t2t
vendored
Normal file
111
deps/cmph/COMPARISON.t2t
vendored
Normal file
@ -0,0 +1,111 @@
|
||||
Comparison Between BMZ And CHM Algorithms
|
||||
|
||||
|
||||
%!includeconf: CONFIG.t2t
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==Characteristics==
|
||||
Table 1 presents the main characteristics of the two algorithms.
|
||||
The number of edges in the graph [figs/img27.png] is [figs/img236.png],
|
||||
the number of keys in the input set [figs/img20.png].
|
||||
The number of vertices of [figs/img32.png] is equal
|
||||
to [figs/img12.png] and [figs/img237.png] for BMZ algorithm and the CHM algorithm, respectively.
|
||||
This measure is related to the amount of space to store the array [figs/img37.png].
|
||||
This improves the space required to store a function in BMZ algorithm to [figs/img238.png] of the space required by the CHM algorithm.
|
||||
The number of critical edges is [figs/img76.png] and 0, for BMZ algorithm and the CHM algorithm,
|
||||
respectively.
|
||||
BMZ algorithm generates random graphs that necessarily contains cycles and the
|
||||
CHM algorithm
|
||||
generates
|
||||
acyclic random graphs.
|
||||
Finally, the CHM algorithm generates [order preserving functions concepts.html]
|
||||
while BMZ algorithm does not preserve order.
|
||||
|
||||
%!include(html): ''TABLE1.t2t''
|
||||
| **Table 1:** Main characteristics of the algorithms.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==Memory Consumption==
|
||||
|
||||
- Memory consumption to generate the minimal perfect hash function (MPHF):
|
||||
|| Algorithm | //c// | Memory consumption to generate a MPHF |
|
||||
| BMZ | 0.93 | //24.80n + O(1)// |
|
||||
| BMZ | 1.15 | //26.42n + O(1)// |
|
||||
| CHM | 2.09 | //33.00n + O(1)// |
|
||||
|
||||
| **Table 2:** Memory consumption to generate a MPHF using the algorithms BMZ and CHM.
|
||||
|
||||
- Memory consumption to store the resulting minimal perfect hash function (MPHF):
|
||||
|| Algorithm | //c// | Memory consumption to store a MPHF |
|
||||
| BMZ | 0.93 | //3.72n// |
|
||||
| BMZ | 1.15 | //4.60n// |
|
||||
| CHM | 2.09 | //8.36n// |
|
||||
|
||||
| **Table 3:** Memory consumption to store a MPHF generated by the algorithms BMZ and CHM.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==Run times==
|
||||
We now present some experimental results to compare the BMZ and CHM algorithms.
|
||||
The data consists of a collection of 100 million universe resource locations
|
||||
(URLs) collected from the Web.
|
||||
The average length of a URL in the collection is 63 bytes.
|
||||
All experiments were carried on
|
||||
a computer running the Linux operating system, version 2.6.7,
|
||||
with a 2.4 gigahertz processor and
|
||||
4 gigabytes of main memory.
|
||||
|
||||
Table 4 presents time measurements.
|
||||
All times are in seconds.
|
||||
The table entries represent averages over 50 trials.
|
||||
The column labelled as [figs/img243.png] represents
|
||||
the number of iterations to generate the random graph [figs/img32.png] in the
|
||||
mapping step of the algorithms.
|
||||
The next columns represent the run times
|
||||
for the mapping plus ordering steps together and the searching
|
||||
step for each algorithm.
|
||||
The last column represents the percent gain of our algorithm
|
||||
over the CHM algorithm.
|
||||
|
||||
%!include(html): ''TABLE4.t2t''
|
||||
| **Table 4:** Time measurements for BMZ and the CHM algorithm.
|
||||
|
||||
The mapping step of the BMZ algorithm is faster because
|
||||
the expected number of iterations in the mapping step to generate [figs/img32.png] are
|
||||
2.13 and 2.92 for BMZ algorithm and the CHM algorithm, respectively
|
||||
(see [[2 bmz.html#papers]] for details).
|
||||
The graph [figs/img32.png] generated by BMZ algorithm
|
||||
has [figs/img12.png] vertices, against [figs/img237.png] for the CHM algorithm.
|
||||
These two facts make BMZ algorithm faster in the mapping step.
|
||||
The ordering step of BMZ algorithm is approximately equal to
|
||||
the time to check if [figs/img32.png] is acyclic for the CHM algorithm.
|
||||
The searching step of the CHM algorithm is faster, but the total
|
||||
time of BMZ algorithm is, on average, approximately 59 % faster
|
||||
than the CHM algorithm.
|
||||
It is important to notice the times for the searching step:
|
||||
for both algorithms they are not the dominant times,
|
||||
and the experimental results clearly show
|
||||
a linear behavior for the searching step.
|
||||
|
||||
We now present run times for BMZ algorithm using a [heuristic bmz.html#heuristic] that
|
||||
reduces the space requirement
|
||||
to any given value between [figs/img12.png] words and [figs/img13.png] words.
|
||||
For example, for [figs/img244.png] and [figs/img6.png], the analytical expected number
|
||||
of iterations are [figs/img245.png] and [figs/img246.png], respectively
|
||||
(for [figs/img247.png], the number of iterations are 2.78 for [figs/img244.png] and 3.04
|
||||
for [figs/img6.png]).
|
||||
Table 5 presents the total times to construct a
|
||||
function for [figs/img247.png], with an increase from [figs/img248.png] seconds
|
||||
for [figs/img128.png] (see Table 4) to [figs/img249.png] seconds for [figs/img244.png] and
|
||||
to [figs/img250.png] seconds for [figs/img6.png].
|
||||
|
||||
%!include(html): ''TABLE5.t2t''
|
||||
| **Table 5:** Time measurements for BMZ tuned algorithm with [figs/img5.png] and [figs/img6.png].
|
||||
|
||||
%!include: ALGORITHMS.t2t
|
||||
|
||||
%!include: FOOTER.t2t
|
||||
|
||||
%!include(html): ''GOOGLEANALYTICS.t2t''
|
56
deps/cmph/CONCEPTS.t2t
vendored
Normal file
56
deps/cmph/CONCEPTS.t2t
vendored
Normal file
@ -0,0 +1,56 @@
|
||||
Minimal Perfect Hash Functions - Introduction
|
||||
|
||||
|
||||
%!includeconf: CONFIG.t2t
|
||||
|
||||
----------------------------------------
|
||||
==Basic Concepts==
|
||||
|
||||
Suppose [figs/img14.png] is a universe of //keys//.
|
||||
Let [figs/img15.png] be a //hash function// that maps the keys from [figs/img14.png] to a given interval of integers [figs/img16.png].
|
||||
Let [figs/img17.png] be a set of [figs/img8.png] keys from [figs/img14.png].
|
||||
Given a key [figs/img18.png], the hash function [figs/img7.png] computes an
|
||||
integer in [figs/img19.png] for the storage or retrieval of [figs/img11.png] in
|
||||
a //hash table//.
|
||||
Hashing methods for //non-static sets// of keys can be used to construct
|
||||
data structures storing [figs/img20.png] and supporting membership queries
|
||||
"[figs/img18.png]?" in expected time [figs/img21.png].
|
||||
However, they involve a certain amount of wasted space owing to unused
|
||||
locations in the table and waisted time to resolve collisions when
|
||||
two keys are hashed to the same table location.
|
||||
|
||||
For //static sets// of keys it is possible to compute a function
|
||||
to find any key in a table in one probe; such hash functions are called
|
||||
//perfect//.
|
||||
More precisely, given a set of keys [figs/img20.png], we shall say that a
|
||||
hash function [figs/img15.png] is a //perfect hash function//
|
||||
for [figs/img20.png] if [figs/img7.png] is an injection on [figs/img20.png],
|
||||
that is, there are no //collisions// among the keys in [figs/img20.png]:
|
||||
if [figs/img11.png] and [figs/img22.png] are in [figs/img20.png] and [figs/img23.png],
|
||||
then [figs/img24.png].
|
||||
Figure 1(a) illustrates a perfect hash function.
|
||||
Since no collisions occur, each key can be retrieved from the table
|
||||
with a single probe.
|
||||
If [figs/img25.png], that is, the table has the same size as [figs/img20.png],
|
||||
then we say that [figs/img7.png] is a //minimal perfect hash function//
|
||||
for [figs/img20.png].
|
||||
Figure 1(b) illustrates a minimal perfect hash function.
|
||||
Minimal perfect hash functions totally avoid the problem of wasted
|
||||
space and time. A perfect hash function [figs/img7.png] is //order preserving//
|
||||
if the keys in [figs/img20.png] are arranged in some given order
|
||||
and [figs/img7.png] preserves this order in the hash table.
|
||||
|
||||
| [figs/img26.png]
|
||||
| **Figure 1:** (a) Perfect hash function. (b) Minimal perfect hash function.
|
||||
|
||||
Minimal perfect hash functions are widely used for memory efficient
|
||||
storage and fast retrieval of items from static sets, such as words in natural
|
||||
languages, reserved words in programming languages or interactive systems,
|
||||
universal resource locations (URLs) in Web search engines, or item sets in
|
||||
data mining techniques.
|
||||
|
||||
%!include: ALGORITHMS.t2t
|
||||
|
||||
%!include: FOOTER.t2t
|
||||
|
||||
%!include(html): ''GOOGLEANALYTICS.t2t''
|
51
deps/cmph/CONFIG.t2t
vendored
Normal file
51
deps/cmph/CONFIG.t2t
vendored
Normal file
@ -0,0 +1,51 @@
|
||||
%! style(html): DOC.css
|
||||
%! PreProc(html): '^%html% ' ''
|
||||
%! PreProc(txt): '^%txt% ' ''
|
||||
%! PostProc(html): "&" "&"
|
||||
%! PostProc(txt): " " " "
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img7.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img7.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img57.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img57.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img32.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img32.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img20.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img20.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img60.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img60.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img62.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img62.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img79.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img79.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img139.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img139.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img140.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img140.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img143.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img143.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img115.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img115.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img11.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img11.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img169.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img169.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img96.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img96.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img178.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img178.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img180.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img180.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img183.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img183.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img189.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img189.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img196.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img196.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img172.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img172.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img8.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img8.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img1.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img1.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img14.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img14.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img128.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img128.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img112.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img112.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img12.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img12.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img13.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img13.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img244.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img244.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img245.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img245.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img246.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img246.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img15.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img15.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img25.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img25.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img168.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img168.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img6.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img6.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img5.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img5.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img28.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img28.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img237.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img237.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img248.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img237.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img248.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img237.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img249.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img249.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/img250.png"(.*?)>' 'ALIGN="bottom" SRC="figs/img250.png"\1>'
|
||||
%! PostProc(html): 'ALIGN="middle" SRC="figs/bdz/img8.png"(.*?)>' 'ALIGN="bottom" SRC="figs/bdz/img8.png"\1>'
|
||||
% The ^ need to be escaped by \
|
||||
%!postproc(html): \^\^(.*?)\^\^ <sup>\1</sup>
|
||||
%!postproc(html): ,,(.*?),, <sub>\1</sub>
|
||||
|
5
deps/cmph/COPYING
vendored
Normal file
5
deps/cmph/COPYING
vendored
Normal file
@ -0,0 +1,5 @@
|
||||
The code of the cmph library is dual licensed under the LGPL version 2 and MPL
|
||||
1.1 licenses. Please refer to the LGPL-2 and MPL-1.1 files in the repository
|
||||
for the full description of each of the licenses.
|
||||
|
||||
For cxxmph, the files stringpiece.h and MurmurHash2 are covered by the BSD and MIT licenses, respectively.
|
453
deps/cmph/ChangeLog
vendored
Normal file
453
deps/cmph/ChangeLog
vendored
Normal file
@ -0,0 +1,453 @@
|
||||
2005-08-08 18:34 fc_botelho
|
||||
|
||||
* INSTALL, examples/Makefile, examples/Makefile.in,
|
||||
examples/.deps/file_adapter_ex2.Po,
|
||||
examples/.deps/vector_adapter_ex1.Po, src/brz.c: [no log message]
|
||||
|
||||
2005-08-07 22:00 fc_botelho
|
||||
|
||||
* src/: brz.c, brz.h, brz_structs.h, cmph.c, cmph.h, main.c:
|
||||
temporary directory passed by command line
|
||||
|
||||
2005-08-07 20:22 fc_botelho
|
||||
|
||||
* src/brz.c: stable version of BRZ
|
||||
|
||||
2005-08-06 22:09 fc_botelho
|
||||
|
||||
* src/bmz.c: no message
|
||||
|
||||
2005-08-06 22:02 fc_botelho
|
||||
|
||||
* src/bmz.c: no message
|
||||
|
||||
2005-08-06 21:45 fc_botelho
|
||||
|
||||
* src/brz.c: fastest version of BRZ
|
||||
|
||||
2005-08-06 17:20 fc_botelho
|
||||
|
||||
* src/: bmz.c, brz.c, main.c: [no log message]
|
||||
|
||||
2005-07-29 16:43 fc_botelho
|
||||
|
||||
* src/brz.c: BRZ algorithm is almost stable
|
||||
|
||||
2005-07-29 15:29 fc_botelho
|
||||
|
||||
* src/: bmz.c, brz.c, brz_structs.h, cmph_types.h: BRZ algorithm is
|
||||
almost stable
|
||||
|
||||
2005-07-29 00:09 fc_botelho
|
||||
|
||||
* src/: brz.c, djb2_hash.c, djb2_hash.h, fnv_hash.c, fnv_hash.h,
|
||||
hash.c, hash.h, jenkins_hash.c, jenkins_hash.h, sdbm_hash.c,
|
||||
sdbm_hash.h: it was fixed more mistakes in BRZ algorithm
|
||||
|
||||
2005-07-28 21:00 fc_botelho
|
||||
|
||||
* src/: bmz.c, brz.c, cmph.c: fixed some mistakes in BRZ algorithm
|
||||
|
||||
2005-07-27 19:13 fc_botelho
|
||||
|
||||
* src/brz.c: algorithm BRZ included
|
||||
|
||||
2005-07-27 18:16 fc_botelho
|
||||
|
||||
* src/: bmz_structs.h, brz.c, brz.h, brz_structs.h: Algorithm BRZ
|
||||
included
|
||||
|
||||
2005-07-27 18:13 fc_botelho
|
||||
|
||||
* src/: Makefile.am, bmz.c, chm.c, cmph.c, cmph.h, cmph_types.h:
|
||||
Algorithm BRZ included
|
||||
|
||||
2005-07-25 19:18 fc_botelho
|
||||
|
||||
* README, README.t2t, scpscript: it was included an examples
|
||||
directory
|
||||
|
||||
2005-07-25 18:26 fc_botelho
|
||||
|
||||
* INSTALL, Makefile.am, configure.ac, examples/Makefile,
|
||||
examples/Makefile.am, examples/Makefile.in,
|
||||
examples/file_adapter_ex2.c, examples/keys.txt,
|
||||
examples/vector_adapter_ex1.c, examples/.deps/file_adapter_ex2.Po,
|
||||
examples/.deps/vector_adapter_ex1.Po, src/cmph.c, src/cmph.h: it
|
||||
was included a examples directory
|
||||
|
||||
2005-03-03 02:07 davi
|
||||
|
||||
* src/: bmz.c, chm.c, chm.h, chm_structs.h, cmph.c, cmph.h,
|
||||
graph.c, graph.h, jenkins_hash.c, jenkins_hash.h, main.c (xgraph):
|
||||
New f*cking cool algorithm works. Roughly implemented in chm.c
|
||||
|
||||
2005-03-02 20:55 davi
|
||||
|
||||
* src/xgraph.c (xgraph): xchmr working nice, but a bit slow
|
||||
|
||||
2005-03-02 02:01 davi
|
||||
|
||||
* src/xchmr.h: file xchmr.h was initially added on branch xgraph.
|
||||
|
||||
2005-03-02 02:01 davi
|
||||
|
||||
* src/xchmr_structs.h: file xchmr_structs.h was initially added on
|
||||
branch xgraph.
|
||||
|
||||
2005-03-02 02:01 davi
|
||||
|
||||
* src/xchmr.c: file xchmr.c was initially added on branch xgraph.
|
||||
|
||||
2005-03-02 02:01 davi
|
||||
|
||||
* src/: Makefile.am, cmph.c, cmph_types.h, xchmr.c, xchmr.h,
|
||||
xchmr_structs.h, xgraph.c, xgraph.h (xgraph): xchmr working fine
|
||||
except for false positives on cyclic detection.
|
||||
|
||||
2005-03-02 00:05 davi
|
||||
|
||||
* src/: Makefile.am, xgraph.c, xgraph.h (xgraph): Added external
|
||||
graph functionality in branch xgraph.
|
||||
|
||||
2005-03-02 00:05 davi
|
||||
|
||||
* src/xgraph.c: file xgraph.c was initially added on branch xgraph.
|
||||
|
||||
2005-03-02 00:05 davi
|
||||
|
||||
* src/xgraph.h: file xgraph.h was initially added on branch xgraph.
|
||||
|
||||
2005-02-28 19:53 davi
|
||||
|
||||
* src/chm.c: Fixed off by one bug in chm.
|
||||
|
||||
2005-02-17 16:20 fc_botelho
|
||||
|
||||
* LOGO.html, README, README.t2t, gendocs: The way of calling the
|
||||
function cmph_search was fixed in the file README.t2t
|
||||
|
||||
2005-01-31 17:13 fc_botelho
|
||||
|
||||
* README.t2t: Heuristic BMZ memory consumption was updated
|
||||
|
||||
2005-01-31 17:09 fc_botelho
|
||||
|
||||
* BMZ.t2t: DJB2, SDBM, FNV and Jenkins hash link were added
|
||||
|
||||
2005-01-31 16:50 fc_botelho
|
||||
|
||||
* BMZ.t2t, CHM.t2t, COMPARISON.t2t, CONCEPTS.t2t, CONFIG.t2t,
|
||||
FAQ.t2t, GPERF.t2t, LOGO.t2t, README.t2t, TABLE1.t2t, TABLE4.t2t,
|
||||
TABLE5.t2t, DOC.css: BMZ documentation was finished
|
||||
|
||||
2005-01-28 18:12 fc_botelho
|
||||
|
||||
* figs/img1.png, figs/img10.png, figs/img100.png, figs/img101.png,
|
||||
figs/img102.png, figs/img103.png, figs/img104.png, figs/img105.png,
|
||||
figs/img106.png, figs/img107.png, figs/img108.png, figs/img109.png,
|
||||
papers/bmz_tr004_04.ps, papers/bmz_wea2005.ps, papers/chm92.pdf,
|
||||
figs/img11.png, figs/img110.png, figs/img111.png, figs/img112.png,
|
||||
figs/img113.png, figs/img114.png, figs/img115.png, figs/img116.png,
|
||||
figs/img117.png, figs/img118.png, figs/img119.png, figs/img12.png,
|
||||
figs/img120.png, figs/img121.png, figs/img122.png, figs/img123.png,
|
||||
figs/img124.png, figs/img125.png, figs/img126.png, figs/img127.png,
|
||||
figs/img128.png, figs/img129.png, figs/img13.png, figs/img130.png,
|
||||
figs/img131.png, figs/img132.png, figs/img133.png, figs/img134.png,
|
||||
figs/img135.png, figs/img136.png, figs/img137.png, figs/img138.png,
|
||||
figs/img139.png, figs/img14.png, figs/img140.png, figs/img141.png,
|
||||
figs/img142.png, figs/img143.png, figs/img144.png, figs/img145.png,
|
||||
figs/img146.png, figs/img147.png, figs/img148.png, figs/img149.png,
|
||||
figs/img15.png, figs/img150.png, figs/img151.png, figs/img152.png,
|
||||
figs/img153.png, figs/img154.png, figs/img155.png, figs/img156.png,
|
||||
figs/img157.png, figs/img158.png, figs/img159.png, figs/img16.png,
|
||||
figs/img160.png, figs/img161.png, figs/img162.png, figs/img163.png,
|
||||
figs/img164.png, figs/img165.png, figs/img166.png, figs/img167.png,
|
||||
figs/img168.png, figs/img169.png, figs/img17.png, figs/img170.png,
|
||||
figs/img171.png, figs/img172.png, figs/img173.png, figs/img174.png,
|
||||
figs/img175.png, figs/img176.png, figs/img177.png, figs/img178.png,
|
||||
figs/img179.png, figs/img18.png, figs/img180.png, figs/img181.png,
|
||||
figs/img182.png, figs/img183.png, figs/img184.png, figs/img185.png,
|
||||
figs/img186.png, figs/img187.png, figs/img188.png, figs/img189.png,
|
||||
figs/img19.png, figs/img190.png, figs/img191.png, figs/img192.png,
|
||||
figs/img193.png, figs/img194.png, figs/img195.png, figs/img196.png,
|
||||
figs/img197.png, figs/img198.png, figs/img199.png, figs/img2.png,
|
||||
figs/img20.png, figs/img200.png, figs/img201.png, figs/img202.png,
|
||||
figs/img203.png, figs/img204.png, figs/img205.png, figs/img206.png,
|
||||
figs/img207.png, figs/img208.png, figs/img209.png, figs/img21.png,
|
||||
figs/img210.png, figs/img211.png, figs/img212.png, figs/img213.png,
|
||||
figs/img214.png, figs/img215.png, figs/img216.png, figs/img217.png,
|
||||
figs/img218.png, figs/img219.png, figs/img22.png, figs/img220.png,
|
||||
figs/img221.png, figs/img222.png, figs/img223.png, figs/img224.png,
|
||||
figs/img225.png, figs/img226.png, figs/img227.png, figs/img228.png,
|
||||
figs/img229.png, figs/img23.png, figs/img230.png, figs/img231.png,
|
||||
figs/img232.png, figs/img233.png, figs/img234.png, figs/img235.png,
|
||||
figs/img236.png, figs/img237.png, figs/img238.png, figs/img239.png,
|
||||
figs/img24.png, figs/img240.png, figs/img241.png, figs/img242.png,
|
||||
figs/img243.png, figs/img244.png, figs/img245.png, figs/img246.png,
|
||||
figs/img247.png, figs/img248.png, figs/img249.png, figs/img25.png,
|
||||
figs/img250.png, figs/img251.png, figs/img252.png, figs/img253.png,
|
||||
figs/img26.png, figs/img27.png, figs/img28.png, figs/img29.png,
|
||||
figs/img3.png, figs/img30.png, figs/img31.png, figs/img32.png,
|
||||
figs/img33.png, figs/img34.png, figs/img35.png, figs/img36.png,
|
||||
figs/img37.png, figs/img38.png, figs/img39.png, figs/img4.png,
|
||||
figs/img40.png, figs/img41.png, figs/img42.png, figs/img43.png,
|
||||
figs/img44.png, figs/img45.png, figs/img46.png, figs/img47.png,
|
||||
figs/img48.png, figs/img49.png, figs/img5.png, figs/img50.png,
|
||||
figs/img51.png, figs/img52.png, figs/img53.png, figs/img54.png,
|
||||
figs/img55.png, figs/img56.png, figs/img57.png, figs/img58.png,
|
||||
figs/img59.png, figs/img6.png, figs/img60.png, figs/img61.png,
|
||||
figs/img62.png, figs/img63.png, figs/img64.png, figs/img65.png,
|
||||
figs/img66.png, figs/img67.png, figs/img68.png, figs/img69.png,
|
||||
figs/img7.png, figs/img70.png, figs/img71.png, figs/img72.png,
|
||||
figs/img73.png, figs/img74.png, figs/img75.png, figs/img76.png,
|
||||
figs/img77.png, figs/img78.png, figs/img79.png, figs/img8.png,
|
||||
figs/img80.png, figs/img81.png, figs/img82.png, figs/img83.png,
|
||||
figs/img84.png, figs/img85.png, figs/img86.png, figs/img87.png,
|
||||
figs/img88.png, figs/img89.png, figs/img9.png, figs/img90.png,
|
||||
figs/img91.png, figs/img92.png, figs/img93.png, figs/img94.png,
|
||||
figs/img95.png, figs/img96.png, figs/img97.png, figs/img98.png,
|
||||
figs/img99.png: Initial version
|
||||
|
||||
2005-01-28 18:07 fc_botelho
|
||||
|
||||
* BMZ.t2t, CHM.t2t, COMPARISON.t2t, CONFIG.t2t, README.t2t: It was
|
||||
improved the documentation of BMZ and CHM algorithms
|
||||
|
||||
2005-01-27 18:07 fc_botelho
|
||||
|
||||
* BMZ.t2t, CHM.t2t, FAQ.t2t: history of BMZ algorithm is available
|
||||
|
||||
2005-01-27 14:23 fc_botelho
|
||||
|
||||
* AUTHORS: It was added the authors' email
|
||||
|
||||
2005-01-27 14:21 fc_botelho
|
||||
|
||||
* BMZ.t2t, CHM.t2t, COMPARISON.t2t, FAQ.t2t, FOOTER.t2t, GPERF.t2t,
|
||||
README.t2t: It was added FOOTER.t2t file
|
||||
|
||||
2005-01-27 12:16 fc_botelho
|
||||
|
||||
* src/cmph_types.h: It was removed pjw and glib functions from
|
||||
cmph_hash_names vector
|
||||
|
||||
2005-01-27 12:12 fc_botelho
|
||||
|
||||
* src/hash.c: It was removed pjw and glib functions from
|
||||
cmph_hash_names vector
|
||||
|
||||
2005-01-27 11:01 davi
|
||||
|
||||
* FAQ.t2t, README, README.t2t, gendocs, src/bmz.c, src/bmz.h,
|
||||
src/chm.c, src/chm.h, src/cmph.c, src/cmph_structs.c, src/debug.h,
|
||||
src/main.c: Fix to alternate hash functions code. Removed htonl
|
||||
stuff from chm algorithm. Added faq.
|
||||
|
||||
2005-01-27 09:14 fc_botelho
|
||||
|
||||
* README.t2t: It was corrected some formatting mistakes
|
||||
|
||||
2005-01-26 22:04 davi
|
||||
|
||||
* BMZ.t2t, CHM.t2t, COMPARISON.t2t, GPERF.t2t, README, README.t2t,
|
||||
gendocs: Added gperf notes.
|
||||
|
||||
2005-01-25 19:10 fc_botelho
|
||||
|
||||
* INSTALL: generated in version 0.3
|
||||
|
||||
2005-01-25 19:09 fc_botelho
|
||||
|
||||
* src/: czech.c, czech.h, czech_structs.h: The czech.h,
|
||||
czech_structs.h and czech.c files were removed
|
||||
|
||||
2005-01-25 19:06 fc_botelho
|
||||
|
||||
* src/: chm.c, chm.h, chm_structs.h, cmph.c, cmph_types.h, main.c,
|
||||
Makefile.am: It was changed the prefix czech by chm
|
||||
|
||||
2005-01-25 18:50 fc_botelho
|
||||
|
||||
* gendocs: script to generate the documentation and the README file
|
||||
|
||||
2005-01-25 18:47 fc_botelho
|
||||
|
||||
* README: README was updated
|
||||
|
||||
2005-01-25 18:44 fc_botelho
|
||||
|
||||
* configure.ac: Version was updated
|
||||
|
||||
2005-01-25 18:42 fc_botelho
|
||||
|
||||
* src/cmph.h: Vector adapter commented
|
||||
|
||||
2005-01-25 18:40 fc_botelho
|
||||
|
||||
* CHM.t2t, CONFIG.t2t, LOGO.html: It was included the PreProc macro
|
||||
through the CONFIG.t2t file and the LOGO through the LOGO.html file
|
||||
|
||||
2005-01-25 18:33 fc_botelho
|
||||
|
||||
* README.t2t, BMZ.t2t, COMPARISON.t2t, CZECH.t2t: It was included
|
||||
the PreProc macro through the CONFIG.t2t file and the LOGO through
|
||||
the LOGO.html file
|
||||
|
||||
2005-01-24 18:25 fc_botelho
|
||||
|
||||
* src/: bmz.c, bmz.h, cmph_structs.c, cmph_structs.h, czech.c,
|
||||
cmph.c, czech.h, main.c, cmph.h: The file adpater was implemented.
|
||||
|
||||
2005-01-24 17:20 fc_botelho
|
||||
|
||||
* README.t2t: the memory consumption to create a mphf using bmz
|
||||
with a heuristic was fixed.
|
||||
|
||||
2005-01-24 17:11 fc_botelho
|
||||
|
||||
* src/: cmph_types.h, main.c: The algorithms and hash functions
|
||||
were put in alphabetical order
|
||||
|
||||
2005-01-24 16:15 fc_botelho
|
||||
|
||||
* BMZ.t2t, COMPARISON.t2t, CZECH.t2t, README.t2t: It was fixed some
|
||||
English mistakes and It was included the files BMZ.t2t, CZECH.t2t
|
||||
and COMPARISON.t2t
|
||||
|
||||
2005-01-21 19:19 davi
|
||||
|
||||
* ChangeLog, Doxyfile: Added Doxyfile.
|
||||
|
||||
2005-01-21 19:14 davi
|
||||
|
||||
* README.t2t, wingetopt.c, src/cmph.h, tests/graph_tests.c: Fixed
|
||||
wingetopt.c
|
||||
|
||||
2005-01-21 18:44 fc_botelho
|
||||
|
||||
* src/Makefile.am: included files bitbool.h and bitbool.c
|
||||
|
||||
2005-01-21 18:42 fc_botelho
|
||||
|
||||
* src/: bmz.c, bmz.h, bmz_structs.h, cmph.c, cmph.h,
|
||||
cmph_structs.c, cmph_structs.h, czech.c, czech.h, czech_structs.h,
|
||||
djb2_hash.c, djb2_hash.h, fnv_hash.c, fnv_hash.h, graph.c, graph.h,
|
||||
hash.c, hash.h, hash_state.h, jenkins_hash.c, jenkins_hash.h,
|
||||
main.c, sdbm_hash.c, sdbm_hash.h, vqueue.c, vqueue.h, vstack.c,
|
||||
vstack.h: Only public symbols were prefixed with cmph, and the API
|
||||
was changed to agree with the initial txt2html documentation
|
||||
|
||||
2005-01-21 18:30 fc_botelho
|
||||
|
||||
* src/: bitbool.c, bitbool.h: mask to represent a boolean value
|
||||
using only 1 bit
|
||||
|
||||
2005-01-20 10:28 davi
|
||||
|
||||
* ChangeLog, README, README.t2t, wingetopt.h, src/main.c: Added
|
||||
initial txt2tags documentation.
|
||||
|
||||
2005-01-19 10:40 davi
|
||||
|
||||
* acinclude.m4, configure.ac: Added macros for large file support.
|
||||
|
||||
2005-01-18 19:06 fc_botelho
|
||||
|
||||
* src/: bmz.c, bmz.h, bmz_structs.h, cmph.c, cmph.h,
|
||||
cmph_structs.c, cmph_structs.h, cmph_types.h, czech.c, czech.h,
|
||||
czech_structs.h, djb2_hash.c, djb2_hash.h, fnv_hash.c, fnv_hash.h,
|
||||
graph.c, graph.h, hash.c, hash.h, hash_state.h, jenkins_hash.c,
|
||||
jenkins_hash.h, main.c, sdbm_hash.c, sdbm_hash.h, vqueue.c,
|
||||
vqueue.h, vstack.c, vstack.h: version with cmph prefix
|
||||
|
||||
2005-01-18 15:10 davi
|
||||
|
||||
* ChangeLog, cmph.vcproj, cmphapp.vcproj, wingetopt.c, wingetopt.h:
|
||||
Added missing files.
|
||||
|
||||
2005-01-18 14:25 fc_botelho
|
||||
|
||||
* aclocal.m4: initial version
|
||||
|
||||
2005-01-18 14:16 fc_botelho
|
||||
|
||||
* aclocal.m4: initial version
|
||||
|
||||
2005-01-18 13:58 fc_botelho
|
||||
|
||||
* src/czech.c: using bit mask to represent boolean values
|
||||
|
||||
2005-01-18 13:56 fc_botelho
|
||||
|
||||
* src/czech.c: no message
|
||||
|
||||
2005-01-18 10:18 davi
|
||||
|
||||
* COPYING, INSTALL, src/Makefile.am, src/bmz.c, src/bmz.h,
|
||||
src/cmph.c, src/cmph.h, src/cmph_structs.c, src/cmph_structs.h,
|
||||
src/czech.c, src/czech.h, src/debug.h, src/djb2_hash.c,
|
||||
src/graph.c, src/graph.h, src/hash.c, src/jenkins_hash.c,
|
||||
src/main.c, src/sdbm_hash.c, src/vqueue.c: Fixed a lot of warnings.
|
||||
Added visual studio project. Make needed changes to work with
|
||||
windows.
|
||||
|
||||
2005-01-17 16:01 fc_botelho
|
||||
|
||||
* src/main.c: stable version
|
||||
|
||||
2005-01-17 15:58 fc_botelho
|
||||
|
||||
* src/: bmz.c, cmph.c, cmph.h, graph.c: stable version
|
||||
|
||||
2005-01-13 21:56 davi
|
||||
|
||||
* src/czech.c: Better error handling in czech.c.
|
||||
|
||||
2005-01-05 18:45 fc_botelho
|
||||
|
||||
* src/cmph_structs.c: included option -k to specify the number of
|
||||
keys to use
|
||||
|
||||
2005-01-05 17:48 fc_botelho
|
||||
|
||||
* src/: cmph.c, main.c: included option -k to specify the number of
|
||||
keys to use
|
||||
|
||||
2005-01-03 19:38 fc_botelho
|
||||
|
||||
* src/bmz.c: using less memory
|
||||
|
||||
2005-01-03 18:47 fc_botelho
|
||||
|
||||
* src/: bmz.c, graph.c: using less space to store the used_edges
|
||||
and critical_nodes arrays
|
||||
|
||||
2004-12-23 11:16 davi
|
||||
|
||||
* INSTALL, COPYING, AUTHORS, ChangeLog, Makefile.am, NEWS, README,
|
||||
cmph.spec, configure.ac, src/graph.c, tests/Makefile.am,
|
||||
tests/graph_tests.c, src/bmz.c, src/cmph_types.h,
|
||||
src/czech_structs.h, src/hash_state.h, src/jenkins_hash.c,
|
||||
src/bmz_structs.h, src/cmph.c, src/cmph.h, src/cmph_structs.h,
|
||||
src/czech.c, src/debug.h, src/djb2_hash.c, src/djb2_hash.h,
|
||||
src/fnv_hash.c, src/fnv_hash.h, src/graph.h, src/hash.c,
|
||||
src/hash.h, src/jenkins_hash.h, src/sdbm_hash.c, src/vstack.h,
|
||||
src/Makefile.am, src/bmz.h, src/cmph_structs.c, src/czech.h,
|
||||
src/main.c, src/sdbm_hash.h, src/vqueue.c, src/vqueue.h,
|
||||
src/vstack.c: Initial release.
|
||||
|
||||
2004-12-23 11:16 davi
|
||||
|
||||
* INSTALL, COPYING, AUTHORS, ChangeLog, Makefile.am, NEWS, README,
|
||||
cmph.spec, configure.ac, src/graph.c, tests/Makefile.am,
|
||||
tests/graph_tests.c, src/bmz.c, src/cmph_types.h,
|
||||
src/czech_structs.h, src/hash_state.h, src/jenkins_hash.c,
|
||||
src/bmz_structs.h, src/cmph.c, src/cmph.h, src/cmph_structs.h,
|
||||
src/czech.c, src/debug.h, src/djb2_hash.c, src/djb2_hash.h,
|
||||
src/fnv_hash.c, src/fnv_hash.h, src/graph.h, src/hash.c,
|
||||
src/hash.h, src/jenkins_hash.h, src/sdbm_hash.c, src/vstack.h,
|
||||
src/Makefile.am, src/bmz.h, src/cmph_structs.c, src/czech.h,
|
||||
src/main.c, src/sdbm_hash.h, src/vqueue.c, src/vqueue.h,
|
||||
src/vstack.c: Initial revision
|
||||
|
33
deps/cmph/DOC.css
vendored
Normal file
33
deps/cmph/DOC.css
vendored
Normal file
@ -0,0 +1,33 @@
|
||||
/* implement both fixed-size and relative sizes */
|
||||
SMALL.XTINY { }
|
||||
SMALL.TINY { }
|
||||
SMALL.SCRIPTSIZE { }
|
||||
BODY { font-size: 13 }
|
||||
TD { font-size: 13 }
|
||||
SMALL.FOOTNOTESIZE { font-size: 13 }
|
||||
SMALL.SMALL { }
|
||||
BIG.LARGE { }
|
||||
BIG.XLARGE { }
|
||||
BIG.XXLARGE { }
|
||||
BIG.HUGE { }
|
||||
BIG.XHUGE { }
|
||||
|
||||
/* heading styles */
|
||||
H1 { }
|
||||
H2 { }
|
||||
H3 { }
|
||||
H4 { }
|
||||
H5 { }
|
||||
|
||||
|
||||
/* mathematics styles */
|
||||
DIV.displaymath { } /* math displays */
|
||||
TD.eqno { } /* equation-number cells */
|
||||
|
||||
|
||||
/* document-specific styles come next */
|
||||
DIV.navigation { }
|
||||
DIV.center { }
|
||||
SPAN.textit { font-style: italic }
|
||||
SPAN.arabic { }
|
||||
SPAN.eqn-number { }
|
1153
deps/cmph/Doxyfile
vendored
Normal file
1153
deps/cmph/Doxyfile
vendored
Normal file
File diff suppressed because it is too large
Load Diff
152
deps/cmph/EXAMPLES.t2t
vendored
Normal file
152
deps/cmph/EXAMPLES.t2t
vendored
Normal file
@ -0,0 +1,152 @@
|
||||
CMPH - Examples
|
||||
|
||||
|
||||
%!includeconf: CONFIG.t2t
|
||||
|
||||
Using cmph is quite simple. Take a look in the following examples.
|
||||
|
||||
-------------------------------------------------------------------
|
||||
|
||||
```
|
||||
#include <cmph.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-memory vector
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
|
||||
// Creating a filled vector
|
||||
unsigned int i = 0;
|
||||
const char *vector[] = {"aaaaaaaaaa", "bbbbbbbbbb", "cccccccccc", "dddddddddd", "eeeeeeeeee",
|
||||
"ffffffffff", "gggggggggg", "hhhhhhhhhh", "iiiiiiiiii", "jjjjjjjjjj"};
|
||||
unsigned int nkeys = 10;
|
||||
FILE* mphf_fd = fopen("temp.mph", "w");
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_vector_adapter((char **)vector, nkeys);
|
||||
|
||||
//Create minimal perfect hash function using the brz algorithm.
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BRZ);
|
||||
cmph_config_set_mphf_fd(config, mphf_fd);
|
||||
cmph_t *hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
cmph_dump(hash, mphf_fd);
|
||||
cmph_destroy(hash);
|
||||
fclose(mphf_fd);
|
||||
|
||||
//Find key
|
||||
mphf_fd = fopen("temp.mph", "r");
|
||||
hash = cmph_load(mphf_fd);
|
||||
while (i < nkeys) {
|
||||
const char *key = vector[i];
|
||||
unsigned int id = cmph_search(hash, key, (cmph_uint32)strlen(key));
|
||||
fprintf(stderr, "key:%s -- hash:%u\n", key, id);
|
||||
i++;
|
||||
}
|
||||
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_vector_adapter_destroy(source);
|
||||
fclose(mphf_fd);
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
Download [vector_adapter_ex1.c examples/vector_adapter_ex1.c]. This example does not work in versions below 0.6.
|
||||
-------------------------------
|
||||
|
||||
```
|
||||
#include <cmph.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-memory vector
|
||||
|
||||
#pragma pack(1)
|
||||
typedef struct {
|
||||
cmph_uint32 id;
|
||||
char key[11];
|
||||
cmph_uint32 year;
|
||||
} rec_t;
|
||||
#pragma pack(0)
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
// Creating a filled vector
|
||||
unsigned int i = 0;
|
||||
rec_t vector[10] = {{1, "aaaaaaaaaa", 1999}, {2, "bbbbbbbbbb", 2000}, {3, "cccccccccc", 2001},
|
||||
{4, "dddddddddd", 2002}, {5, "eeeeeeeeee", 2003}, {6, "ffffffffff", 2004},
|
||||
{7, "gggggggggg", 2005}, {8, "hhhhhhhhhh", 2006}, {9, "iiiiiiiiii", 2007},
|
||||
{10,"jjjjjjjjjj", 2008}};
|
||||
unsigned int nkeys = 10;
|
||||
FILE* mphf_fd = fopen("temp_struct_vector.mph", "w");
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_struct_vector_adapter(vector, (cmph_uint32)sizeof(rec_t), (cmph_uint32)sizeof(cmph_uint32), 11, nkeys);
|
||||
|
||||
//Create minimal perfect hash function using the BDZ algorithm.
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BDZ);
|
||||
cmph_config_set_mphf_fd(config, mphf_fd);
|
||||
cmph_t *hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
cmph_dump(hash, mphf_fd);
|
||||
cmph_destroy(hash);
|
||||
fclose(mphf_fd);
|
||||
|
||||
//Find key
|
||||
mphf_fd = fopen("temp_struct_vector.mph", "r");
|
||||
hash = cmph_load(mphf_fd);
|
||||
while (i < nkeys) {
|
||||
const char *key = vector[i].key;
|
||||
unsigned int id = cmph_search(hash, key, 11);
|
||||
fprintf(stderr, "key:%s -- hash:%u\n", key, id);
|
||||
i++;
|
||||
}
|
||||
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_vector_adapter_destroy(source);
|
||||
fclose(mphf_fd);
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
Download [struct_vector_adapter_ex3.c examples/struct_vector_adapter_ex3.c]. This example does not work in versions below 0.8.
|
||||
-------------------------------
|
||||
|
||||
```
|
||||
#include <cmph.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-disk keys using BDZ algorithm
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//Open file with newline separated list of keys
|
||||
FILE * keys_fd = fopen("keys.txt", "r");
|
||||
cmph_t *hash = NULL;
|
||||
if (keys_fd == NULL)
|
||||
{
|
||||
fprintf(stderr, "File \"keys.txt\" not found\n");
|
||||
exit(1);
|
||||
}
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_nlfile_adapter(keys_fd);
|
||||
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BDZ);
|
||||
hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
|
||||
//Find key
|
||||
const char *key = "jjjjjjjjjj";
|
||||
unsigned int id = cmph_search(hash, key, (cmph_uint32)strlen(key));
|
||||
fprintf(stderr, "Id:%u\n", id);
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_nlfile_adapter_destroy(source);
|
||||
fclose(keys_fd);
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
Download [file_adapter_ex2.c examples/file_adapter_ex2.c] and [keys.txt examples/keys.txt]. This example does not work in versions below 0.8.
|
||||
|
||||
%!include: ALGORITHMS.t2t
|
||||
|
||||
%!include: FOOTER.t2t
|
||||
|
||||
%!include(html): ''GOOGLEANALYTICS.t2t''
|
38
deps/cmph/FAQ.t2t
vendored
Normal file
38
deps/cmph/FAQ.t2t
vendored
Normal file
@ -0,0 +1,38 @@
|
||||
CMPH FAQ
|
||||
|
||||
|
||||
%!includeconf: CONFIG.t2t
|
||||
|
||||
- How do I define the ids of the keys?
|
||||
- You don't. The ids will be assigned by the algorithm creating the minimal
|
||||
perfect hash function. If the algorithm creates an **ordered** minimal
|
||||
perfect hash function, the ids will be the indices of the keys in the
|
||||
input. Otherwise, you have no guarantee of the distribution of the ids.
|
||||
|
||||
- Why do I always get the error "Unable to create minimum perfect hashing function"?
|
||||
- The algorithms do not guarantee that a minimal perfect hash function can
|
||||
be created. In practice, it will always work if your input
|
||||
is big enough (>100 keys).
|
||||
The error is probably because you have duplicated
|
||||
keys in the input. You must guarantee that the keys are unique in the
|
||||
input. If you are using a UN*X based OS, try doing
|
||||
``` #sort input.txt | uniq > input_uniq.txt
|
||||
and run cmph with input_uniq.txt
|
||||
|
||||
- Why do I change the hash function using cmph_config_set_hashfuncs function and the default (jenkins)
|
||||
one is executed?
|
||||
- Probably you are you using the cmph_config_set_algo function after
|
||||
the cmph_config_set_hashfuncs. Therefore, the default hash function
|
||||
is reset when you call the cmph_config_set_algo function.
|
||||
|
||||
- What do I do when the following error is got?
|
||||
- Error: **error while loading shared libraries: libcmph.so.0: cannot open shared object file: No such file ordirectory**
|
||||
|
||||
- Solution: type **export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib/** at the shell or put that shell command
|
||||
in your .profile file or in the /etc/profile file.
|
||||
|
||||
%!include: ALGORITHMS.t2t
|
||||
|
||||
%!include: FOOTER.t2t
|
||||
|
||||
%!include(html): ''GOOGLEANALYTICS.t2t''
|
47
deps/cmph/FCH.t2t
vendored
Normal file
47
deps/cmph/FCH.t2t
vendored
Normal file
@ -0,0 +1,47 @@
|
||||
FCH Algorithm
|
||||
|
||||
|
||||
%!includeconf: CONFIG.t2t
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==The Algorithm==
|
||||
The algorithm is presented in [[1 #papers]].
|
||||
----------------------------------------
|
||||
|
||||
==Memory Consumption==
|
||||
|
||||
Now we detail the memory consumption to generate and to store minimal perfect hash functions
|
||||
using the FCH algorithm. The structures responsible for memory consumption are in the
|
||||
following:
|
||||
- A vector containing all the //n// keys.
|
||||
- Data structure to speed up the searching step:
|
||||
+ **random_table**: is a vector used to remember currently empty slots in the hash table. It stores //n// 4 byte long integer numbers. This vector initially contains a random permutation of the //n// hash addresses. A pointer called filled_count is used to keep the invariant that any slots to the right side of filled_count (inclusive) are empty and any ones to the left are filled.
|
||||
+ **hash_table**: Table used to check whether all the collisions were resolved. It has //n// entries of one byte.
|
||||
+ **map_table**: For any unfilled slot //x// in hash_table, the map_table vector contains //n// 4 byte long pointers pointing at random_table such that random_table[map_table[x]] = x. Thus, given an empty slot x in the hash_table, we can locate its position in the random_table vector through map_table.
|
||||
|
||||
- Other auxiliary structures
|
||||
+ **sorted_indexes**: is a vector of //cn/(log(n) + 1)// 4 byte long pointers to indirectly keep the buckets sorted by decreasing order of their sizes.
|
||||
|
||||
+ **function //g//**: is represented by a vector of //cn/(log(n) + 1)// 4 byte long integer numbers, one for each bucket. It is used to spread all the keys in a given bucket into the hash table without collisions.
|
||||
|
||||
|
||||
Thus, the total memory consumption of FCH algorithm for generating a minimal
|
||||
perfect hash function (MPHF) is: //O(n) + 9n + 8cn/(log(n) + 1)// bytes.
|
||||
The value of parameter //c// must be greater than or equal to 2.6.
|
||||
|
||||
Now we present the memory consumption to store the resulting function.
|
||||
We only need to store the //g// function and a constant number of bytes for the seed of the hash functions used in the resulting MPHF. Thus, we need //cn/(log(n) + 1) + O(1)// bytes.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==Papers==[papers]
|
||||
|
||||
+ E.A. Fox, Q.F. Chen, and L.S. Heath. [A faster algorithm for constructing minimal perfect hash functions. papers/fch92.pdf] In Proc. 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 266-273, 1992.
|
||||
|
||||
|
||||
%!include: ALGORITHMS.t2t
|
||||
|
||||
%!include: FOOTER.t2t
|
||||
|
||||
%!include(html): ''GOOGLEANALYTICS.t2t''
|
13
deps/cmph/FOOTER.t2t
vendored
Normal file
13
deps/cmph/FOOTER.t2t
vendored
Normal file
@ -0,0 +1,13 @@
|
||||
|
||||
|
||||
|
||||
Enjoy!
|
||||
|
||||
[Davi de Castro Reis davi@users.sourceforge.net]
|
||||
|
||||
[Djamel Belazzougui db8192@users.sourceforge.net]
|
||||
|
||||
[Fabiano Cupertino Botelho fc_botelho@users.sourceforge.net]
|
||||
|
||||
[Nivio Ziviani nivio@dcc.ufmg.br]
|
||||
|
9
deps/cmph/GOOGLEANALYTICS.t2t
vendored
Normal file
9
deps/cmph/GOOGLEANALYTICS.t2t
vendored
Normal file
@ -0,0 +1,9 @@
|
||||
<script type="text/javascript">
|
||||
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
|
||||
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
|
||||
</script>
|
||||
<script type="text/javascript">
|
||||
try {
|
||||
var pageTracker = _gat._getTracker("UA-7698683-2");
|
||||
pageTracker._trackPageview();
|
||||
} catch(err) {}</script>
|
39
deps/cmph/GPERF.t2t
vendored
Normal file
39
deps/cmph/GPERF.t2t
vendored
Normal file
@ -0,0 +1,39 @@
|
||||
GPERF versus CMPH
|
||||
|
||||
|
||||
%!includeconf: CONFIG.t2t
|
||||
|
||||
You might ask why cmph if [gperf http://www.gnu.org/software/gperf/gperf.html]
|
||||
already works perfectly. Actually, gperf and cmph have different goals.
|
||||
Basically, these are the requirements for each of them:
|
||||
|
||||
|
||||
- GPERF
|
||||
|
||||
- Create very fast hash functions for **small** sets
|
||||
|
||||
- Create **perfect** hash functions
|
||||
|
||||
- CMPH
|
||||
|
||||
- Create very fast hash function for **very large** sets
|
||||
|
||||
- Create **minimal perfect** hash functions
|
||||
|
||||
As result, cmph can be used to create hash functions where gperf would run
|
||||
forever without finding a perfect hash function, because of the running
|
||||
time of the algorithm and the large memory usage.
|
||||
On the other side, functions created by cmph are about 2x slower than those
|
||||
created by gperf.
|
||||
|
||||
So, if you have large sets, or memory usage is a key restriction for you, stick
|
||||
to cmph. If you have small sets, and do not care about memory usage, go with
|
||||
gperf. The first problem is common in the information retrieval field (e.g.
|
||||
assigning ids to millions of documents), while the former is usually found in
|
||||
the compiler programming area (detect reserved keywords).
|
||||
|
||||
%!include: ALGORITHMS.t2t
|
||||
|
||||
%!include: FOOTER.t2t
|
||||
|
||||
%!include(html): ''GOOGLEANALYTICS.t2t''
|
513
deps/cmph/LGPL-2
vendored
Normal file
513
deps/cmph/LGPL-2
vendored
Normal file
@ -0,0 +1,513 @@
|
||||
Most components of the "acl" package are licensed under
|
||||
Version 2.1 of the GNU Lesser General Public License (see below).
|
||||
below.
|
||||
|
||||
Some components (as annotated in the source) are licensed
|
||||
under Version 2 of the GNU General Public License (see COPYING).
|
||||
|
||||
----------------------------------------------------------------------
|
||||
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
Version 2.1, February 1999
|
||||
|
||||
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
|
||||
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
[This is the first released version of the Lesser GPL. It also counts
|
||||
as the successor of the GNU Library Public License, version 2, hence
|
||||
the version number 2.1.]
|
||||
|
||||
Preamble
|
||||
|
||||
The licenses for most software are designed to take away your
|
||||
freedom to share and change it. By contrast, the GNU General Public
|
||||
Licenses are intended to guarantee your freedom to share and change
|
||||
free software--to make sure the software is free for all its users.
|
||||
|
||||
This license, the Lesser General Public License, applies to some
|
||||
specially designated software packages--typically libraries--of the
|
||||
Free Software Foundation and other authors who decide to use it. You
|
||||
can use it too, but we suggest you first think carefully about whether
|
||||
this license or the ordinary General Public License is the better
|
||||
strategy to use in any particular case, based on the explanations below.
|
||||
|
||||
When we speak of free software, we are referring to freedom of use,
|
||||
not price. Our General Public Licenses are designed to make sure that
|
||||
you have the freedom to distribute copies of free software (and charge
|
||||
for this service if you wish); that you receive source code or can get
|
||||
it if you want it; that you can change the software and use pieces of
|
||||
it in new free programs; and that you are informed that you can do
|
||||
these things.
|
||||
|
||||
To protect your rights, we need to make restrictions that forbid
|
||||
distributors to deny you these rights or to ask you to surrender these
|
||||
rights. These restrictions translate to certain responsibilities for
|
||||
you if you distribute copies of the library or if you modify it.
|
||||
|
||||
For example, if you distribute copies of the library, whether gratis
|
||||
or for a fee, you must give the recipients all the rights that we gave
|
||||
you. You must make sure that they, too, receive or can get the source
|
||||
code. If you link other code with the library, you must provide
|
||||
complete object files to the recipients, so that they can relink them
|
||||
with the library after making changes to the library and recompiling
|
||||
it. And you must show them these terms so they know their rights.
|
||||
|
||||
We protect your rights with a two-step method: (1) we copyright the
|
||||
library, and (2) we offer you this license, which gives you legal
|
||||
permission to copy, distribute and/or modify the library.
|
||||
|
||||
To protect each distributor, we want to make it very clear that
|
||||
there is no warranty for the free library. Also, if the library is
|
||||
modified by someone else and passed on, the recipients should know
|
||||
that what they have is not the original version, so that the original
|
||||
author's reputation will not be affected by problems that might be
|
||||
introduced by others.
|
||||
|
||||
Finally, software patents pose a constant threat to the existence of
|
||||
any free program. We wish to make sure that a company cannot
|
||||
effectively restrict the users of a free program by obtaining a
|
||||
restrictive license from a patent holder. Therefore, we insist that
|
||||
any patent license obtained for a version of the library must be
|
||||
consistent with the full freedom of use specified in this license.
|
||||
|
||||
Most GNU software, including some libraries, is covered by the
|
||||
ordinary GNU General Public License. This license, the GNU Lesser
|
||||
General Public License, applies to certain designated libraries, and
|
||||
is quite different from the ordinary General Public License. We use
|
||||
this license for certain libraries in order to permit linking those
|
||||
libraries into non-free programs.
|
||||
|
||||
When a program is linked with a library, whether statically or using
|
||||
a shared library, the combination of the two is legally speaking a
|
||||
combined work, a derivative of the original library. The ordinary
|
||||
General Public License therefore permits such linking only if the
|
||||
entire combination fits its criteria of freedom. The Lesser General
|
||||
Public License permits more lax criteria for linking other code with
|
||||
the library.
|
||||
|
||||
We call this license the "Lesser" General Public License because it
|
||||
does Less to protect the user's freedom than the ordinary General
|
||||
Public License. It also provides other free software developers Less
|
||||
of an advantage over competing non-free programs. These disadvantages
|
||||
are the reason we use the ordinary General Public License for many
|
||||
libraries. However, the Lesser license provides advantages in certain
|
||||
special circumstances.
|
||||
|
||||
For example, on rare occasions, there may be a special need to
|
||||
encourage the widest possible use of a certain library, so that it becomes
|
||||
a de-facto standard. To achieve this, non-free programs must be
|
||||
allowed to use the library. A more frequent case is that a free
|
||||
library does the same job as widely used non-free libraries. In this
|
||||
case, there is little to gain by limiting the free library to free
|
||||
software only, so we use the Lesser General Public License.
|
||||
|
||||
In other cases, permission to use a particular library in non-free
|
||||
programs enables a greater number of people to use a large body of
|
||||
free software. For example, permission to use the GNU C Library in
|
||||
non-free programs enables many more people to use the whole GNU
|
||||
operating system, as well as its variant, the GNU/Linux operating
|
||||
system.
|
||||
|
||||
Although the Lesser General Public License is Less protective of the
|
||||
users' freedom, it does ensure that the user of a program that is
|
||||
linked with the Library has the freedom and the wherewithal to run
|
||||
that program using a modified version of the Library.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow. Pay close attention to the difference between a
|
||||
"work based on the library" and a "work that uses the library". The
|
||||
former contains code derived from the library, whereas the latter must
|
||||
be combined with the library in order to run.
|
||||
|
||||
GNU LESSER GENERAL PUBLIC LICENSE
|
||||
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
|
||||
0. This License Agreement applies to any software library or other
|
||||
program which contains a notice placed by the copyright holder or
|
||||
other authorized party saying it may be distributed under the terms of
|
||||
this Lesser General Public License (also called "this License").
|
||||
Each licensee is addressed as "you".
|
||||
|
||||
A "library" means a collection of software functions and/or data
|
||||
prepared so as to be conveniently linked with application programs
|
||||
(which use some of those functions and data) to form executables.
|
||||
|
||||
The "Library", below, refers to any such software library or work
|
||||
which has been distributed under these terms. A "work based on the
|
||||
Library" means either the Library or any derivative work under
|
||||
copyright law: that is to say, a work containing the Library or a
|
||||
portion of it, either verbatim or with modifications and/or translated
|
||||
straightforwardly into another language. (Hereinafter, translation is
|
||||
included without limitation in the term "modification".)
|
||||
|
||||
"Source code" for a work means the preferred form of the work for
|
||||
making modifications to it. For a library, complete source code means
|
||||
all the source code for all modules it contains, plus any associated
|
||||
interface definition files, plus the scripts used to control compilation
|
||||
and installation of the library.
|
||||
|
||||
Activities other than copying, distribution and modification are not
|
||||
covered by this License; they are outside its scope. The act of
|
||||
running a program using the Library is not restricted, and output from
|
||||
such a program is covered only if its contents constitute a work based
|
||||
on the Library (independent of the use of the Library in a tool for
|
||||
writing it). Whether that is true depends on what the Library does
|
||||
and what the program that uses the Library does.
|
||||
|
||||
1. You may copy and distribute verbatim copies of the Library's
|
||||
complete source code as you receive it, in any medium, provided that
|
||||
you conspicuously and appropriately publish on each copy an
|
||||
appropriate copyright notice and disclaimer of warranty; keep intact
|
||||
all the notices that refer to this License and to the absence of any
|
||||
warranty; and distribute a copy of this License along with the
|
||||
Library.
|
||||
|
||||
You may charge a fee for the physical act of transferring a copy,
|
||||
and you may at your option offer warranty protection in exchange for a
|
||||
fee.
|
||||
|
||||
2. You may modify your copy or copies of the Library or any portion
|
||||
of it, thus forming a work based on the Library, and copy and
|
||||
distribute such modifications or work under the terms of Section 1
|
||||
above, provided that you also meet all of these conditions:
|
||||
|
||||
a) The modified work must itself be a software library.
|
||||
|
||||
b) You must cause the files modified to carry prominent notices
|
||||
stating that you changed the files and the date of any change.
|
||||
|
||||
c) You must cause the whole of the work to be licensed at no
|
||||
charge to all third parties under the terms of this License.
|
||||
|
||||
d) If a facility in the modified Library refers to a function or a
|
||||
table of data to be supplied by an application program that uses
|
||||
the facility, other than as an argument passed when the facility
|
||||
is invoked, then you must make a good faith effort to ensure that,
|
||||
in the event an application does not supply such function or
|
||||
table, the facility still operates, and performs whatever part of
|
||||
its purpose remains meaningful.
|
||||
|
||||
(For example, a function in a library to compute square roots has
|
||||
a purpose that is entirely well-defined independent of the
|
||||
application. Therefore, Subsection 2d requires that any
|
||||
application-supplied function or table used by this function must
|
||||
be optional: if the application does not supply it, the square
|
||||
root function must still compute square roots.)
|
||||
|
||||
These requirements apply to the modified work as a whole. If
|
||||
identifiable sections of that work are not derived from the Library,
|
||||
and can be reasonably considered independent and separate works in
|
||||
themselves, then this License, and its terms, do not apply to those
|
||||
sections when you distribute them as separate works. But when you
|
||||
distribute the same sections as part of a whole which is a work based
|
||||
on the Library, the distribution of the whole must be on the terms of
|
||||
this License, whose permissions for other licensees extend to the
|
||||
entire whole, and thus to each and every part regardless of who wrote
|
||||
it.
|
||||
|
||||
Thus, it is not the intent of this section to claim rights or contest
|
||||
your rights to work written entirely by you; rather, the intent is to
|
||||
exercise the right to control the distribution of derivative or
|
||||
collective works based on the Library.
|
||||
|
||||
In addition, mere aggregation of another work not based on the Library
|
||||
with the Library (or with a work based on the Library) on a volume of
|
||||
a storage or distribution medium does not bring the other work under
|
||||
the scope of this License.
|
||||
|
||||
3. You may opt to apply the terms of the ordinary GNU General Public
|
||||
License instead of this License to a given copy of the Library. To do
|
||||
this, you must alter all the notices that refer to this License, so
|
||||
that they refer to the ordinary GNU General Public License, version 2,
|
||||
instead of to this License. (If a newer version than version 2 of the
|
||||
ordinary GNU General Public License has appeared, then you can specify
|
||||
that version instead if you wish.) Do not make any other change in
|
||||
these notices.
|
||||
|
||||
Once this change is made in a given copy, it is irreversible for
|
||||
that copy, so the ordinary GNU General Public License applies to all
|
||||
subsequent copies and derivative works made from that copy.
|
||||
|
||||
This option is useful when you wish to copy part of the code of
|
||||
the Library into a program that is not a library.
|
||||
|
||||
4. You may copy and distribute the Library (or a portion or
|
||||
derivative of it, under Section 2) in object code or executable form
|
||||
under the terms of Sections 1 and 2 above provided that you accompany
|
||||
it with the complete corresponding machine-readable source code, which
|
||||
must be distributed under the terms of Sections 1 and 2 above on a
|
||||
medium customarily used for software interchange.
|
||||
|
||||
If distribution of object code is made by offering access to copy
|
||||
from a designated place, then offering equivalent access to copy the
|
||||
source code from the same place satisfies the requirement to
|
||||
distribute the source code, even though third parties are not
|
||||
compelled to copy the source along with the object code.
|
||||
|
||||
5. A program that contains no derivative of any portion of the
|
||||
Library, but is designed to work with the Library by being compiled or
|
||||
linked with it, is called a "work that uses the Library". Such a
|
||||
work, in isolation, is not a derivative work of the Library, and
|
||||
therefore falls outside the scope of this License.
|
||||
|
||||
However, linking a "work that uses the Library" with the Library
|
||||
creates an executable that is a derivative of the Library (because it
|
||||
contains portions of the Library), rather than a "work that uses the
|
||||
library". The executable is therefore covered by this License.
|
||||
Section 6 states terms for distribution of such executables.
|
||||
|
||||
When a "work that uses the Library" uses material from a header file
|
||||
that is part of the Library, the object code for the work may be a
|
||||
derivative work of the Library even though the source code is not.
|
||||
Whether this is true is especially significant if the work can be
|
||||
linked without the Library, or if the work is itself a library. The
|
||||
threshold for this to be true is not precisely defined by law.
|
||||
|
||||
If such an object file uses only numerical parameters, data
|
||||
structure layouts and accessors, and small macros and small inline
|
||||
functions (ten lines or less in length), then the use of the object
|
||||
file is unrestricted, regardless of whether it is legally a derivative
|
||||
work. (Executables containing this object code plus portions of the
|
||||
Library will still fall under Section 6.)
|
||||
|
||||
Otherwise, if the work is a derivative of the Library, you may
|
||||
distribute the object code for the work under the terms of Section 6.
|
||||
Any executables containing that work also fall under Section 6,
|
||||
whether or not they are linked directly with the Library itself.
|
||||
|
||||
6. As an exception to the Sections above, you may also combine or
|
||||
link a "work that uses the Library" with the Library to produce a
|
||||
work containing portions of the Library, and distribute that work
|
||||
under terms of your choice, provided that the terms permit
|
||||
modification of the work for the customer's own use and reverse
|
||||
engineering for debugging such modifications.
|
||||
|
||||
You must give prominent notice with each copy of the work that the
|
||||
Library is used in it and that the Library and its use are covered by
|
||||
this License. You must supply a copy of this License. If the work
|
||||
during execution displays copyright notices, you must include the
|
||||
copyright notice for the Library among them, as well as a reference
|
||||
directing the user to the copy of this License. Also, you must do one
|
||||
of these things:
|
||||
|
||||
a) Accompany the work with the complete corresponding
|
||||
machine-readable source code for the Library including whatever
|
||||
changes were used in the work (which must be distributed under
|
||||
Sections 1 and 2 above); and, if the work is an executable linked
|
||||
with the Library, with the complete machine-readable "work that
|
||||
uses the Library", as object code and/or source code, so that the
|
||||
user can modify the Library and then relink to produce a modified
|
||||
executable containing the modified Library. (It is understood
|
||||
that the user who changes the contents of definitions files in the
|
||||
Library will not necessarily be able to recompile the application
|
||||
to use the modified definitions.)
|
||||
|
||||
b) Use a suitable shared library mechanism for linking with the
|
||||
Library. A suitable mechanism is one that (1) uses at run time a
|
||||
copy of the library already present on the user's computer system,
|
||||
rather than copying library functions into the executable, and (2)
|
||||
will operate properly with a modified version of the library, if
|
||||
the user installs one, as long as the modified version is
|
||||
interface-compatible with the version that the work was made with.
|
||||
|
||||
c) Accompany the work with a written offer, valid for at
|
||||
least three years, to give the same user the materials
|
||||
specified in Subsection 6a, above, for a charge no more
|
||||
than the cost of performing this distribution.
|
||||
|
||||
d) If distribution of the work is made by offering access to copy
|
||||
from a designated place, offer equivalent access to copy the above
|
||||
specified materials from the same place.
|
||||
|
||||
e) Verify that the user has already received a copy of these
|
||||
materials or that you have already sent this user a copy.
|
||||
|
||||
For an executable, the required form of the "work that uses the
|
||||
Library" must include any data and utility programs needed for
|
||||
reproducing the executable from it. However, as a special exception,
|
||||
the materials to be distributed need not include anything that is
|
||||
normally distributed (in either source or binary form) with the major
|
||||
components (compiler, kernel, and so on) of the operating system on
|
||||
which the executable runs, unless that component itself accompanies
|
||||
the executable.
|
||||
|
||||
It may happen that this requirement contradicts the license
|
||||
restrictions of other proprietary libraries that do not normally
|
||||
accompany the operating system. Such a contradiction means you cannot
|
||||
use both them and the Library together in an executable that you
|
||||
distribute.
|
||||
|
||||
7. You may place library facilities that are a work based on the
|
||||
Library side-by-side in a single library together with other library
|
||||
facilities not covered by this License, and distribute such a combined
|
||||
library, provided that the separate distribution of the work based on
|
||||
the Library and of the other library facilities is otherwise
|
||||
permitted, and provided that you do these two things:
|
||||
|
||||
a) Accompany the combined library with a copy of the same work
|
||||
based on the Library, uncombined with any other library
|
||||
facilities. This must be distributed under the terms of the
|
||||
Sections above.
|
||||
|
||||
b) Give prominent notice with the combined library of the fact
|
||||
that part of it is a work based on the Library, and explaining
|
||||
where to find the accompanying uncombined form of the same work.
|
||||
|
||||
8. You may not copy, modify, sublicense, link with, or distribute
|
||||
the Library except as expressly provided under this License. Any
|
||||
attempt otherwise to copy, modify, sublicense, link with, or
|
||||
distribute the Library is void, and will automatically terminate your
|
||||
rights under this License. However, parties who have received copies,
|
||||
or rights, from you under this License will not have their licenses
|
||||
terminated so long as such parties remain in full compliance.
|
||||
|
||||
9. You are not required to accept this License, since you have not
|
||||
signed it. However, nothing else grants you permission to modify or
|
||||
distribute the Library or its derivative works. These actions are
|
||||
prohibited by law if you do not accept this License. Therefore, by
|
||||
modifying or distributing the Library (or any work based on the
|
||||
Library), you indicate your acceptance of this License to do so, and
|
||||
all its terms and conditions for copying, distributing or modifying
|
||||
the Library or works based on it.
|
||||
|
||||
10. Each time you redistribute the Library (or any work based on the
|
||||
Library), the recipient automatically receives a license from the
|
||||
original licensor to copy, distribute, link with or modify the Library
|
||||
subject to these terms and conditions. You may not impose any further
|
||||
restrictions on the recipients' exercise of the rights granted herein.
|
||||
You are not responsible for enforcing compliance by third parties with
|
||||
this License.
|
||||
|
||||
11. If, as a consequence of a court judgment or allegation of patent
|
||||
infringement or for any other reason (not limited to patent issues),
|
||||
conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot
|
||||
distribute so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you
|
||||
may not distribute the Library at all. For example, if a patent
|
||||
license would not permit royalty-free redistribution of the Library by
|
||||
all those who receive copies directly or indirectly through you, then
|
||||
the only way you could satisfy both it and this License would be to
|
||||
refrain entirely from distribution of the Library.
|
||||
|
||||
If any portion of this section is held invalid or unenforceable under any
|
||||
particular circumstance, the balance of the section is intended to apply,
|
||||
and the section as a whole is intended to apply in other circumstances.
|
||||
|
||||
It is not the purpose of this section to induce you to infringe any
|
||||
patents or other property right claims or to contest validity of any
|
||||
such claims; this section has the sole purpose of protecting the
|
||||
integrity of the free software distribution system which is
|
||||
implemented by public license practices. Many people have made
|
||||
generous contributions to the wide range of software distributed
|
||||
through that system in reliance on consistent application of that
|
||||
system; it is up to the author/donor to decide if he or she is willing
|
||||
to distribute software through any other system and a licensee cannot
|
||||
impose that choice.
|
||||
|
||||
This section is intended to make thoroughly clear what is believed to
|
||||
be a consequence of the rest of this License.
|
||||
|
||||
12. If the distribution and/or use of the Library is restricted in
|
||||
certain countries either by patents or by copyrighted interfaces, the
|
||||
original copyright holder who places the Library under this License may add
|
||||
an explicit geographical distribution limitation excluding those countries,
|
||||
so that distribution is permitted only in or among countries not thus
|
||||
excluded. In such case, this License incorporates the limitation as if
|
||||
written in the body of this License.
|
||||
|
||||
13. The Free Software Foundation may publish revised and/or new
|
||||
versions of the Lesser General Public License from time to time.
|
||||
Such new versions will be similar in spirit to the present version,
|
||||
but may differ in detail to address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Library
|
||||
specifies a version number of this License which applies to it and
|
||||
"any later version", you have the option of following the terms and
|
||||
conditions either of that version or of any later version published by
|
||||
the Free Software Foundation. If the Library does not specify a
|
||||
license version number, you may choose any version ever published by
|
||||
the Free Software Foundation.
|
||||
|
||||
14. If you wish to incorporate parts of the Library into other free
|
||||
programs whose distribution conditions are incompatible with these,
|
||||
write to the author to ask for permission. For software which is
|
||||
copyrighted by the Free Software Foundation, write to the Free
|
||||
Software Foundation; we sometimes make exceptions for this. Our
|
||||
decision will be guided by the two goals of preserving the free status
|
||||
of all derivatives of our free software and of promoting the sharing
|
||||
and reuse of software generally.
|
||||
|
||||
NO WARRANTY
|
||||
|
||||
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
|
||||
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
|
||||
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
|
||||
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
|
||||
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
|
||||
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
|
||||
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
|
||||
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
|
||||
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
|
||||
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
|
||||
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
|
||||
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
|
||||
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
|
||||
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
|
||||
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
|
||||
DAMAGES.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Libraries
|
||||
|
||||
If you develop a new library, and you want it to be of the greatest
|
||||
possible use to the public, we recommend making it free software that
|
||||
everyone can redistribute and change. You can do so by permitting
|
||||
redistribution under these terms (or, alternatively, under the terms of the
|
||||
ordinary General Public License).
|
||||
|
||||
To apply these terms, attach the following notices to the library. It is
|
||||
safest to attach them to the start of each source file to most effectively
|
||||
convey the exclusion of warranty; and each file should have at least the
|
||||
"copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the library's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
This library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with this library; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
You should also get your employer (if you work as a programmer) or your
|
||||
school, if any, to sign a "copyright disclaimer" for the library, if
|
||||
necessary. Here is a sample; alter the names:
|
||||
|
||||
Yoyodyne, Inc., hereby disclaims all copyright interest in the
|
||||
library `Frob' (a library for tweaking knobs) written by James Random Hacker.
|
||||
|
||||
<signature of Ty Coon>, 1 April 1990
|
||||
Ty Coon, President of Vice
|
||||
|
||||
That's all there is to it!
|
||||
|
||||
|
1
deps/cmph/LOGO.t2t
vendored
Normal file
1
deps/cmph/LOGO.t2t
vendored
Normal file
@ -0,0 +1 @@
|
||||
<a href="http://sourceforge.net"><img src="http://sourceforge.net/sflogo.php?group_id=96251&type=1" width="88" height="31" border="0" alt="SourceForge.net Logo" /> </a>
|
469
deps/cmph/MPL-1.1
vendored
Normal file
469
deps/cmph/MPL-1.1
vendored
Normal file
@ -0,0 +1,469 @@
|
||||
MOZILLA PUBLIC LICENSE
|
||||
Version 1.1
|
||||
|
||||
---------------
|
||||
|
||||
1. Definitions.
|
||||
|
||||
1.0.1. "Commercial Use" means distribution or otherwise making the
|
||||
Covered Code available to a third party.
|
||||
|
||||
1.1. "Contributor" means each entity that creates or contributes to
|
||||
the creation of Modifications.
|
||||
|
||||
1.2. "Contributor Version" means the combination of the Original
|
||||
Code, prior Modifications used by a Contributor, and the Modifications
|
||||
made by that particular Contributor.
|
||||
|
||||
1.3. "Covered Code" means the Original Code or Modifications or the
|
||||
combination of the Original Code and Modifications, in each case
|
||||
including portions thereof.
|
||||
|
||||
1.4. "Electronic Distribution Mechanism" means a mechanism generally
|
||||
accepted in the software development community for the electronic
|
||||
transfer of data.
|
||||
|
||||
1.5. "Executable" means Covered Code in any form other than Source
|
||||
Code.
|
||||
|
||||
1.6. "Initial Developer" means the individual or entity identified
|
||||
as the Initial Developer in the Source Code notice required by Exhibit
|
||||
A.
|
||||
|
||||
1.7. "Larger Work" means a work which combines Covered Code or
|
||||
portions thereof with code not governed by the terms of this License.
|
||||
|
||||
1.8. "License" means this document.
|
||||
|
||||
1.8.1. "Licensable" means having the right to grant, to the maximum
|
||||
extent possible, whether at the time of the initial grant or
|
||||
subsequently acquired, any and all of the rights conveyed herein.
|
||||
|
||||
1.9. "Modifications" means any addition to or deletion from the
|
||||
substance or structure of either the Original Code or any previous
|
||||
Modifications. When Covered Code is released as a series of files, a
|
||||
Modification is:
|
||||
A. Any addition to or deletion from the contents of a file
|
||||
containing Original Code or previous Modifications.
|
||||
|
||||
B. Any new file that contains any part of the Original Code or
|
||||
previous Modifications.
|
||||
|
||||
1.10. "Original Code" means Source Code of computer software code
|
||||
which is described in the Source Code notice required by Exhibit A as
|
||||
Original Code, and which, at the time of its release under this
|
||||
License is not already Covered Code governed by this License.
|
||||
|
||||
1.10.1. "Patent Claims" means any patent claim(s), now owned or
|
||||
hereafter acquired, including without limitation, method, process,
|
||||
and apparatus claims, in any patent Licensable by grantor.
|
||||
|
||||
1.11. "Source Code" means the preferred form of the Covered Code for
|
||||
making modifications to it, including all modules it contains, plus
|
||||
any associated interface definition files, scripts used to control
|
||||
compilation and installation of an Executable, or source code
|
||||
differential comparisons against either the Original Code or another
|
||||
well known, available Covered Code of the Contributor's choice. The
|
||||
Source Code can be in a compressed or archival form, provided the
|
||||
appropriate decompression or de-archiving software is widely available
|
||||
for no charge.
|
||||
|
||||
1.12. "You" (or "Your") means an individual or a legal entity
|
||||
exercising rights under, and complying with all of the terms of, this
|
||||
License or a future version of this License issued under Section 6.1.
|
||||
For legal entities, "You" includes any entity which controls, is
|
||||
controlled by, or is under common control with You. For purposes of
|
||||
this definition, "control" means (a) the power, direct or indirect,
|
||||
to cause the direction or management of such entity, whether by
|
||||
contract or otherwise, or (b) ownership of more than fifty percent
|
||||
(50%) of the outstanding shares or beneficial ownership of such
|
||||
entity.
|
||||
|
||||
2. Source Code License.
|
||||
|
||||
2.1. The Initial Developer Grant.
|
||||
The Initial Developer hereby grants You a world-wide, royalty-free,
|
||||
non-exclusive license, subject to third party intellectual property
|
||||
claims:
|
||||
(a) under intellectual property rights (other than patent or
|
||||
trademark) Licensable by Initial Developer to use, reproduce,
|
||||
modify, display, perform, sublicense and distribute the Original
|
||||
Code (or portions thereof) with or without Modifications, and/or
|
||||
as part of a Larger Work; and
|
||||
|
||||
(b) under Patents Claims infringed by the making, using or
|
||||
selling of Original Code, to make, have made, use, practice,
|
||||
sell, and offer for sale, and/or otherwise dispose of the
|
||||
Original Code (or portions thereof).
|
||||
|
||||
(c) the licenses granted in this Section 2.1(a) and (b) are
|
||||
effective on the date Initial Developer first distributes
|
||||
Original Code under the terms of this License.
|
||||
|
||||
(d) Notwithstanding Section 2.1(b) above, no patent license is
|
||||
granted: 1) for code that You delete from the Original Code; 2)
|
||||
separate from the Original Code; or 3) for infringements caused
|
||||
by: i) the modification of the Original Code or ii) the
|
||||
combination of the Original Code with other software or devices.
|
||||
|
||||
2.2. Contributor Grant.
|
||||
Subject to third party intellectual property claims, each Contributor
|
||||
hereby grants You a world-wide, royalty-free, non-exclusive license
|
||||
|
||||
(a) under intellectual property rights (other than patent or
|
||||
trademark) Licensable by Contributor, to use, reproduce, modify,
|
||||
display, perform, sublicense and distribute the Modifications
|
||||
created by such Contributor (or portions thereof) either on an
|
||||
unmodified basis, with other Modifications, as Covered Code
|
||||
and/or as part of a Larger Work; and
|
||||
|
||||
(b) under Patent Claims infringed by the making, using, or
|
||||
selling of Modifications made by that Contributor either alone
|
||||
and/or in combination with its Contributor Version (or portions
|
||||
of such combination), to make, use, sell, offer for sale, have
|
||||
made, and/or otherwise dispose of: 1) Modifications made by that
|
||||
Contributor (or portions thereof); and 2) the combination of
|
||||
Modifications made by that Contributor with its Contributor
|
||||
Version (or portions of such combination).
|
||||
|
||||
(c) the licenses granted in Sections 2.2(a) and 2.2(b) are
|
||||
effective on the date Contributor first makes Commercial Use of
|
||||
the Covered Code.
|
||||
|
||||
(d) Notwithstanding Section 2.2(b) above, no patent license is
|
||||
granted: 1) for any code that Contributor has deleted from the
|
||||
Contributor Version; 2) separate from the Contributor Version;
|
||||
3) for infringements caused by: i) third party modifications of
|
||||
Contributor Version or ii) the combination of Modifications made
|
||||
by that Contributor with other software (except as part of the
|
||||
Contributor Version) or other devices; or 4) under Patent Claims
|
||||
infringed by Covered Code in the absence of Modifications made by
|
||||
that Contributor.
|
||||
|
||||
3. Distribution Obligations.
|
||||
|
||||
3.1. Application of License.
|
||||
The Modifications which You create or to which You contribute are
|
||||
governed by the terms of this License, including without limitation
|
||||
Section 2.2. The Source Code version of Covered Code may be
|
||||
distributed only under the terms of this License or a future version
|
||||
of this License released under Section 6.1, and You must include a
|
||||
copy of this License with every copy of the Source Code You
|
||||
distribute. You may not offer or impose any terms on any Source Code
|
||||
version that alters or restricts the applicable version of this
|
||||
License or the recipients' rights hereunder. However, You may include
|
||||
an additional document offering the additional rights described in
|
||||
Section 3.5.
|
||||
|
||||
3.2. Availability of Source Code.
|
||||
Any Modification which You create or to which You contribute must be
|
||||
made available in Source Code form under the terms of this License
|
||||
either on the same media as an Executable version or via an accepted
|
||||
Electronic Distribution Mechanism to anyone to whom you made an
|
||||
Executable version available; and if made available via Electronic
|
||||
Distribution Mechanism, must remain available for at least twelve (12)
|
||||
months after the date it initially became available, or at least six
|
||||
(6) months after a subsequent version of that particular Modification
|
||||
has been made available to such recipients. You are responsible for
|
||||
ensuring that the Source Code version remains available even if the
|
||||
Electronic Distribution Mechanism is maintained by a third party.
|
||||
|
||||
3.3. Description of Modifications.
|
||||
You must cause all Covered Code to which You contribute to contain a
|
||||
file documenting the changes You made to create that Covered Code and
|
||||
the date of any change. You must include a prominent statement that
|
||||
the Modification is derived, directly or indirectly, from Original
|
||||
Code provided by the Initial Developer and including the name of the
|
||||
Initial Developer in (a) the Source Code, and (b) in any notice in an
|
||||
Executable version or related documentation in which You describe the
|
||||
origin or ownership of the Covered Code.
|
||||
|
||||
3.4. Intellectual Property Matters
|
||||
(a) Third Party Claims.
|
||||
If Contributor has knowledge that a license under a third party's
|
||||
intellectual property rights is required to exercise the rights
|
||||
granted by such Contributor under Sections 2.1 or 2.2,
|
||||
Contributor must include a text file with the Source Code
|
||||
distribution titled "LEGAL" which describes the claim and the
|
||||
party making the claim in sufficient detail that a recipient will
|
||||
know whom to contact. If Contributor obtains such knowledge after
|
||||
the Modification is made available as described in Section 3.2,
|
||||
Contributor shall promptly modify the LEGAL file in all copies
|
||||
Contributor makes available thereafter and shall take other steps
|
||||
(such as notifying appropriate mailing lists or newsgroups)
|
||||
reasonably calculated to inform those who received the Covered
|
||||
Code that new knowledge has been obtained.
|
||||
|
||||
(b) Contributor APIs.
|
||||
If Contributor's Modifications include an application programming
|
||||
interface and Contributor has knowledge of patent licenses which
|
||||
are reasonably necessary to implement that API, Contributor must
|
||||
also include this information in the LEGAL file.
|
||||
|
||||
(c) Representations.
|
||||
Contributor represents that, except as disclosed pursuant to
|
||||
Section 3.4(a) above, Contributor believes that Contributor's
|
||||
Modifications are Contributor's original creation(s) and/or
|
||||
Contributor has sufficient rights to grant the rights conveyed by
|
||||
this License.
|
||||
|
||||
3.5. Required Notices.
|
||||
You must duplicate the notice in Exhibit A in each file of the Source
|
||||
Code. If it is not possible to put such notice in a particular Source
|
||||
Code file due to its structure, then You must include such notice in a
|
||||
location (such as a relevant directory) where a user would be likely
|
||||
to look for such a notice. If You created one or more Modification(s)
|
||||
You may add your name as a Contributor to the notice described in
|
||||
Exhibit A. You must also duplicate this License in any documentation
|
||||
for the Source Code where You describe recipients' rights or ownership
|
||||
rights relating to Covered Code. You may choose to offer, and to
|
||||
charge a fee for, warranty, support, indemnity or liability
|
||||
obligations to one or more recipients of Covered Code. However, You
|
||||
may do so only on Your own behalf, and not on behalf of the Initial
|
||||
Developer or any Contributor. You must make it absolutely clear than
|
||||
any such warranty, support, indemnity or liability obligation is
|
||||
offered by You alone, and You hereby agree to indemnify the Initial
|
||||
Developer and every Contributor for any liability incurred by the
|
||||
Initial Developer or such Contributor as a result of warranty,
|
||||
support, indemnity or liability terms You offer.
|
||||
|
||||
3.6. Distribution of Executable Versions.
|
||||
You may distribute Covered Code in Executable form only if the
|
||||
requirements of Section 3.1-3.5 have been met for that Covered Code,
|
||||
and if You include a notice stating that the Source Code version of
|
||||
the Covered Code is available under the terms of this License,
|
||||
including a description of how and where You have fulfilled the
|
||||
obligations of Section 3.2. The notice must be conspicuously included
|
||||
in any notice in an Executable version, related documentation or
|
||||
collateral in which You describe recipients' rights relating to the
|
||||
Covered Code. You may distribute the Executable version of Covered
|
||||
Code or ownership rights under a license of Your choice, which may
|
||||
contain terms different from this License, provided that You are in
|
||||
compliance with the terms of this License and that the license for the
|
||||
Executable version does not attempt to limit or alter the recipient's
|
||||
rights in the Source Code version from the rights set forth in this
|
||||
License. If You distribute the Executable version under a different
|
||||
license You must make it absolutely clear that any terms which differ
|
||||
from this License are offered by You alone, not by the Initial
|
||||
Developer or any Contributor. You hereby agree to indemnify the
|
||||
Initial Developer and every Contributor for any liability incurred by
|
||||
the Initial Developer or such Contributor as a result of any such
|
||||
terms You offer.
|
||||
|
||||
3.7. Larger Works.
|
||||
You may create a Larger Work by combining Covered Code with other code
|
||||
not governed by the terms of this License and distribute the Larger
|
||||
Work as a single product. In such a case, You must make sure the
|
||||
requirements of this License are fulfilled for the Covered Code.
|
||||
|
||||
4. Inability to Comply Due to Statute or Regulation.
|
||||
|
||||
If it is impossible for You to comply with any of the terms of this
|
||||
License with respect to some or all of the Covered Code due to
|
||||
statute, judicial order, or regulation then You must: (a) comply with
|
||||
the terms of this License to the maximum extent possible; and (b)
|
||||
describe the limitations and the code they affect. Such description
|
||||
must be included in the LEGAL file described in Section 3.4 and must
|
||||
be included with all distributions of the Source Code. Except to the
|
||||
extent prohibited by statute or regulation, such description must be
|
||||
sufficiently detailed for a recipient of ordinary skill to be able to
|
||||
understand it.
|
||||
|
||||
5. Application of this License.
|
||||
|
||||
This License applies to code to which the Initial Developer has
|
||||
attached the notice in Exhibit A and to related Covered Code.
|
||||
|
||||
6. Versions of the License.
|
||||
|
||||
6.1. New Versions.
|
||||
Netscape Communications Corporation ("Netscape") may publish revised
|
||||
and/or new versions of the License from time to time. Each version
|
||||
will be given a distinguishing version number.
|
||||
|
||||
6.2. Effect of New Versions.
|
||||
Once Covered Code has been published under a particular version of the
|
||||
License, You may always continue to use it under the terms of that
|
||||
version. You may also choose to use such Covered Code under the terms
|
||||
of any subsequent version of the License published by Netscape. No one
|
||||
other than Netscape has the right to modify the terms applicable to
|
||||
Covered Code created under this License.
|
||||
|
||||
6.3. Derivative Works.
|
||||
If You create or use a modified version of this License (which you may
|
||||
only do in order to apply it to code which is not already Covered Code
|
||||
governed by this License), You must (a) rename Your license so that
|
||||
the phrases "Mozilla", "MOZILLAPL", "MOZPL", "Netscape",
|
||||
"MPL", "NPL" or any confusingly similar phrase do not appear in your
|
||||
license (except to note that your license differs from this License)
|
||||
and (b) otherwise make it clear that Your version of the license
|
||||
contains terms which differ from the Mozilla Public License and
|
||||
Netscape Public License. (Filling in the name of the Initial
|
||||
Developer, Original Code or Contributor in the notice described in
|
||||
Exhibit A shall not of themselves be deemed to be modifications of
|
||||
this License.)
|
||||
|
||||
7. DISCLAIMER OF WARRANTY.
|
||||
|
||||
COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
|
||||
WITHOUT LIMITATION, WARRANTIES THAT THE COVERED CODE IS FREE OF
|
||||
DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR NON-INFRINGING.
|
||||
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED CODE
|
||||
IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT,
|
||||
YOU (NOT THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE
|
||||
COST OF ANY NECESSARY SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER
|
||||
OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE OF
|
||||
ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.
|
||||
|
||||
8. TERMINATION.
|
||||
|
||||
8.1. This License and the rights granted hereunder will terminate
|
||||
automatically if You fail to comply with terms herein and fail to cure
|
||||
such breach within 30 days of becoming aware of the breach. All
|
||||
sublicenses to the Covered Code which are properly granted shall
|
||||
survive any termination of this License. Provisions which, by their
|
||||
nature, must remain in effect beyond the termination of this License
|
||||
shall survive.
|
||||
|
||||
8.2. If You initiate litigation by asserting a patent infringement
|
||||
claim (excluding declatory judgment actions) against Initial Developer
|
||||
or a Contributor (the Initial Developer or Contributor against whom
|
||||
You file such action is referred to as "Participant") alleging that:
|
||||
|
||||
(a) such Participant's Contributor Version directly or indirectly
|
||||
infringes any patent, then any and all rights granted by such
|
||||
Participant to You under Sections 2.1 and/or 2.2 of this License
|
||||
shall, upon 60 days notice from Participant terminate prospectively,
|
||||
unless if within 60 days after receipt of notice You either: (i)
|
||||
agree in writing to pay Participant a mutually agreeable reasonable
|
||||
royalty for Your past and future use of Modifications made by such
|
||||
Participant, or (ii) withdraw Your litigation claim with respect to
|
||||
the Contributor Version against such Participant. If within 60 days
|
||||
of notice, a reasonable royalty and payment arrangement are not
|
||||
mutually agreed upon in writing by the parties or the litigation claim
|
||||
is not withdrawn, the rights granted by Participant to You under
|
||||
Sections 2.1 and/or 2.2 automatically terminate at the expiration of
|
||||
the 60 day notice period specified above.
|
||||
|
||||
(b) any software, hardware, or device, other than such Participant's
|
||||
Contributor Version, directly or indirectly infringes any patent, then
|
||||
any rights granted to You by such Participant under Sections 2.1(b)
|
||||
and 2.2(b) are revoked effective as of the date You first made, used,
|
||||
sold, distributed, or had made, Modifications made by that
|
||||
Participant.
|
||||
|
||||
8.3. If You assert a patent infringement claim against Participant
|
||||
alleging that such Participant's Contributor Version directly or
|
||||
indirectly infringes any patent where such claim is resolved (such as
|
||||
by license or settlement) prior to the initiation of patent
|
||||
infringement litigation, then the reasonable value of the licenses
|
||||
granted by such Participant under Sections 2.1 or 2.2 shall be taken
|
||||
into account in determining the amount or value of any payment or
|
||||
license.
|
||||
|
||||
8.4. In the event of termination under Sections 8.1 or 8.2 above,
|
||||
all end user license agreements (excluding distributors and resellers)
|
||||
which have been validly granted by You or any distributor hereunder
|
||||
prior to termination shall survive termination.
|
||||
|
||||
9. LIMITATION OF LIABILITY.
|
||||
|
||||
UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER TORT
|
||||
(INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL YOU, THE INITIAL
|
||||
DEVELOPER, ANY OTHER CONTRIBUTOR, OR ANY DISTRIBUTOR OF COVERED CODE,
|
||||
OR ANY SUPPLIER OF ANY OF SUCH PARTIES, BE LIABLE TO ANY PERSON FOR
|
||||
ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY
|
||||
CHARACTER INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL,
|
||||
WORK STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER
|
||||
COMMERCIAL DAMAGES OR LOSSES, EVEN IF SUCH PARTY SHALL HAVE BEEN
|
||||
INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION OF
|
||||
LIABILITY SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL INJURY
|
||||
RESULTING FROM SUCH PARTY'S NEGLIGENCE TO THE EXTENT APPLICABLE LAW
|
||||
PROHIBITS SUCH LIMITATION. SOME JURISDICTIONS DO NOT ALLOW THE
|
||||
EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO
|
||||
THIS EXCLUSION AND LIMITATION MAY NOT APPLY TO YOU.
|
||||
|
||||
10. U.S. GOVERNMENT END USERS.
|
||||
|
||||
The Covered Code is a "commercial item," as that term is defined in
|
||||
48 C.F.R. 2.101 (Oct. 1995), consisting of "commercial computer
|
||||
software" and "commercial computer software documentation," as such
|
||||
terms are used in 48 C.F.R. 12.212 (Sept. 1995). Consistent with 48
|
||||
C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
|
||||
all U.S. Government End Users acquire Covered Code with only those
|
||||
rights set forth herein.
|
||||
|
||||
11. MISCELLANEOUS.
|
||||
|
||||
This License represents the complete agreement concerning subject
|
||||
matter hereof. If any provision of this License is held to be
|
||||
unenforceable, such provision shall be reformed only to the extent
|
||||
necessary to make it enforceable. This License shall be governed by
|
||||
California law provisions (except to the extent applicable law, if
|
||||
any, provides otherwise), excluding its conflict-of-law provisions.
|
||||
With respect to disputes in which at least one party is a citizen of,
|
||||
or an entity chartered or registered to do business in the United
|
||||
States of America, any litigation relating to this License shall be
|
||||
subject to the jurisdiction of the Federal Courts of the Northern
|
||||
District of California, with venue lying in Santa Clara County,
|
||||
California, with the losing party responsible for costs, including
|
||||
without limitation, court costs and reasonable attorneys' fees and
|
||||
expenses. The application of the United Nations Convention on
|
||||
Contracts for the International Sale of Goods is expressly excluded.
|
||||
Any law or regulation which provides that the language of a contract
|
||||
shall be construed against the drafter shall not apply to this
|
||||
License.
|
||||
|
||||
12. RESPONSIBILITY FOR CLAIMS.
|
||||
|
||||
As between Initial Developer and the Contributors, each party is
|
||||
responsible for claims and damages arising, directly or indirectly,
|
||||
out of its utilization of rights under this License and You agree to
|
||||
work with Initial Developer and Contributors to distribute such
|
||||
responsibility on an equitable basis. Nothing herein is intended or
|
||||
shall be deemed to constitute any admission of liability.
|
||||
|
||||
13. MULTIPLE-LICENSED CODE.
|
||||
|
||||
Initial Developer may designate portions of the Covered Code as
|
||||
"Multiple-Licensed". "Multiple-Licensed" means that the Initial
|
||||
Developer permits you to utilize portions of the Covered Code under
|
||||
Your choice of the NPL or the alternative licenses, if any, specified
|
||||
by the Initial Developer in the file described in Exhibit A.
|
||||
|
||||
EXHIBIT A -Mozilla Public License.
|
||||
|
||||
``The contents of this file are subject to the Mozilla Public License
|
||||
Version 1.1 (the "License"); you may not use this file except in
|
||||
compliance with the License. You may obtain a copy of the License at
|
||||
http://www.mozilla.org/MPL/
|
||||
|
||||
Software distributed under the License is distributed on an "AS IS"
|
||||
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
||||
License for the specific language governing rights and limitations
|
||||
under the License.
|
||||
|
||||
The Original Code is ______________________________________.
|
||||
|
||||
The Initial Developer of the Original Code is ________________________.
|
||||
Portions created by ______________________ are Copyright (C) ______
|
||||
_______________________. All Rights Reserved.
|
||||
|
||||
Contributor(s): ______________________________________.
|
||||
|
||||
Alternatively, the contents of this file may be used under the terms
|
||||
of the _____ license (the "[___] License"), in which case the
|
||||
provisions of [______] License are applicable instead of those
|
||||
above. If you wish to allow use of your version of this file only
|
||||
under the terms of the [____] License and not to allow others to use
|
||||
your version of this file under the MPL, indicate your decision by
|
||||
deleting the provisions above and replace them with the notice and
|
||||
other provisions required by the [___] License. If you do not delete
|
||||
the provisions above, a recipient may use your version of this file
|
||||
under either the MPL or the [___] License."
|
||||
|
||||
[NOTE: The text of this Exhibit A may differ slightly from the text of
|
||||
the notices in the Source Code files of the Original Code. You should
|
||||
use the text of this Exhibit A rather than the text found in the
|
||||
Original Code Source Code for Your Modifications.]
|
9
deps/cmph/Makefile.am
vendored
Normal file
9
deps/cmph/Makefile.am
vendored
Normal file
@ -0,0 +1,9 @@
|
||||
SUBDIRS = src tests examples man $(CXXMPH)
|
||||
EXTRA_DIST = cmph.spec configure.ac cmph.pc.in cxxmph.pc.in LGPL-2 MPL-1.1
|
||||
pkgconfig_DATA = cmph.pc
|
||||
if USE_CXXMPH
|
||||
pkgconfig_DATA += cxxmph.pc
|
||||
endif
|
||||
ACLOCAL_AMFLAGS="-Im4"
|
||||
|
||||
pkgconfigdir = $(libdir)/pkgconfig
|
0
deps/cmph/NEWS
vendored
Normal file
0
deps/cmph/NEWS
vendored
Normal file
85
deps/cmph/NEWSLOG.t2t
vendored
Normal file
85
deps/cmph/NEWSLOG.t2t
vendored
Normal file
@ -0,0 +1,85 @@
|
||||
News Log
|
||||
|
||||
|
||||
%!includeconf: CONFIG.t2t
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==News for version 1.1==
|
||||
|
||||
Fixed a bug in the chd_pc algorithm and reorganized tests.
|
||||
|
||||
==News for version 1.0==
|
||||
|
||||
This is a bugfix only version, after which a revamp of the cmph code and
|
||||
algorithms will be done.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==News for version 0.9==
|
||||
|
||||
- [The CHD algorithm chd.html], which is an algorithm that can be tuned to generate MPHFs that require approximately 2.07 bits per key to be stored. The algorithm outperforms [the BDZ algorithm bdz.html] and therefore is the fastest one available in the literature for sets that can be treated in internal memory.
|
||||
- [The CHD_PH algorithm chd.html], which is an algorithm to generate PHFs with load factor up to //99 %//. It is actually the CHD algorithm without the ranking step. If we set the load factor to //81 %//, which is the maximum that can be obtained with [the BDZ algorithm bdz.html], the resulting functions can be stored in //1.40// bits per key. The space requirement increases with the load factor.
|
||||
- All reported bugs and suggestions have been corrected and included as well.
|
||||
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==News for version 0.8==
|
||||
|
||||
- [An algorithm to generate MPHFs that require around 2.6 bits per key to be stored bdz.html], which is referred to as BDZ algorithm. The algorithm is the fastest one available in the literature for sets that can be treated in internal memory.
|
||||
- [An algorithm to generate PHFs with range m = cn, for c > 1.22 bdz.html], which is referred to as BDZ_PH algorithm. It is actually the BDZ algorithm without the ranking step. The resulting functions can be stored in 1.95 bits per key for //c = 1.23// and are considerably faster than the MPHFs generated by the BDZ algorithm.
|
||||
- An adapter to support a vector of struct as the source of keys has been added.
|
||||
- An API to support the ability of packing a perfect hash function into a preallocated contiguous memory space. The computation of a packed function is still faster and can be easily mmapped.
|
||||
- The hash functions djb2, fnv and sdbm were removed because they do not use random seeds and therefore are not useful for MPHFs algorithms.
|
||||
- All reported bugs and suggestions have been corrected and included as well.
|
||||
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==News for version 0.7==
|
||||
|
||||
- Added man pages and a pkgconfig file.
|
||||
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==News for version 0.6==
|
||||
|
||||
- [An algorithm to generate MPHFs that require less than 4 bits per key to be stored fch.html], which is referred to as FCH algorithm. The algorithm is only efficient for small sets.
|
||||
- The FCH algorithm is integrated with [BRZ algorithm brz.html] so that you will be able to efficiently generate space-efficient MPHFs for sets in the order of billion keys.
|
||||
- All reported bugs and suggestions have been corrected and included as well.
|
||||
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==News for version 0.5==
|
||||
|
||||
- A thread safe vector adapter has been added.
|
||||
- [A new algorithm for sets in the order of billion of keys that requires approximately 8.1 bits per key to store the resulting MPHFs. brz.html]
|
||||
- All reported bugs and suggestions have been corrected and included as well.
|
||||
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==News for version 0.4==
|
||||
|
||||
- Vector Adapter has been added.
|
||||
- An optimized version of bmz (bmz8) for small set of keys (at most 256 keys) has been added.
|
||||
- All reported bugs and suggestions have been corrected and included as well.
|
||||
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==News for version 0.3==
|
||||
|
||||
- New heuristic added to the bmz algorithm permits to generate a mphf with only
|
||||
//24.80n + O(1)// bytes. The resulting function can be stored in //3.72n// bytes.
|
||||
%html% [click here bmz.html#heuristic] for details.
|
||||
|
||||
|
||||
%!include: ALGORITHMS.t2t
|
||||
|
||||
%!include: FOOTER.t2t
|
||||
|
||||
%!include(html): ''GOOGLEANALYTICS.t2t''
|
326
deps/cmph/README
vendored
Normal file
326
deps/cmph/README
vendored
Normal file
@ -0,0 +1,326 @@
|
||||
CMPH - C Minimal Perfect Hashing Library
|
||||
|
||||
|
||||
-------------------------------------------------------------------
|
||||
|
||||
|
||||
Motivation
|
||||
==========
|
||||
|
||||
A perfect hash function maps a static set of n keys into a set of m integer numbers without collisions, where m is greater than or equal to n. If m is equal to n, the function is called minimal.
|
||||
|
||||
Minimal perfect hash functions (concepts.html) are widely used for memory efficient storage and fast retrieval of items from static sets, such as words in natural languages, reserved words in programming languages or interactive systems, universal resource locations (URLs) in Web search engines, or item sets in data mining techniques. Therefore, there are applications for minimal perfect hash functions in information retrieval systems, database systems, language translation systems, electronic commerce systems, compilers, operating systems, among others.
|
||||
|
||||
The use of minimal perfect hash functions is, until now, restricted to scenarios where the set of keys being hashed is small, because of the limitations of current algorithms. But in many cases, to deal with huge set of keys is crucial. So, this project gives to the free software community an API that will work with sets in the order of billion of keys.
|
||||
|
||||
Probably, the most interesting application for minimal perfect hash functions is its use as an indexing structure for databases. The most popular data structure used as an indexing structure in databases is the B+ tree. In fact, the B+ tree is very used for dynamic applications with frequent insertions and deletions of records. However, for applications with sporadic modifications and a huge number of queries the B+ tree is not the best option, because practical deployments of this structure are extremely complex, and perform poorly with very large sets of keys such as those required for the new frontiers database applications (http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=299).
|
||||
|
||||
For example, in the information retrieval field, the work with huge collections is a daily task. The simple assignment of ids to web pages of a collection can be a challenging task. While traditional databases simply cannot handle more traffic once the working set of web page urls does not fit in main memory anymore, minimal perfect hash functions can easily scale to hundred of millions of entries, using stock hardware.
|
||||
|
||||
As there are lots of applications for minimal perfect hash functions, it is important to implement memory and time efficient algorithms for constructing such functions. The lack of similar libraries in the free software world has been the main motivation to create the C Minimal Perfect Hashing Library (gperf is a bit different (gperf.html), since it was conceived to create very fast perfect hash functions for small sets of keys and CMPH Library was conceived to create minimal perfect hash functions for very large sets of keys). C Minimal Perfect Hashing Library is a portable LGPLed library to generate and to work with very efficient minimal perfect hash functions.
|
||||
|
||||
-------------------------------------------------------------------
|
||||
|
||||
|
||||
Description
|
||||
===========
|
||||
|
||||
The CMPH Library encapsulates the newest and more efficient algorithms in an easy-to-use, production-quality, fast API. The library was designed to work with big entries that cannot fit in the main memory. It has been used successfully for constructing minimal perfect hash functions for sets with more than 100 million of keys, and we intend to expand this number to the order of billion of keys. Although there is a lack of similar libraries, we can point out some of the distinguishable features of the CMPH Library:
|
||||
|
||||
- Fast.
|
||||
- Space-efficient with main memory usage carefully documented.
|
||||
- The best modern algorithms are available (or at least scheduled for implementation :-)).
|
||||
- Works with in-disk key sets through of using the adapter pattern.
|
||||
- Serialization of hash functions.
|
||||
- Portable C code (currently works on GNU/Linux and WIN32 and is reported to work in OpenBSD and Solaris).
|
||||
- Object oriented implementation.
|
||||
- Easily extensible.
|
||||
- Well encapsulated API aiming binary compatibility through releases.
|
||||
- Free Software.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
|
||||
Supported Algorithms
|
||||
====================
|
||||
|
||||
- CHD Algorithm:
|
||||
- It is the fastest algorithm to build PHFs and MPHFs in linear time.
|
||||
- It generates the most compact PHFs and MPHFs we know of.
|
||||
- It can generate PHFs with a load factor up to 99 %.
|
||||
- It can be used to generate t-perfect hash functions. A t-perfect hash function allows at most t collisions in a given bin. It is a well-known fact that modern memories are organized as blocks which constitute transfer unit. Example of such blocks are cache lines for internal memory or sectors for hard disks. Thus, it can be very useful for devices that carry out I/O operations in blocks.
|
||||
- It is a two level scheme. It uses a first level hash function to split the key set in buckets of average size determined by a parameter b in the range [1,32]. In the second level it uses displacement values to resolve the collisions that have given rise to the buckets.
|
||||
- It can generate MPHFs that can be stored in approximately 2.07 bits per key.
|
||||
- For a load factor equal to the maximum one that is achieved by the BDZ algorithm (81 %), the resulting PHFs are stored in approximately 1.40 bits per key.
|
||||
- BDZ Algorithm:
|
||||
- It is very simple and efficient. It outperforms all the ones below.
|
||||
- It constructs both PHFs and MPHFs in linear time.
|
||||
- The maximum load factor one can achieve for a PHF is 1/1.23.
|
||||
- It is based on acyclic random 3-graphs. A 3-graph is a generalization of a graph where each edge connects 3 vertices instead of only 2.
|
||||
- The resulting MPHFs are not order preserving.
|
||||
- The resulting MPHFs can be stored in only (2 + x)cn bits, where c should be larger than or equal to 1.23 and x is a constant larger than 0 (actually, x = 1/b and b is a parameter that should be larger than 2). For c = 1.23 and b = 8, the resulting functions are stored in approximately 2.6 bits per key.
|
||||
- For its maximum load factor (81 %), the resulting PHFs are stored in approximately 1.95 bits per key.
|
||||
- BMZ Algorithm:
|
||||
- Construct MPHFs in linear time.
|
||||
- It is based on cyclic random graphs. This makes it faster than the CHM algorithm.
|
||||
- The resulting MPHFs are not order preserving.
|
||||
- The resulting MPHFs are more compact than the ones generated by the CHM algorithm and can be stored in 4cn bytes, where c is in the range [0.93,1.15].
|
||||
- BRZ Algorithm:
|
||||
- A very fast external memory based algorithm for constructing minimal perfect hash functions for sets in the order of billions of keys.
|
||||
- It works in linear time.
|
||||
- The resulting MPHFs are not order preserving.
|
||||
- The resulting MPHFs can be stored using less than 8.0 bits per key.
|
||||
- CHM Algorithm:
|
||||
- Construct minimal MPHFs in linear time.
|
||||
- It is based on acyclic random graphs
|
||||
- The resulting MPHFs are order preserving.
|
||||
- The resulting MPHFs are stored in 4cn bytes, where c is greater than 2.
|
||||
- FCH Algorithm:
|
||||
- Construct minimal perfect hash functions that require less than 4 bits per key to be stored.
|
||||
- The resulting MPHFs are very compact and very efficient at evaluation time
|
||||
- The algorithm is only efficient for small sets.
|
||||
- It is used as internal algorithm in the BRZ algorithm to efficiently solve larger problems and even so to generate MPHFs that require approximately 4.1 bits per key to be stored. For that, you just need to set the parameters -a to brz and -c to a value larger than or equal to 2.6.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
|
||||
News for version 2.0
|
||||
====================
|
||||
|
||||
Cleaned up most warnings for the c code.
|
||||
|
||||
Experimental C++ interface (--enable-cxxmph) implementing the BDZ algorithm in
|
||||
a convenient interface, which serves as the basis
|
||||
for drop-in replacements for std::unordered_map, sparsehash::sparse_hash_map
|
||||
and sparsehash::dense_hash_map. Potentially faster lookup time at the expense
|
||||
of insertion time. See cxxmpph/mph_map.h and cxxmph/mph_index.h for details.
|
||||
|
||||
|
||||
News for version 1.1
|
||||
====================
|
||||
|
||||
Fixed a bug in the chd_pc algorithm and reorganized tests.
|
||||
|
||||
|
||||
News for version 1.0
|
||||
====================
|
||||
|
||||
This is a bugfix only version, after which a revamp of the cmph code and
|
||||
algorithms will be done.
|
||||
|
||||
|
||||
News for version 0.9
|
||||
====================
|
||||
|
||||
- The CHD algorithm (chd.html), which is an algorithm that can be tuned to generate MPHFs that require approximately 2.07 bits per key to be stored. The algorithm outperforms the BDZ algorithm (bdz.html) and therefore is the fastest one available in the literature for sets that can be treated in internal memory.
|
||||
- The CHD_PH algorithm (chd.html), which is an algorithm to generate PHFs with load factor up to 99 %. It is actually the CHD algorithm without the ranking step. If we set the load factor to 81 %, which is the maximum that can be obtained with the BDZ algorithm (bdz.html), the resulting functions can be stored in 1.40 bits per key. The space requirement increases with the load factor.
|
||||
- All reported bugs and suggestions have been corrected and included as well.
|
||||
|
||||
|
||||
News for version 0.8
|
||||
====================
|
||||
|
||||
- An algorithm to generate MPHFs that require around 2.6 bits per key to be stored (bdz.html), which is referred to as BDZ algorithm. The algorithm is the fastest one available in the literature for sets that can be treated in internal memory.
|
||||
- An algorithm to generate PHFs with range m = cn, for c > 1.22 (bdz.html), which is referred to as BDZ_PH algorithm. It is actually the BDZ algorithm without the ranking step. The resulting functions can be stored in 1.95 bits per key for c = 1.23 and are considerably faster than the MPHFs generated by the BDZ algorithm.
|
||||
- An adapter to support a vector of struct as the source of keys has been added.
|
||||
- An API to support the ability of packing a perfect hash function into a preallocated contiguous memory space. The computation of a packed function is still faster and can be easily mmapped.
|
||||
- The hash functions djb2, fnv and sdbm were removed because they do not use random seeds and therefore are not useful for MPHFs algorithms.
|
||||
- All reported bugs and suggestions have been corrected and included as well.
|
||||
|
||||
News log (newslog.html)
|
||||
|
||||
----------------------------------------
|
||||
|
||||
|
||||
Examples
|
||||
========
|
||||
|
||||
Using cmph is quite simple. Take a look.
|
||||
|
||||
#include <cmph.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-memory vector
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
|
||||
// Creating a filled vector
|
||||
unsigned int i = 0;
|
||||
const char *vector[] = {"aaaaaaaaaa", "bbbbbbbbbb", "cccccccccc", "dddddddddd", "eeeeeeeeee",
|
||||
"ffffffffff", "gggggggggg", "hhhhhhhhhh", "iiiiiiiiii", "jjjjjjjjjj"};
|
||||
unsigned int nkeys = 10;
|
||||
FILE* mphf_fd = fopen("temp.mph", "w");
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_vector_adapter((char **)vector, nkeys);
|
||||
|
||||
//Create minimal perfect hash function using the brz algorithm.
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BRZ);
|
||||
cmph_config_set_mphf_fd(config, mphf_fd);
|
||||
cmph_t *hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
cmph_dump(hash, mphf_fd);
|
||||
cmph_destroy(hash);
|
||||
fclose(mphf_fd);
|
||||
|
||||
//Find key
|
||||
mphf_fd = fopen("temp.mph", "r");
|
||||
hash = cmph_load(mphf_fd);
|
||||
while (i < nkeys) {
|
||||
const char *key = vector[i];
|
||||
unsigned int id = cmph_search(hash, key, (cmph_uint32)strlen(key));
|
||||
fprintf(stderr, "key:%s -- hash:%u\n", key, id);
|
||||
i++;
|
||||
}
|
||||
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_vector_adapter_destroy(source);
|
||||
fclose(mphf_fd);
|
||||
return 0;
|
||||
}
|
||||
|
||||
Download vector_adapter_ex1.c (examples/vector_adapter_ex1.c). This example does not work in versions below 0.6. You need to update the sources from GIT to make it work.
|
||||
|
||||
-------------------------------
|
||||
|
||||
#include <cmph.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-disk keys using BDZ algorithm
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//Open file with newline separated list of keys
|
||||
FILE * keys_fd = fopen("keys.txt", "r");
|
||||
cmph_t *hash = NULL;
|
||||
if (keys_fd == NULL)
|
||||
{
|
||||
fprintf(stderr, "File \"keys.txt\" not found\n");
|
||||
exit(1);
|
||||
}
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_nlfile_adapter(keys_fd);
|
||||
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BDZ);
|
||||
hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
|
||||
//Find key
|
||||
const char *key = "jjjjjjjjjj";
|
||||
unsigned int id = cmph_search(hash, key, (cmph_uint32)strlen(key));
|
||||
fprintf(stderr, "Id:%u\n", id);
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_nlfile_adapter_destroy(source);
|
||||
fclose(keys_fd);
|
||||
return 0;
|
||||
}
|
||||
|
||||
Download file_adapter_ex2.c (examples/file_adapter_ex2.c) and keys.txt (examples/keys.txt). This example does not work in versions below 0.8. You need to update the sources from GIT to make it work.
|
||||
|
||||
Click here to see more examples (examples.html)
|
||||
|
||||
--------------------------------------
|
||||
|
||||
|
||||
The cmph application
|
||||
====================
|
||||
|
||||
cmph is the name of both the library and the utility
|
||||
application that comes with this package. You can use the cmph
|
||||
application for constructing minimal perfect hash functions from the command line.
|
||||
The cmph utility
|
||||
comes with a number of flags, but it is very simple to create and to query
|
||||
minimal perfect hash functions:
|
||||
|
||||
$ # Using the chm algorithm (default one) for constructing a mphf for keys in file keys_file
|
||||
$ ./cmph -g keys_file
|
||||
$ # Query id of keys in the file keys_query
|
||||
$ ./cmph -m keys_file.mph keys_query
|
||||
|
||||
The additional options let you set most of the parameters you have
|
||||
available through the C API. Below you can see the full help message for the
|
||||
utility.
|
||||
|
||||
usage: cmph [-v] [-h] [-V] [-k nkeys] [-f hash_function] [-g [-c algorithm_dependent_value][-s seed] ]
|
||||
[-a algorithm] [-M memory_in_MB] [-b algorithm_dependent_value] [-t keys_per_bin] [-d tmp_dir]
|
||||
[-m file.mph] keysfile
|
||||
Minimum perfect hashing tool
|
||||
|
||||
-h print this help message
|
||||
-c c value determines:
|
||||
* the number of vertices in the graph for the algorithms BMZ and CHM
|
||||
* the number of bits per key required in the FCH algorithm
|
||||
* the load factor in the CHD_PH algorithm
|
||||
-a algorithm - valid values are
|
||||
* bmz
|
||||
* bmz8
|
||||
* chm
|
||||
* brz
|
||||
* fch
|
||||
* bdz
|
||||
* bdz_ph
|
||||
* chd_ph
|
||||
* chd
|
||||
-f hash function (may be used multiple times) - valid values are
|
||||
* jenkins
|
||||
-V print version number and exit
|
||||
-v increase verbosity (may be used multiple times)
|
||||
-k number of keys
|
||||
-g generation mode
|
||||
-s random seed
|
||||
-m minimum perfect hash function file
|
||||
-M main memory availability (in MB) used in BRZ algorithm
|
||||
-d temporary directory used in BRZ algorithm
|
||||
-b the meaning of this parameter depends on the algorithm selected in the -a option:
|
||||
* For BRZ it is used to make the maximal number of keys in a bucket lower than 256.
|
||||
In this case its value should be an integer in the range [64,175]. Default is 128.
|
||||
|
||||
* For BDZ it is used to determine the size of some precomputed rank
|
||||
information and its value should be an integer in the range [3,10]. Default
|
||||
is 7. The larger is this value, the more compact are the resulting functions
|
||||
and the slower are them at evaluation time.
|
||||
|
||||
* For CHD and CHD_PH it is used to set the average number of keys per bucket
|
||||
and its value should be an integer in the range [1,32]. Default is 4. The
|
||||
larger is this value, the slower is the construction of the functions.
|
||||
This parameter has no effect for other algorithms.
|
||||
|
||||
-t set the number of keys per bin for a t-perfect hashing function. A t-perfect
|
||||
hash function allows at most t collisions in a given bin. This parameter applies
|
||||
only to the CHD and CHD_PH algorithms. Its value should be an integer in the
|
||||
range [1,128]. Defaul is 1
|
||||
keysfile line separated file with keys
|
||||
|
||||
|
||||
Additional Documentation
|
||||
========================
|
||||
|
||||
FAQ (faq.html)
|
||||
|
||||
|
||||
Downloads
|
||||
=========
|
||||
|
||||
Use the github releases page at: https://github.com/bonitao/cmph/releases
|
||||
|
||||
|
||||
License Stuff
|
||||
=============
|
||||
|
||||
Code is under the LGPL and the MPL 1.1.
|
||||
|
||||
----------------------------------------
|
||||
|
||||
Enjoy!
|
||||
|
||||
Davi de Castro Reis (davi@users.sourceforge.net)
|
||||
|
||||
Djamel Belazzougui (db8192@users.sourceforge.net)
|
||||
|
||||
Fabiano Cupertino Botelho (fc_botelho@users.sourceforge.net)
|
||||
|
||||
Nivio Ziviani (nivio@dcc.ufmg.br)
|
||||
|
||||
Last Updated: Fri Dec 28 23:50:31 2018
|
||||
|
1
deps/cmph/README.md
vendored
Normal file
1
deps/cmph/README.md
vendored
Normal file
@ -0,0 +1 @@
|
||||
See http://cmph.sf.net
|
315
deps/cmph/README.t2t
vendored
Normal file
315
deps/cmph/README.t2t
vendored
Normal file
@ -0,0 +1,315 @@
|
||||
CMPH - C Minimal Perfect Hashing Library
|
||||
|
||||
|
||||
%!includeconf: CONFIG.t2t
|
||||
|
||||
-------------------------------------------------------------------
|
||||
|
||||
==Motivation==
|
||||
|
||||
A perfect hash function maps a static set of n keys into a set of m integer numbers without collisions, where m is greater than or equal to n. If m is equal to n, the function is called minimal.
|
||||
|
||||
[Minimal perfect hash functions concepts.html] are widely used for memory efficient storage and fast retrieval of items from static sets, such as words in natural languages, reserved words in programming languages or interactive systems, universal resource locations (URLs) in Web search engines, or item sets in data mining techniques. Therefore, there are applications for minimal perfect hash functions in information retrieval systems, database systems, language translation systems, electronic commerce systems, compilers, operating systems, among others.
|
||||
|
||||
The use of minimal perfect hash functions is, until now, restricted to scenarios where the set of keys being hashed is small, because of the limitations of current algorithms. But in many cases, to deal with huge set of keys is crucial. So, this project gives to the free software community an API that will work with sets in the order of billion of keys.
|
||||
|
||||
Probably, the most interesting application for minimal perfect hash functions is its use as an indexing structure for databases. The most popular data structure used as an indexing structure in databases is the B+ tree. In fact, the B+ tree is very used for dynamic applications with frequent insertions and deletions of records. However, for applications with sporadic modifications and a huge number of queries the B+ tree is not the best option, because practical deployments of this structure are extremely complex, and perform poorly with very large sets of keys such as those required for the new frontiers [database applications http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=299].
|
||||
|
||||
For example, in the information retrieval field, the work with huge collections is a daily task. The simple assignment of ids to web pages of a collection can be a challenging task. While traditional databases simply cannot handle more traffic once the working set of web page urls does not fit in main memory anymore, minimal perfect hash functions can easily scale to hundred of millions of entries, using stock hardware.
|
||||
|
||||
As there are lots of applications for minimal perfect hash functions, it is important to implement memory and time efficient algorithms for constructing such functions. The lack of similar libraries in the free software world has been the main motivation to create the C Minimal Perfect Hashing Library ([gperf is a bit different gperf.html], since it was conceived to create very fast perfect hash functions for small sets of keys and CMPH Library was conceived to create minimal perfect hash functions for very large sets of keys). C Minimal Perfect Hashing Library is a portable LGPLed library to generate and to work with very efficient minimal perfect hash functions.
|
||||
|
||||
-------------------------------------------------------------------
|
||||
|
||||
==Description==
|
||||
|
||||
The CMPH Library encapsulates the newest and more efficient algorithms in an easy-to-use, production-quality, fast API. The library was designed to work with big entries that cannot fit in the main memory. It has been used successfully for constructing minimal perfect hash functions for sets with more than 100 million of keys, and we intend to expand this number to the order of billion of keys. Although there is a lack of similar libraries, we can point out some of the distinguishable features of the CMPH Library:
|
||||
|
||||
- Fast.
|
||||
- Space-efficient with main memory usage carefully documented.
|
||||
- The best modern algorithms are available (or at least scheduled for implementation :-)).
|
||||
- Works with in-disk key sets through of using the adapter pattern.
|
||||
- Serialization of hash functions.
|
||||
- Portable C code (currently works on GNU/Linux and WIN32 and is reported to work in OpenBSD and Solaris).
|
||||
- Object oriented implementation.
|
||||
- Easily extensible.
|
||||
- Well encapsulated API aiming binary compatibility through releases.
|
||||
- Free Software.
|
||||
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==Supported Algorithms==
|
||||
|
||||
|
||||
%html% - [CHD Algorithm chd.html]:
|
||||
%txt% - CHD Algorithm:
|
||||
- It is the fastest algorithm to build PHFs and MPHFs in linear time.
|
||||
- It generates the most compact PHFs and MPHFs we know of.
|
||||
- It can generate PHFs with a load factor up to //99 %//.
|
||||
- It can be used to generate //t//-perfect hash functions. A //t//-perfect hash function allows at most //t// collisions in a given bin. It is a well-known fact that modern memories are organized as blocks which constitute transfer unit. Example of such blocks are cache lines for internal memory or sectors for hard disks. Thus, it can be very useful for devices that carry out I/O operations in blocks.
|
||||
- It is a two level scheme. It uses a first level hash function to split the key set in buckets of average size determined by a parameter //b// in the range //[1,32]//. In the second level it uses displacement values to resolve the collisions that have given rise to the buckets.
|
||||
- It can generate MPHFs that can be stored in approximately //2.07// bits per key.
|
||||
- For a load factor equal to the maximum one that is achieved by the BDZ algorithm (//81 %//), the resulting PHFs are stored in approximately //1.40// bits per key.
|
||||
%html% - [BDZ Algorithm bdz.html]:
|
||||
%txt% - BDZ Algorithm:
|
||||
- It is very simple and efficient. It outperforms all the ones below.
|
||||
- It constructs both PHFs and MPHFs in linear time.
|
||||
- The maximum load factor one can achieve for a PHF is //1/1.23//.
|
||||
- It is based on acyclic random 3-graphs. A 3-graph is a generalization of a graph where each edge connects 3 vertices instead of only 2.
|
||||
- The resulting MPHFs are not order preserving.
|
||||
- The resulting MPHFs can be stored in only //(2 + x)cn// bits, where //c// should be larger than or equal to //1.23// and //x// is a constant larger than //0// (actually, x = 1/b and b is a parameter that should be larger than 2). For //c = 1.23// and //b = 8//, the resulting functions are stored in approximately 2.6 bits per key.
|
||||
- For its maximum load factor (//81 %//), the resulting PHFs are stored in approximately //1.95// bits per key.
|
||||
%html% - [BMZ Algorithm bmz.html]:
|
||||
%txt% - BMZ Algorithm:
|
||||
- Construct MPHFs in linear time.
|
||||
- It is based on cyclic random graphs. This makes it faster than the CHM algorithm.
|
||||
- The resulting MPHFs are not order preserving.
|
||||
- The resulting MPHFs are more compact than the ones generated by the CHM algorithm and can be stored in //4cn// bytes, where //c// is in the range //[0.93,1.15]//.
|
||||
%html% - [BRZ Algorithm brz.html]:
|
||||
%txt% - BRZ Algorithm:
|
||||
- A very fast external memory based algorithm for constructing minimal perfect hash functions for sets in the order of billions of keys.
|
||||
- It works in linear time.
|
||||
- The resulting MPHFs are not order preserving.
|
||||
- The resulting MPHFs can be stored using less than //8.0// bits per key.
|
||||
%html% - [CHM Algorithm chm.html]:
|
||||
%txt% - CHM Algorithm:
|
||||
- Construct minimal MPHFs in linear time.
|
||||
- It is based on acyclic random graphs
|
||||
- The resulting MPHFs are order preserving.
|
||||
- The resulting MPHFs are stored in //4cn// bytes, where //c// is greater than 2.
|
||||
%html% - [FCH Algorithm fch.html]:
|
||||
%txt% - FCH Algorithm:
|
||||
- Construct minimal perfect hash functions that require less than 4 bits per key to be stored.
|
||||
- The resulting MPHFs are very compact and very efficient at evaluation time
|
||||
- The algorithm is only efficient for small sets.
|
||||
- It is used as internal algorithm in the BRZ algorithm to efficiently solve larger problems and even so to generate MPHFs that require approximately 4.1 bits per key to be stored. For that, you just need to set the parameters -a to brz and -c to a value larger than or equal to 2.6.
|
||||
|
||||
|
||||
----------------------------------------
|
||||
|
||||
==News for version 2.0==
|
||||
|
||||
Cleaned up most warnings for the c code.
|
||||
|
||||
Experimental C++ interface (--enable-cxxmph) implementing the BDZ algorithm in
|
||||
a convenient interface, which serves as the basis
|
||||
for drop-in replacements for std::unordered_map, sparsehash::sparse_hash_map
|
||||
and sparsehash::dense_hash_map. Potentially faster lookup time at the expense
|
||||
of insertion time. See cxxmpph/mph_map.h and cxxmph/mph_index.h for details.
|
||||
|
||||
==News for version 1.1==
|
||||
|
||||
Fixed a bug in the chd_pc algorithm and reorganized tests.
|
||||
|
||||
==News for version 1.0==
|
||||
|
||||
This is a bugfix only version, after which a revamp of the cmph code and
|
||||
algorithms will be done.
|
||||
|
||||
==News for version 0.9==
|
||||
|
||||
- [The CHD algorithm chd.html], which is an algorithm that can be tuned to generate MPHFs that require approximately 2.07 bits per key to be stored. The algorithm outperforms [the BDZ algorithm bdz.html] and therefore is the fastest one available in the literature for sets that can be treated in internal memory.
|
||||
- [The CHD_PH algorithm chd.html], which is an algorithm to generate PHFs with load factor up to //99 %//. It is actually the CHD algorithm without the ranking step. If we set the load factor to //81 %//, which is the maximum that can be obtained with [the BDZ algorithm bdz.html], the resulting functions can be stored in //1.40// bits per key. The space requirement increases with the load factor.
|
||||
- All reported bugs and suggestions have been corrected and included as well.
|
||||
|
||||
|
||||
|
||||
==News for version 0.8 ==
|
||||
|
||||
- [An algorithm to generate MPHFs that require around 2.6 bits per key to be stored bdz.html], which is referred to as BDZ algorithm. The algorithm is the fastest one available in the literature for sets that can be treated in internal memory.
|
||||
- [An algorithm to generate PHFs with range m = cn, for c > 1.22 bdz.html], which is referred to as BDZ_PH algorithm. It is actually the BDZ algorithm without the ranking step. The resulting functions can be stored in 1.95 bits per key for //c = 1.23// and are considerably faster than the MPHFs generated by the BDZ algorithm.
|
||||
- An adapter to support a vector of struct as the source of keys has been added.
|
||||
- An API to support the ability of packing a perfect hash function into a preallocated contiguous memory space. The computation of a packed function is still faster and can be easily mmapped.
|
||||
- The hash functions djb2, fnv and sdbm were removed because they do not use random seeds and therefore are not useful for MPHFs algorithms.
|
||||
- All reported bugs and suggestions have been corrected and included as well.
|
||||
|
||||
|
||||
|
||||
[News log newslog.html]
|
||||
----------------------------------------
|
||||
|
||||
==Examples==
|
||||
|
||||
Using cmph is quite simple. Take a look.
|
||||
|
||||
|
||||
```
|
||||
#include <cmph.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-memory vector
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
|
||||
// Creating a filled vector
|
||||
unsigned int i = 0;
|
||||
const char *vector[] = {"aaaaaaaaaa", "bbbbbbbbbb", "cccccccccc", "dddddddddd", "eeeeeeeeee",
|
||||
"ffffffffff", "gggggggggg", "hhhhhhhhhh", "iiiiiiiiii", "jjjjjjjjjj"};
|
||||
unsigned int nkeys = 10;
|
||||
FILE* mphf_fd = fopen("temp.mph", "w");
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_vector_adapter((char **)vector, nkeys);
|
||||
|
||||
//Create minimal perfect hash function using the brz algorithm.
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BRZ);
|
||||
cmph_config_set_mphf_fd(config, mphf_fd);
|
||||
cmph_t *hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
cmph_dump(hash, mphf_fd);
|
||||
cmph_destroy(hash);
|
||||
fclose(mphf_fd);
|
||||
|
||||
//Find key
|
||||
mphf_fd = fopen("temp.mph", "r");
|
||||
hash = cmph_load(mphf_fd);
|
||||
while (i < nkeys) {
|
||||
const char *key = vector[i];
|
||||
unsigned int id = cmph_search(hash, key, (cmph_uint32)strlen(key));
|
||||
fprintf(stderr, "key:%s -- hash:%u\n", key, id);
|
||||
i++;
|
||||
}
|
||||
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_vector_adapter_destroy(source);
|
||||
fclose(mphf_fd);
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
Download [vector_adapter_ex1.c examples/vector_adapter_ex1.c]. This example does not work in versions below 0.6. You need to update the sources from GIT to make it work.
|
||||
-------------------------------
|
||||
|
||||
```
|
||||
#include <cmph.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-disk keys using BDZ algorithm
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//Open file with newline separated list of keys
|
||||
FILE * keys_fd = fopen("keys.txt", "r");
|
||||
cmph_t *hash = NULL;
|
||||
if (keys_fd == NULL)
|
||||
{
|
||||
fprintf(stderr, "File \"keys.txt\" not found\n");
|
||||
exit(1);
|
||||
}
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_nlfile_adapter(keys_fd);
|
||||
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BDZ);
|
||||
hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
|
||||
//Find key
|
||||
const char *key = "jjjjjjjjjj";
|
||||
unsigned int id = cmph_search(hash, key, (cmph_uint32)strlen(key));
|
||||
fprintf(stderr, "Id:%u\n", id);
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_nlfile_adapter_destroy(source);
|
||||
fclose(keys_fd);
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
Download [file_adapter_ex2.c examples/file_adapter_ex2.c] and [keys.txt examples/keys.txt]. This example does not work in versions below 0.8. You need to update the sources from GIT to make it work.
|
||||
|
||||
[Click here to see more examples examples.html]
|
||||
--------------------------------------
|
||||
|
||||
|
||||
|
||||
==The cmph application==
|
||||
|
||||
cmph is the name of both the library and the utility
|
||||
application that comes with this package. You can use the cmph
|
||||
application for constructing minimal perfect hash functions from the command line.
|
||||
The cmph utility
|
||||
comes with a number of flags, but it is very simple to create and to query
|
||||
minimal perfect hash functions:
|
||||
|
||||
```
|
||||
$ # Using the chm algorithm (default one) for constructing a mphf for keys in file keys_file
|
||||
$ ./cmph -g keys_file
|
||||
$ # Query id of keys in the file keys_query
|
||||
$ ./cmph -m keys_file.mph keys_query
|
||||
```
|
||||
|
||||
The additional options let you set most of the parameters you have
|
||||
available through the C API. Below you can see the full help message for the
|
||||
utility.
|
||||
|
||||
|
||||
```
|
||||
usage: cmph [-v] [-h] [-V] [-k nkeys] [-f hash_function] [-g [-c algorithm_dependent_value][-s seed] ]
|
||||
[-a algorithm] [-M memory_in_MB] [-b algorithm_dependent_value] [-t keys_per_bin] [-d tmp_dir]
|
||||
[-m file.mph] keysfile
|
||||
Minimum perfect hashing tool
|
||||
|
||||
-h print this help message
|
||||
-c c value determines:
|
||||
* the number of vertices in the graph for the algorithms BMZ and CHM
|
||||
* the number of bits per key required in the FCH algorithm
|
||||
* the load factor in the CHD_PH algorithm
|
||||
-a algorithm - valid values are
|
||||
* bmz
|
||||
* bmz8
|
||||
* chm
|
||||
* brz
|
||||
* fch
|
||||
* bdz
|
||||
* bdz_ph
|
||||
* chd_ph
|
||||
* chd
|
||||
-f hash function (may be used multiple times) - valid values are
|
||||
* jenkins
|
||||
-V print version number and exit
|
||||
-v increase verbosity (may be used multiple times)
|
||||
-k number of keys
|
||||
-g generation mode
|
||||
-s random seed
|
||||
-m minimum perfect hash function file
|
||||
-M main memory availability (in MB) used in BRZ algorithm
|
||||
-d temporary directory used in BRZ algorithm
|
||||
-b the meaning of this parameter depends on the algorithm selected in the -a option:
|
||||
* For BRZ it is used to make the maximal number of keys in a bucket lower than 256.
|
||||
In this case its value should be an integer in the range [64,175]. Default is 128.
|
||||
|
||||
* For BDZ it is used to determine the size of some precomputed rank
|
||||
information and its value should be an integer in the range [3,10]. Default
|
||||
is 7. The larger is this value, the more compact are the resulting functions
|
||||
and the slower are them at evaluation time.
|
||||
|
||||
* For CHD and CHD_PH it is used to set the average number of keys per bucket
|
||||
and its value should be an integer in the range [1,32]. Default is 4. The
|
||||
larger is this value, the slower is the construction of the functions.
|
||||
This parameter has no effect for other algorithms.
|
||||
|
||||
-t set the number of keys per bin for a t-perfect hashing function. A t-perfect
|
||||
hash function allows at most t collisions in a given bin. This parameter applies
|
||||
only to the CHD and CHD_PH algorithms. Its value should be an integer in the
|
||||
range [1,128]. Defaul is 1
|
||||
keysfile line separated file with keys
|
||||
```
|
||||
|
||||
==Additional Documentation==
|
||||
|
||||
[FAQ faq.html]
|
||||
|
||||
==Downloads==
|
||||
|
||||
Use the github releases page at: https://github.com/bonitao/cmph/releases
|
||||
|
||||
==License Stuff==
|
||||
|
||||
Code is under the LGPL and the MPL 1.1.
|
||||
----------------------------------------
|
||||
|
||||
%!include: FOOTER.t2t
|
||||
|
||||
%!include(html): ''LOGO.t2t''
|
||||
Last Updated: %%date(%c)
|
||||
|
||||
%!include(html): ''GOOGLEANALYTICS.t2t''
|
76
deps/cmph/TABLE1.t2t
vendored
Normal file
76
deps/cmph/TABLE1.t2t
vendored
Normal file
@ -0,0 +1,76 @@
|
||||
<TABLE CELLPADDING=3 BORDER="1" ALIGN="center">
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
Characteristics </SMALL></TD>
|
||||
<TD ALIGN="CENTER" COLSPAN=2><SMALL CLASS="FOOTNOTESIZE"> <SPAN>Algorithms</SPAN></SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
|
||||
</SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> BMZ </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> CHM </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img1.png"
|
||||
ALT="$c$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 1.15 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.09 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="50" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img239.png"
|
||||
ALT="$\vert E(G)\vert$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img8.png"
|
||||
ALT="$n$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img8.png"
|
||||
ALT="$n$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="89" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img240.png"
|
||||
ALT="$\vert V(G)\vert=\vert g\vert$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="20" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img241.png"
|
||||
ALT="$cn$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="20" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img241.png"
|
||||
ALT="$cn$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
<!-- MATH
|
||||
$|E(G_{\rm crit})|$
|
||||
-->
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="70" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img111.png"
|
||||
ALT="$\vert E(G_{\rm crit})\vert$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="71" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img242.png"
|
||||
ALT="$0.5\vert E(G)\vert$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 0</SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img32.png"
|
||||
ALT="$G$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> cyclic </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> acyclic </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
Order preserving </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> no </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> yes </SMALL></TD>
|
||||
</TR>
|
||||
</TABLE>
|
109
deps/cmph/TABLE4.t2t
vendored
Normal file
109
deps/cmph/TABLE4.t2t
vendored
Normal file
@ -0,0 +1,109 @@
|
||||
<TABLE CELLPADDING=3 BORDER="1" ALIGN="center">
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img8.png"
|
||||
ALT="$n$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER" COLSPAN=4><SMALL CLASS="FOOTNOTESIZE"> <SPAN> BMZ </SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER" COLSPAN=4><SMALL CLASS="FOOTNOTESIZE">
|
||||
<SPAN>CHM algorithm</SPAN></SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> Gain</SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
</SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img243.png"
|
||||
ALT="$N_i$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Map+Ord </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
Search </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Total </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img243.png"
|
||||
ALT="$N_i$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Map+Ord </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Search </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
Total </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> (%)</SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 1,562,500 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.28 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 8.54 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.37 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 10.91 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.70 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 14.56 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 1.57 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 16.13 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 48 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 3,125,000 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.16 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 15.92 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 4.88 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 20.80 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.85 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 30.36 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 3.20 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 33.56 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 61 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 6,250,000 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.20 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 33.09 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 10.48 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 43.57 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.90 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 62.26 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 6.76 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 69.02 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 58 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 12,500,000 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.00 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 63.26 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 23.04 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 86.30 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.60 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 117.99 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 14.94 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 132.92 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 54 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 25,000,000 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.00 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 130.79 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 51.55 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 182.34 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.80 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 262.05 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 33.68 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 295.73 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 62 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 50,000,000 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.07 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 273.75 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 114.12 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 387.87 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.90 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 577.59 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 73.97 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 651.56 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 68 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 100,000,000 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.07 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 567.47 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 243.13 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 810.60 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.80 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 1,131.06 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 157.23 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 1,288.29 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 59 </SMALL></TD>
|
||||
</TR>
|
||||
</TABLE>
|
46
deps/cmph/TABLE5.t2t
vendored
Normal file
46
deps/cmph/TABLE5.t2t
vendored
Normal file
@ -0,0 +1,46 @@
|
||||
<TABLE CELLPADDING=3 BORDER="1" ALIGN="center">
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img8.png"
|
||||
ALT="$n$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER" COLSPAN=4><SMALL CLASS="FOOTNOTESIZE"> <SPAN> BMZ <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="60" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img5.png"
|
||||
ALT="$c=1.00$"></SPAN></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER" COLSPAN=4><SMALL CLASS="FOOTNOTESIZE">
|
||||
<SPAN> BMZ <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="60" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img6.png"
|
||||
ALT="$c=0.93$"></SPAN></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
</SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img243.png"
|
||||
ALT="$N_i$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Map+Ord </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
Search </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Total </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img243.png"
|
||||
ALT="$N_i$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Map+Ord </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Search </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
Total </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 12,500,000 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.78 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 76.68 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 25.06 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 101.74 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 3.04 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 76.39 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 25.80 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 102.19 </SMALL></TD>
|
||||
</TR>
|
||||
</TABLE>
|
72
deps/cmph/TABLEBRZ1.t2t
vendored
Normal file
72
deps/cmph/TABLEBRZ1.t2t
vendored
Normal file
@ -0,0 +1,72 @@
|
||||
<TABLE CELLPADDING=3 BORDER="1" ALIGN="CENTER">
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img5.png"
|
||||
ALT="$n$"></SPAN> (millions) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 1 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 2 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 4 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 8 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 16 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 32 </SMALL></TD>
|
||||
<TD></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE">
|
||||
|
||||
Average time (s)</SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="64" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img168.png"
|
||||
ALT="$6.1 \pm 0.3$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img169.png"
|
||||
ALT="$12.2 \pm 0.6$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img170.png"
|
||||
ALT="$25.4 \pm 1.1$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img171.png"
|
||||
ALT="$51.4 \pm 2.0$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="80" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img172.png"
|
||||
ALT="$117.3 \pm 4.4$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="80" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img173.png"
|
||||
ALT="$262.2 \pm 8.7$"></SPAN></SMALL></TD>
|
||||
<TD></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE">
|
||||
SD (s) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img174.png"
|
||||
ALT="$2.6$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img175.png"
|
||||
ALT="$5.4$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img176.png"
|
||||
ALT="$9.8$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img177.png"
|
||||
ALT="$17.6$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img178.png"
|
||||
ALT="$37.3$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img179.png"
|
||||
ALT="$76.3$"></SPAN> </SMALL></TD>
|
||||
<TD></TD>
|
||||
</TR>
|
||||
</TABLE>
|
133
deps/cmph/TABLEBRZ2.t2t
vendored
Normal file
133
deps/cmph/TABLEBRZ2.t2t
vendored
Normal file
@ -0,0 +1,133 @@
|
||||
<TABLE CELLPADDING=3 BORDER="1" ALIGN="CENTER">
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img5.png"
|
||||
ALT="$n$"></SPAN> (millions) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 1 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 2 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 4 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 8 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 16 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
Average time (s) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="64" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img187.png"
|
||||
ALT="$6.9 \pm 0.3$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img188.png"
|
||||
ALT="$13.8 \pm 0.2$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img189.png"
|
||||
ALT="$31.9 \pm 0.7$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img190.png"
|
||||
ALT="$69.9 \pm 1.1$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="80" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img191.png"
|
||||
ALT="$140.6 \pm 2.5$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
SD </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img192.png"
|
||||
ALT="$0.4$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img193.png"
|
||||
ALT="$0.2$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img194.png"
|
||||
ALT="$0.9$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img195.png"
|
||||
ALT="$1.5$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img196.png"
|
||||
ALT="$3.5$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img5.png"
|
||||
ALT="$n$"></SPAN> (millions) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 32 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 64 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 128 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 512 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 1000 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
Average time (s) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="80" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img197.png"
|
||||
ALT="$284.3 \pm 1.1$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="80" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img198.png"
|
||||
ALT="$587.9 \pm 3.9$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <!-- MATH
|
||||
$1223.6 \pm 4.9$
|
||||
-->
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="88" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img199.png"
|
||||
ALT="$1223.6 \pm 4.9$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <!-- MATH
|
||||
$5966.4 \pm 9.5$
|
||||
-->
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="88" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img200.png"
|
||||
ALT="$5966.4 \pm 9.5$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <!-- MATH
|
||||
$13229.5 \pm 12.7$
|
||||
-->
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="104" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img201.png"
|
||||
ALT="$13229.5 \pm 12.7$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
SD </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img202.png"
|
||||
ALT="$1.6$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img203.png"
|
||||
ALT="$5.5$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img204.png"
|
||||
ALT="$6.8$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img205.png"
|
||||
ALT="$13.2$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img206.png"
|
||||
ALT="$18.6$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD></TD>
|
||||
<TD></TD>
|
||||
<TD></TD>
|
||||
<TD></TD>
|
||||
<TD></TD>
|
||||
<TD></TD>
|
||||
</TR>
|
||||
</TABLE>
|
147
deps/cmph/TABLEBRZ3.t2t
vendored
Normal file
147
deps/cmph/TABLEBRZ3.t2t
vendored
Normal file
@ -0,0 +1,147 @@
|
||||
<TABLE CELLPADDING=3 BORDER="1" ALIGN="center">
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img8.png"
|
||||
ALT="$\mu $"></SPAN> (MB) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img215.png"
|
||||
ALT="$100$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img216.png"
|
||||
ALT="$200$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img217.png"
|
||||
ALT="$300$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img218.png"
|
||||
ALT="$400$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img219.png"
|
||||
ALT="$500$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img212.png"
|
||||
ALT="$600$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="19" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img58.png"
|
||||
ALT="$N$"></SPAN> (files) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img220.png"
|
||||
ALT="$619$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img221.png"
|
||||
ALT="$310$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img222.png"
|
||||
ALT="$207$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img223.png"
|
||||
ALT="$155$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img224.png"
|
||||
ALT="$124$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img225.png"
|
||||
ALT="$104$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
(buffer size in KB) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img226.png"
|
||||
ALT="$165$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img227.png"
|
||||
ALT="$661$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="43" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img228.png"
|
||||
ALT="$1,484$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="43" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img229.png"
|
||||
ALT="$2,643$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="43" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img230.png"
|
||||
ALT="$4,129$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="43" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img231.png"
|
||||
ALT="$5,908$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img135.png"
|
||||
ALT="$\beta$"></SPAN>/ (# of seeks in the worst case) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="59" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img232.png"
|
||||
ALT="$384,478$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="51" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img233.png"
|
||||
ALT="$95,974$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="51" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img234.png"
|
||||
ALT="$42,749$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="51" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img235.png"
|
||||
ALT="$24,003$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="51" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img236.png"
|
||||
ALT="$15,365$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="51" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img237.png"
|
||||
ALT="$10,738$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
Time (hours) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img238.png"
|
||||
ALT="$4.04$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img239.png"
|
||||
ALT="$3.64$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img240.png"
|
||||
ALT="$3.34$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img241.png"
|
||||
ALT="$3.20$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img242.png"
|
||||
ALT="$3.13$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img243.png"
|
||||
ALT="$3.09$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
</TABLE>
|
1
deps/cmph/_config.yml
vendored
Normal file
1
deps/cmph/_config.yml
vendored
Normal file
@ -0,0 +1 @@
|
||||
theme: jekyll-theme-cayman
|
12
deps/cmph/cmph.pc.in
vendored
Normal file
12
deps/cmph/cmph.pc.in
vendored
Normal file
@ -0,0 +1,12 @@
|
||||
url=http://cmph.sourceforge.net/
|
||||
prefix=@prefix@
|
||||
exec_prefix=@exec_prefix@
|
||||
libdir=@libdir@
|
||||
includedir=@includedir@
|
||||
|
||||
Name: cmph
|
||||
Description: minimal perfect hashing library
|
||||
Version: @VERSION@
|
||||
Libs: -L${libdir} -lcmph
|
||||
Cflags: -I${includedir}
|
||||
URL: ${url}
|
39
deps/cmph/cmph.spec
vendored
Normal file
39
deps/cmph/cmph.spec
vendored
Normal file
@ -0,0 +1,39 @@
|
||||
%define name cmph
|
||||
%define version 0.4
|
||||
%define release 3
|
||||
|
||||
Name: %{name}
|
||||
Version: %{version}
|
||||
Release: %{release}
|
||||
Summary: C Minimal perfect hash library
|
||||
Source: %{name}-%{version}.tar.gz
|
||||
License: Proprietary
|
||||
URL: http://www.akwan.com.br
|
||||
BuildArch: i386
|
||||
Group: Sitesearch
|
||||
BuildRoot: %{_tmppath}/%{name}-root
|
||||
|
||||
%description
|
||||
C Minimal perfect hash library
|
||||
|
||||
%prep
|
||||
rm -Rf $RPM_BUILD_ROOT
|
||||
rm -rf $RPM_BUILD_ROOT
|
||||
%setup
|
||||
mkdir $RPM_BUILD_ROOT
|
||||
mkdir $RPM_BUILD_ROOT/usr
|
||||
CXXFLAGS="-O2" ./configure --prefix=/usr/
|
||||
|
||||
%build
|
||||
make
|
||||
|
||||
%install
|
||||
DESTDIR=$RPM_BUILD_ROOT make install
|
||||
|
||||
%files
|
||||
%defattr(755,root,root)
|
||||
/
|
||||
|
||||
%changelog
|
||||
* Tue Jun 1 2004 Davi de Castro Reis <davi@akwan.com.br>
|
||||
+ Initial build
|
210
deps/cmph/cmph.vcproj
vendored
Normal file
210
deps/cmph/cmph.vcproj
vendored
Normal file
@ -0,0 +1,210 @@
|
||||
<?xml version="1.0" encoding="Windows-1252"?>
|
||||
<VisualStudioProject
|
||||
ProjectType="Visual C++"
|
||||
Version="7.10"
|
||||
Name="cmph"
|
||||
ProjectGUID="{F215E028-2FB8-41DE-B211-8E4616CF5B59}"
|
||||
Keyword="Win32Proj">
|
||||
<Platforms>
|
||||
<Platform
|
||||
Name="Win32"/>
|
||||
</Platforms>
|
||||
<Configurations>
|
||||
<Configuration
|
||||
Name="Debug|Win32"
|
||||
OutputDirectory="Debug"
|
||||
IntermediateDirectory="Debug"
|
||||
ConfigurationType="4"
|
||||
CharacterSet="2">
|
||||
<Tool
|
||||
Name="VCCLCompilerTool"
|
||||
Optimization="0"
|
||||
PreprocessorDefinitions="WIN32;_DEBUG;_LIB"
|
||||
MinimalRebuild="TRUE"
|
||||
BasicRuntimeChecks="3"
|
||||
RuntimeLibrary="5"
|
||||
UsePrecompiledHeader="0"
|
||||
WarningLevel="3"
|
||||
Detect64BitPortabilityProblems="TRUE"
|
||||
DebugInformationFormat="4"/>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"/>
|
||||
<Tool
|
||||
Name="VCLibrarianTool"
|
||||
OutputFile="$(OutDir)/cmph.lib"/>
|
||||
<Tool
|
||||
Name="VCMIDLTool"/>
|
||||
<Tool
|
||||
Name="VCPostBuildEventTool"/>
|
||||
<Tool
|
||||
Name="VCPreBuildEventTool"/>
|
||||
<Tool
|
||||
Name="VCPreLinkEventTool"/>
|
||||
<Tool
|
||||
Name="VCResourceCompilerTool"/>
|
||||
<Tool
|
||||
Name="VCWebServiceProxyGeneratorTool"/>
|
||||
<Tool
|
||||
Name="VCXMLDataGeneratorTool"/>
|
||||
<Tool
|
||||
Name="VCManagedWrapperGeneratorTool"/>
|
||||
<Tool
|
||||
Name="VCAuxiliaryManagedWrapperGeneratorTool"/>
|
||||
</Configuration>
|
||||
<Configuration
|
||||
Name="Release|Win32"
|
||||
OutputDirectory="Release"
|
||||
IntermediateDirectory="Release"
|
||||
ConfigurationType="4"
|
||||
CharacterSet="2">
|
||||
<Tool
|
||||
Name="VCCLCompilerTool"
|
||||
PreprocessorDefinitions="WIN32;NDEBUG;_LIB"
|
||||
RuntimeLibrary="4"
|
||||
UsePrecompiledHeader="3"
|
||||
WarningLevel="3"
|
||||
Detect64BitPortabilityProblems="TRUE"
|
||||
DebugInformationFormat="3"/>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"/>
|
||||
<Tool
|
||||
Name="VCLibrarianTool"
|
||||
OutputFile="$(OutDir)/cmph.lib"/>
|
||||
<Tool
|
||||
Name="VCMIDLTool"/>
|
||||
<Tool
|
||||
Name="VCPostBuildEventTool"/>
|
||||
<Tool
|
||||
Name="VCPreBuildEventTool"/>
|
||||
<Tool
|
||||
Name="VCPreLinkEventTool"/>
|
||||
<Tool
|
||||
Name="VCResourceCompilerTool"/>
|
||||
<Tool
|
||||
Name="VCWebServiceProxyGeneratorTool"/>
|
||||
<Tool
|
||||
Name="VCXMLDataGeneratorTool"/>
|
||||
<Tool
|
||||
Name="VCManagedWrapperGeneratorTool"/>
|
||||
<Tool
|
||||
Name="VCAuxiliaryManagedWrapperGeneratorTool"/>
|
||||
</Configuration>
|
||||
</Configurations>
|
||||
<References>
|
||||
</References>
|
||||
<Files>
|
||||
<Filter
|
||||
Name="Source Files"
|
||||
Filter="cpp;c;cxx;def;odl;idl;hpj;bat;asm;asmx"
|
||||
UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}">
|
||||
<File
|
||||
RelativePath=".\src\bmz.c">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\cmph.c">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\cmph_structs.c">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\czech.c">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\djb2_hash.c">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\fnv_hash.c">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\graph.c">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\hash.c">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\jenkins_hash.c">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\sdbm_hash.c">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\vqueue.c">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\vstack.c">
|
||||
</File>
|
||||
</Filter>
|
||||
<Filter
|
||||
Name="Header Files"
|
||||
Filter="h;hpp;hxx;hm;inl;inc;xsd"
|
||||
UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}">
|
||||
<File
|
||||
RelativePath=".\src\bmz.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\bmz_structs.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\cmph.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\cmph_structs.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\cmph_types.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\czech.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\czech_structs.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\debug.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\djb2_hash.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\fnv_hash.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\graph.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\hash.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\hash_funcs.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\hash_state.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\jenkins_hash.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\list.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\sdbm_hash.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\vqueue.h">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\src\vstack.h">
|
||||
</File>
|
||||
</Filter>
|
||||
<Filter
|
||||
Name="Resource Files"
|
||||
Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx"
|
||||
UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}">
|
||||
</Filter>
|
||||
<File
|
||||
RelativePath=".\ReadMe.txt">
|
||||
</File>
|
||||
</Files>
|
||||
<Globals>
|
||||
</Globals>
|
||||
</VisualStudioProject>
|
141
deps/cmph/cmphapp.vcproj
vendored
Normal file
141
deps/cmph/cmphapp.vcproj
vendored
Normal file
@ -0,0 +1,141 @@
|
||||
<?xml version="1.0" encoding="Windows-1252"?>
|
||||
<VisualStudioProject
|
||||
ProjectType="Visual C++"
|
||||
Version="7.10"
|
||||
Name="cmphapp"
|
||||
ProjectGUID="{5CD55126-9AC1-4393-B26B-AB3DFB2A9AD6}"
|
||||
Keyword="Win32Proj">
|
||||
<Platforms>
|
||||
<Platform
|
||||
Name="Win32"/>
|
||||
</Platforms>
|
||||
<Configurations>
|
||||
<Configuration
|
||||
Name="Debug|Win32"
|
||||
OutputDirectory="Debug"
|
||||
IntermediateDirectory="Debug"
|
||||
ConfigurationType="1"
|
||||
CharacterSet="2">
|
||||
<Tool
|
||||
Name="VCCLCompilerTool"
|
||||
Optimization="0"
|
||||
PreprocessorDefinitions="WIN32;_DEBUG;_CONSOLE"
|
||||
MinimalRebuild="TRUE"
|
||||
BasicRuntimeChecks="3"
|
||||
RuntimeLibrary="5"
|
||||
UsePrecompiledHeader="0"
|
||||
WarningLevel="3"
|
||||
Detect64BitPortabilityProblems="TRUE"
|
||||
DebugInformationFormat="4"/>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"/>
|
||||
<Tool
|
||||
Name="VCLinkerTool"
|
||||
OutputFile="$(OutDir)/cmphapp.exe"
|
||||
LinkIncremental="2"
|
||||
GenerateDebugInformation="TRUE"
|
||||
ProgramDatabaseFile="$(OutDir)/cmphapp.pdb"
|
||||
SubSystem="1"
|
||||
TargetMachine="1"/>
|
||||
<Tool
|
||||
Name="VCMIDLTool"/>
|
||||
<Tool
|
||||
Name="VCPostBuildEventTool"/>
|
||||
<Tool
|
||||
Name="VCPreBuildEventTool"/>
|
||||
<Tool
|
||||
Name="VCPreLinkEventTool"/>
|
||||
<Tool
|
||||
Name="VCResourceCompilerTool"/>
|
||||
<Tool
|
||||
Name="VCWebServiceProxyGeneratorTool"/>
|
||||
<Tool
|
||||
Name="VCXMLDataGeneratorTool"/>
|
||||
<Tool
|
||||
Name="VCWebDeploymentTool"/>
|
||||
<Tool
|
||||
Name="VCManagedWrapperGeneratorTool"/>
|
||||
<Tool
|
||||
Name="VCAuxiliaryManagedWrapperGeneratorTool"/>
|
||||
</Configuration>
|
||||
<Configuration
|
||||
Name="Release|Win32"
|
||||
OutputDirectory="Release"
|
||||
IntermediateDirectory="Release"
|
||||
ConfigurationType="1"
|
||||
CharacterSet="2">
|
||||
<Tool
|
||||
Name="VCCLCompilerTool"
|
||||
PreprocessorDefinitions="WIN32;NDEBUG;_CONSOLE"
|
||||
RuntimeLibrary="4"
|
||||
UsePrecompiledHeader="3"
|
||||
WarningLevel="3"
|
||||
Detect64BitPortabilityProblems="TRUE"
|
||||
DebugInformationFormat="3"/>
|
||||
<Tool
|
||||
Name="VCCustomBuildTool"/>
|
||||
<Tool
|
||||
Name="VCLinkerTool"
|
||||
OutputFile="$(OutDir)/cmphapp.exe"
|
||||
LinkIncremental="1"
|
||||
GenerateDebugInformation="TRUE"
|
||||
SubSystem="1"
|
||||
OptimizeReferences="2"
|
||||
EnableCOMDATFolding="2"
|
||||
TargetMachine="1"/>
|
||||
<Tool
|
||||
Name="VCMIDLTool"/>
|
||||
<Tool
|
||||
Name="VCPostBuildEventTool"/>
|
||||
<Tool
|
||||
Name="VCPreBuildEventTool"/>
|
||||
<Tool
|
||||
Name="VCPreLinkEventTool"/>
|
||||
<Tool
|
||||
Name="VCResourceCompilerTool"/>
|
||||
<Tool
|
||||
Name="VCWebServiceProxyGeneratorTool"/>
|
||||
<Tool
|
||||
Name="VCXMLDataGeneratorTool"/>
|
||||
<Tool
|
||||
Name="VCWebDeploymentTool"/>
|
||||
<Tool
|
||||
Name="VCManagedWrapperGeneratorTool"/>
|
||||
<Tool
|
||||
Name="VCAuxiliaryManagedWrapperGeneratorTool"/>
|
||||
</Configuration>
|
||||
</Configurations>
|
||||
<References>
|
||||
</References>
|
||||
<Files>
|
||||
<Filter
|
||||
Name="Source Files"
|
||||
Filter="cpp;c;cxx;def;odl;idl;hpj;bat;asm;asmx"
|
||||
UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}">
|
||||
<File
|
||||
RelativePath=".\src\main.c">
|
||||
</File>
|
||||
<File
|
||||
RelativePath=".\wingetopt.c">
|
||||
</File>
|
||||
</Filter>
|
||||
<Filter
|
||||
Name="Header Files"
|
||||
Filter="h;hpp;hxx;hm;inl;inc;xsd"
|
||||
UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}">
|
||||
<File
|
||||
RelativePath=".\wingetopt.h">
|
||||
</File>
|
||||
</Filter>
|
||||
<Filter
|
||||
Name="Resource Files"
|
||||
Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx"
|
||||
UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}">
|
||||
</Filter>
|
||||
<File
|
||||
RelativePath=".\ReadMe.txt">
|
||||
</File>
|
||||
</Files>
|
||||
<Globals>
|
||||
</Globals>
|
||||
</VisualStudioProject>
|
83
deps/cmph/configure.ac
vendored
Normal file
83
deps/cmph/configure.ac
vendored
Normal file
@ -0,0 +1,83 @@
|
||||
dnl Process this file with autoconf to produce a configure script.
|
||||
AC_INIT([cmph], [2.0.2])
|
||||
AC_CONFIG_SRCDIR([Makefile.am])
|
||||
AM_INIT_AUTOMAKE
|
||||
AC_CONFIG_HEADERS([config.h])
|
||||
AC_CONFIG_MACRO_DIR([m4])
|
||||
|
||||
dnl Checks for programs.
|
||||
AC_PROG_AWK
|
||||
AC_PROG_CC
|
||||
AC_PROG_INSTALL
|
||||
AC_PROG_LN_S
|
||||
LT_INIT
|
||||
AC_SYS_EXTRA_LARGEFILE
|
||||
if test "x$ac_cv_sys_largefile_CFLAGS" = "xno" ; then
|
||||
ac_cv_sys_largefile_CFLAGS=""
|
||||
fi
|
||||
if test "x$ac_cv_sys_largefile_LDFLAGS" = "xno" ; then
|
||||
ac_cv_sys_largefile_LDFLAGS=""
|
||||
fi
|
||||
if test "x$ac_cv_sys_largefile_LIBS" = "xno" ; then
|
||||
ac_cv_sys_largefile_LIBS=""
|
||||
fi
|
||||
CFLAGS="$ac_cv_sys_largefile_CFLAGS $CFLAGS"
|
||||
LDFLAGS="$ac_cv_sys_largefile_LDFLAGS $LDFLAGS"
|
||||
LIBS="$LIBS $ac_cv_sys_largefile_LIBS"
|
||||
|
||||
dnl Checks for headers
|
||||
AC_CHECK_HEADERS([getopt.h math.h])
|
||||
|
||||
dnl Checks for libraries.
|
||||
LT_LIB_M
|
||||
LDFLAGS="$LIBS $LIBM $LDFLAGS"
|
||||
CFLAGS="-Wall $CFLAGS"
|
||||
|
||||
AC_PROG_CXX
|
||||
CXXFLAGS="-Wall -Wno-unused-function -DNDEBUG -O3 -fomit-frame-pointer $CXXFLAGS"
|
||||
AC_ENABLE_CXXMPH
|
||||
if test x$cxxmph = xtrue; then
|
||||
AC_COMPILE_STDCXX_0X
|
||||
if test x$ac_cv_cxx_compile_cxx0x_native = "xno"; then
|
||||
if test x$ac_cv_cxx_compile_cxx11_cxx = "xyes"; then
|
||||
CXXFLAGS="$CXXFLAGS -std=c++11"
|
||||
elif test x$ac_cv_cxx_compile_cxx0x_cxx = "xyes"; then
|
||||
CXXFLAGS="$CXXFLAGS -std=c++0x"
|
||||
elif test x$ac_cv_cxx_compile_cxx0x_gxx = "xyes"; then
|
||||
CXXFLAGS="$CXXFLAGS -std=gnu++0x"
|
||||
else
|
||||
AC_MSG_ERROR("cxxmph demands a working c++0x compiler.")
|
||||
fi
|
||||
fi
|
||||
AC_SUBST([CXXMPH], "cxxmph")
|
||||
fi
|
||||
AM_CONDITIONAL([USE_CXXMPH], [test "$cxxmph" = true])
|
||||
|
||||
AC_ENABLE_BENCHMARKS
|
||||
if test x$benchmarks = xtrue; then
|
||||
AC_LANG_PUSH([C++])
|
||||
AC_CHECK_HEADERS([hopscotch_map.h])
|
||||
AC_LANG_POP([C++])
|
||||
fi
|
||||
AM_CONDITIONAL([USE_BENCHMARKS], [test "$benchmarks" = true])
|
||||
|
||||
# Unit tests based on the check library. Disabled by default.
|
||||
# We do not use pkg-config because it is inconvenient for all developers to
|
||||
# have check library installed.
|
||||
AC_ARG_ENABLE(check, AS_HELP_STRING(
|
||||
[--enable-check],
|
||||
[Build unit tests depending on check library (default: disabled)]))
|
||||
AS_IF([test "x$enable_check" = "xyes"],
|
||||
[ AC_CHECK_LIB([check], [tcase_create])
|
||||
AS_IF([test "$ac_cv_lib_check_tcase_create" = yes], [CHECK_LIBS="-lcheck"],
|
||||
[AC_MSG_ERROR("Failed to find check library (http://check.sf.net).")])
|
||||
AC_CHECK_HEADER(check.h,[],
|
||||
[AC_MSG_ERROR("Failed to find check library header (http://check.sf.net).")])
|
||||
])
|
||||
AM_CONDITIONAL([USE_LIBCHECK], [test "$ac_cv_lib_check_tcase_create" = yes])
|
||||
AC_SUBST(CHECK_LIBS)
|
||||
AC_SUBST(CHECK_CFLAGS)
|
||||
|
||||
AC_CHECK_SPOON
|
||||
AC_CONFIG_FILES([Makefile src/Makefile cxxmph/Makefile tests/Makefile examples/Makefile man/Makefile cmph.pc cxxmph.pc])
|
||||
AC_OUTPUT
|
12
deps/cmph/cxxmph.pc.in
vendored
Normal file
12
deps/cmph/cxxmph.pc.in
vendored
Normal file
@ -0,0 +1,12 @@
|
||||
url=http://cmph.sourceforge.net/
|
||||
prefix=@prefix@
|
||||
exec_prefix=@exec_prefix@
|
||||
libdir=@libdir@
|
||||
includedir=@includedir@
|
||||
|
||||
Name: cxxmph
|
||||
Description: minimal perfect hashing c++11 library
|
||||
Version: @VERSION@
|
||||
Libs: -L${libdir} -lcxxmph
|
||||
Cflags: -std=c++0x -I${includedir}
|
||||
URL: ${url}
|
58
deps/cmph/cxxmph/.ycm_extra_conf.py
vendored
Normal file
58
deps/cmph/cxxmph/.ycm_extra_conf.py
vendored
Normal file
@ -0,0 +1,58 @@
|
||||
import os
|
||||
import ycm_core
|
||||
|
||||
flags = [
|
||||
'-Wall',
|
||||
'-Wextra',
|
||||
'-Werror',
|
||||
'-DNDEBUG',
|
||||
'-DUSE_CLANG_COMPLETER',
|
||||
'-std=c++11',
|
||||
'-x',
|
||||
'c++',
|
||||
'-isystem'
|
||||
'/usr/lib/c++/v1',
|
||||
'-I',
|
||||
'.',
|
||||
]
|
||||
|
||||
def DirectoryOfThisScript():
|
||||
return os.path.dirname( os.path.abspath( __file__ ) )
|
||||
|
||||
|
||||
def MakeRelativePathsInFlagsAbsolute( flags, working_directory ):
|
||||
if not working_directory:
|
||||
return list( flags )
|
||||
new_flags = []
|
||||
make_next_absolute = False
|
||||
path_flags = [ '-isystem', '-I', '-iquote', '--sysroot=' ]
|
||||
for flag in flags:
|
||||
new_flag = flag
|
||||
|
||||
if make_next_absolute:
|
||||
make_next_absolute = False
|
||||
if not flag.startswith( '/' ):
|
||||
new_flag = os.path.join( working_directory, flag )
|
||||
|
||||
for path_flag in path_flags:
|
||||
if flag == path_flag:
|
||||
make_next_absolute = True
|
||||
break
|
||||
|
||||
if flag.startswith( path_flag ):
|
||||
path = flag[ len( path_flag ): ]
|
||||
new_flag = path_flag + os.path.join( working_directory, path )
|
||||
break
|
||||
|
||||
if new_flag:
|
||||
new_flags.append( new_flag )
|
||||
return new_flags
|
||||
|
||||
|
||||
def FlagsForFile( filename ):
|
||||
relative_to = DirectoryOfThisScript()
|
||||
final_flags = MakeRelativePathsInFlagsAbsolute( flags, relative_to )
|
||||
return {
|
||||
'flags': final_flags,
|
||||
'do_cache': True
|
||||
}
|
62
deps/cmph/cxxmph/Makefile.am
vendored
Normal file
62
deps/cmph/cxxmph/Makefile.am
vendored
Normal file
@ -0,0 +1,62 @@
|
||||
TESTS = $(check_PROGRAMS)
|
||||
check_PROGRAMS = seeded_hash_test mph_bits_test hollow_iterator_test mph_index_test trigraph_test
|
||||
if USE_LIBCHECK
|
||||
check_PROGRAMS += test_test map_tester_test mph_map_test dense_hash_map_test string_util_test
|
||||
check_LTLIBRARIES = libcxxmph_test.la
|
||||
endif
|
||||
|
||||
if USE_BENCHMARKS
|
||||
noinst_PROGRAMS = bm_map # bm_index - disabled because of cmph dependency
|
||||
endif
|
||||
bin_PROGRAMS = cxxmph
|
||||
|
||||
cxxmph_includedir = $(includedir)/cxxmph/
|
||||
cxxmph_include_HEADERS = mph_bits.h mph_map.h mph_index.h MurmurHash3.h trigraph.h seeded_hash.h stringpiece.h hollow_iterator.h string_util.h
|
||||
|
||||
noinst_LTLIBRARIES = libcxxmph_bm.la
|
||||
lib_LTLIBRARIES = libcxxmph.la
|
||||
libcxxmph_la_SOURCES = MurmurHash3.cpp trigraph.cc mph_bits.cc mph_index.cc benchmark.h benchmark.cc string_util.cc
|
||||
libcxxmph_la_LDFLAGS = -version-info 0:0:0
|
||||
libcxxmph_test_la_SOURCES = test.h test.cc
|
||||
libcxxmph_test_la_LIBADD = libcxxmph.la
|
||||
libcxxmph_bm_la_SOURCES = benchmark.h benchmark.cc bm_common.h bm_common.cc
|
||||
libcxxmph_bm_la_LIBADD = libcxxmph.la
|
||||
|
||||
test_test_SOURCES = test_test.cc
|
||||
test_test_LDADD = libcxxmph_test.la $(CHECK_LIBS)
|
||||
|
||||
mph_map_test_LDADD = libcxxmph_test.la $(CHECK_LIBS)
|
||||
mph_map_test_SOURCES = mph_map_test.cc
|
||||
dense_hash_map_test_LDADD = libcxxmph_test.la $(CHECK_LIBS)
|
||||
dense_hash_map_test_SOURCES = dense_hash_map_test.cc
|
||||
|
||||
mph_index_test_LDADD = libcxxmph.la
|
||||
mph_index_test_SOURCES = mph_index_test.cc
|
||||
|
||||
trigraph_test_LDADD = libcxxmph.la
|
||||
trigraph_test_SOURCES = trigraph_test.cc
|
||||
|
||||
# Bad dependency, do not compile by default.
|
||||
# bm_index_LDADD = libcxxmph_bm.la -lcmph
|
||||
# bm_index_SOURCES = bm_index.cc
|
||||
|
||||
bm_map_LDADD = libcxxmph_bm.la
|
||||
bm_map_SOURCES = bm_map.cc
|
||||
|
||||
cxxmph_LDADD = libcxxmph.la
|
||||
cxxmph_SOURCES = cxxmph.cc
|
||||
|
||||
hollow_iterator_test_SOURCES = hollow_iterator_test.cc
|
||||
|
||||
seeded_hash_test_SOURCES = seeded_hash_test.cc
|
||||
seeded_hash_test_LDADD = libcxxmph.la
|
||||
|
||||
mph_bits_test_SOURCES = mph_bits_test.cc
|
||||
mph_bits_test_LDADD = libcxxmph.la
|
||||
|
||||
string_util_test_SOURCES = string_util_test.cc
|
||||
string_util_test_LDADD = libcxxmph.la libcxxmph_test.la $(CHECK_LIBS)
|
||||
|
||||
map_tester_test_SOURCES = map_tester.h map_tester.cc map_tester_test.cc
|
||||
map_tester_test_LDADD = libcxxmph.la libcxxmph_test.la $(CHECK_LIBS)
|
||||
|
335
deps/cmph/cxxmph/MurmurHash3.cpp
vendored
Normal file
335
deps/cmph/cxxmph/MurmurHash3.cpp
vendored
Normal file
@ -0,0 +1,335 @@
|
||||
//-----------------------------------------------------------------------------
|
||||
// MurmurHash3 was written by Austin Appleby, and is placed in the public
|
||||
// domain. The author hereby disclaims copyright to this source code.
|
||||
|
||||
// Note - The x86 and x64 versions do _not_ produce the same results, as the
|
||||
// algorithms are optimized for their respective platforms. You can still
|
||||
// compile and run any of them on any platform, but your performance with the
|
||||
// non-native version will be less than optimal.
|
||||
|
||||
#include "MurmurHash3.h"
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Platform-specific functions and macros
|
||||
|
||||
// Microsoft Visual Studio
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
|
||||
#define FORCE_INLINE __forceinline
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
#define ROTL32(x,y) _rotl(x,y)
|
||||
#define ROTL64(x,y) _rotl64(x,y)
|
||||
|
||||
#define BIG_CONSTANT(x) (x)
|
||||
|
||||
// Other compilers
|
||||
|
||||
#else // defined(_MSC_VER)
|
||||
|
||||
#define FORCE_INLINE __attribute__((always_inline))
|
||||
|
||||
inline uint32_t rotl32 ( uint32_t x, int8_t r )
|
||||
{
|
||||
return (x << r) | (x >> (32 - r));
|
||||
}
|
||||
|
||||
inline uint64_t rotl64 ( uint64_t x, int8_t r )
|
||||
{
|
||||
return (x << r) | (x >> (64 - r));
|
||||
}
|
||||
|
||||
#define ROTL32(x,y) rotl32(x,y)
|
||||
#define ROTL64(x,y) rotl64(x,y)
|
||||
|
||||
#define BIG_CONSTANT(x) (x##LLU)
|
||||
|
||||
#endif // !defined(_MSC_VER)
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Block read - if your platform needs to do endian-swapping or can only
|
||||
// handle aligned reads, do the conversion here
|
||||
|
||||
/*FORCE_INLINE*/ uint32_t getblock ( const uint32_t * p, int i )
|
||||
{
|
||||
return p[i];
|
||||
}
|
||||
|
||||
/*FORCE_INLINE*/ uint64_t getblock ( const uint64_t * p, int i )
|
||||
{
|
||||
return p[i];
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Finalization mix - force all bits of a hash block to avalanche
|
||||
|
||||
/*FORCE_INLINE*/ uint32_t fmix ( uint32_t h )
|
||||
{
|
||||
h ^= h >> 16;
|
||||
h *= 0x85ebca6b;
|
||||
h ^= h >> 13;
|
||||
h *= 0xc2b2ae35;
|
||||
h ^= h >> 16;
|
||||
|
||||
return h;
|
||||
}
|
||||
|
||||
//----------
|
||||
|
||||
/*FORCE_INLINE*/ uint64_t fmix ( uint64_t k )
|
||||
{
|
||||
k ^= k >> 33;
|
||||
k *= BIG_CONSTANT(0xff51afd7ed558ccd);
|
||||
k ^= k >> 33;
|
||||
k *= BIG_CONSTANT(0xc4ceb9fe1a85ec53);
|
||||
k ^= k >> 33;
|
||||
|
||||
return k;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
void MurmurHash3_x86_32 ( const void * key, int len,
|
||||
uint32_t seed, void * out )
|
||||
{
|
||||
const uint8_t * data = (const uint8_t*)key;
|
||||
const int nblocks = len / 4;
|
||||
|
||||
uint32_t h1 = seed;
|
||||
|
||||
uint32_t c1 = 0xcc9e2d51;
|
||||
uint32_t c2 = 0x1b873593;
|
||||
|
||||
//----------
|
||||
// body
|
||||
|
||||
const uint32_t * blocks = (const uint32_t *)(data + nblocks*4);
|
||||
|
||||
for(int i = -nblocks; i; i++)
|
||||
{
|
||||
uint32_t k1 = getblock(blocks,i);
|
||||
|
||||
k1 *= c1;
|
||||
k1 = ROTL32(k1,15);
|
||||
k1 *= c2;
|
||||
|
||||
h1 ^= k1;
|
||||
h1 = ROTL32(h1,13);
|
||||
h1 = h1*5+0xe6546b64;
|
||||
}
|
||||
|
||||
//----------
|
||||
// tail
|
||||
|
||||
const uint8_t * tail = (const uint8_t*)(data + nblocks*4);
|
||||
|
||||
uint32_t k1 = 0;
|
||||
|
||||
switch(len & 3)
|
||||
{
|
||||
case 3: k1 ^= tail[2] << 16;
|
||||
case 2: k1 ^= tail[1] << 8;
|
||||
case 1: k1 ^= tail[0];
|
||||
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
|
||||
};
|
||||
|
||||
//----------
|
||||
// finalization
|
||||
|
||||
h1 ^= len;
|
||||
|
||||
h1 = fmix(h1);
|
||||
|
||||
*(uint32_t*)out = h1;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
void MurmurHash3_x86_128 ( const void * key, const int len,
|
||||
uint32_t seed, void * out )
|
||||
{
|
||||
const uint8_t * data = (const uint8_t*)key;
|
||||
const int nblocks = len / 16;
|
||||
|
||||
uint32_t h1 = seed;
|
||||
uint32_t h2 = seed;
|
||||
uint32_t h3 = seed;
|
||||
uint32_t h4 = seed;
|
||||
|
||||
uint32_t c1 = 0x239b961b;
|
||||
uint32_t c2 = 0xab0e9789;
|
||||
uint32_t c3 = 0x38b34ae5;
|
||||
uint32_t c4 = 0xa1e38b93;
|
||||
|
||||
//----------
|
||||
// body
|
||||
|
||||
const uint32_t * blocks = (const uint32_t *)(data + nblocks*16);
|
||||
|
||||
for(int i = -nblocks; i; i++)
|
||||
{
|
||||
uint32_t k1 = getblock(blocks,i*4+0);
|
||||
uint32_t k2 = getblock(blocks,i*4+1);
|
||||
uint32_t k3 = getblock(blocks,i*4+2);
|
||||
uint32_t k4 = getblock(blocks,i*4+3);
|
||||
|
||||
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
|
||||
|
||||
h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;
|
||||
|
||||
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
|
||||
|
||||
h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;
|
||||
|
||||
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
|
||||
|
||||
h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;
|
||||
|
||||
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
|
||||
|
||||
h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;
|
||||
}
|
||||
|
||||
//----------
|
||||
// tail
|
||||
|
||||
const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
|
||||
|
||||
uint32_t k1 = 0;
|
||||
uint32_t k2 = 0;
|
||||
uint32_t k3 = 0;
|
||||
uint32_t k4 = 0;
|
||||
|
||||
switch(len & 15)
|
||||
{
|
||||
case 15: k4 ^= tail[14] << 16;
|
||||
case 14: k4 ^= tail[13] << 8;
|
||||
case 13: k4 ^= tail[12] << 0;
|
||||
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
|
||||
|
||||
case 12: k3 ^= tail[11] << 24;
|
||||
case 11: k3 ^= tail[10] << 16;
|
||||
case 10: k3 ^= tail[ 9] << 8;
|
||||
case 9: k3 ^= tail[ 8] << 0;
|
||||
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
|
||||
|
||||
case 8: k2 ^= tail[ 7] << 24;
|
||||
case 7: k2 ^= tail[ 6] << 16;
|
||||
case 6: k2 ^= tail[ 5] << 8;
|
||||
case 5: k2 ^= tail[ 4] << 0;
|
||||
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
|
||||
|
||||
case 4: k1 ^= tail[ 3] << 24;
|
||||
case 3: k1 ^= tail[ 2] << 16;
|
||||
case 2: k1 ^= tail[ 1] << 8;
|
||||
case 1: k1 ^= tail[ 0] << 0;
|
||||
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
|
||||
};
|
||||
|
||||
//----------
|
||||
// finalization
|
||||
|
||||
h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
|
||||
|
||||
h1 += h2; h1 += h3; h1 += h4;
|
||||
h2 += h1; h3 += h1; h4 += h1;
|
||||
|
||||
h1 = fmix(h1);
|
||||
h2 = fmix(h2);
|
||||
h3 = fmix(h3);
|
||||
h4 = fmix(h4);
|
||||
|
||||
h1 += h2; h1 += h3; h1 += h4;
|
||||
h2 += h1; h3 += h1; h4 += h1;
|
||||
|
||||
((uint32_t*)out)[0] = h1;
|
||||
((uint32_t*)out)[1] = h2;
|
||||
((uint32_t*)out)[2] = h3;
|
||||
((uint32_t*)out)[3] = h4;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
void MurmurHash3_x64_128 ( const void * key, const int len,
|
||||
const uint32_t seed, void * out )
|
||||
{
|
||||
const uint8_t * data = (const uint8_t*)key;
|
||||
const int nblocks = len / 16;
|
||||
|
||||
uint64_t h1 = seed;
|
||||
uint64_t h2 = seed;
|
||||
|
||||
uint64_t c1 = BIG_CONSTANT(0x87c37b91114253d5);
|
||||
uint64_t c2 = BIG_CONSTANT(0x4cf5ad432745937f);
|
||||
|
||||
//----------
|
||||
// body
|
||||
|
||||
const uint64_t * blocks = (const uint64_t *)(data);
|
||||
|
||||
for(int i = 0; i < nblocks; i++)
|
||||
{
|
||||
uint64_t k1 = getblock(blocks,i*2+0);
|
||||
uint64_t k2 = getblock(blocks,i*2+1);
|
||||
|
||||
k1 *= c1; k1 = ROTL64(k1,31); k1 *= c2; h1 ^= k1;
|
||||
|
||||
h1 = ROTL64(h1,27); h1 += h2; h1 = h1*5+0x52dce729;
|
||||
|
||||
k2 *= c2; k2 = ROTL64(k2,33); k2 *= c1; h2 ^= k2;
|
||||
|
||||
h2 = ROTL64(h2,31); h2 += h1; h2 = h2*5+0x38495ab5;
|
||||
}
|
||||
|
||||
//----------
|
||||
// tail
|
||||
|
||||
const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
|
||||
|
||||
uint64_t k1 = 0;
|
||||
uint64_t k2 = 0;
|
||||
|
||||
switch(len & 15)
|
||||
{
|
||||
case 15: k2 ^= uint64_t(tail[14]) << 48;
|
||||
case 14: k2 ^= uint64_t(tail[13]) << 40;
|
||||
case 13: k2 ^= uint64_t(tail[12]) << 32;
|
||||
case 12: k2 ^= uint64_t(tail[11]) << 24;
|
||||
case 11: k2 ^= uint64_t(tail[10]) << 16;
|
||||
case 10: k2 ^= uint64_t(tail[ 9]) << 8;
|
||||
case 9: k2 ^= uint64_t(tail[ 8]) << 0;
|
||||
k2 *= c2; k2 = ROTL64(k2,33); k2 *= c1; h2 ^= k2;
|
||||
|
||||
case 8: k1 ^= uint64_t(tail[ 7]) << 56;
|
||||
case 7: k1 ^= uint64_t(tail[ 6]) << 48;
|
||||
case 6: k1 ^= uint64_t(tail[ 5]) << 40;
|
||||
case 5: k1 ^= uint64_t(tail[ 4]) << 32;
|
||||
case 4: k1 ^= uint64_t(tail[ 3]) << 24;
|
||||
case 3: k1 ^= uint64_t(tail[ 2]) << 16;
|
||||
case 2: k1 ^= uint64_t(tail[ 1]) << 8;
|
||||
case 1: k1 ^= uint64_t(tail[ 0]) << 0;
|
||||
k1 *= c1; k1 = ROTL64(k1,31); k1 *= c2; h1 ^= k1;
|
||||
};
|
||||
|
||||
//----------
|
||||
// finalization
|
||||
|
||||
h1 ^= len; h2 ^= len;
|
||||
|
||||
h1 += h2;
|
||||
h2 += h1;
|
||||
|
||||
h1 = fmix(h1);
|
||||
h2 = fmix(h2);
|
||||
|
||||
h1 += h2;
|
||||
h2 += h1;
|
||||
|
||||
((uint64_t*)out)[0] = h1;
|
||||
((uint64_t*)out)[1] = h2;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
37
deps/cmph/cxxmph/MurmurHash3.h
vendored
Normal file
37
deps/cmph/cxxmph/MurmurHash3.h
vendored
Normal file
@ -0,0 +1,37 @@
|
||||
//-----------------------------------------------------------------------------
|
||||
// MurmurHash3 was written by Austin Appleby, and is placed in the public
|
||||
// domain. The author hereby disclaims copyright to this source code.
|
||||
|
||||
#ifndef _MURMURHASH3_H_
|
||||
#define _MURMURHASH3_H_
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
// Platform-specific functions and macros
|
||||
|
||||
// Microsoft Visual Studio
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
|
||||
typedef unsigned char uint8_t;
|
||||
typedef unsigned long uint32_t;
|
||||
typedef unsigned __int64 uint64_t;
|
||||
|
||||
// Other compilers
|
||||
|
||||
#else // defined(_MSC_VER)
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#endif // !defined(_MSC_VER)
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
void MurmurHash3_x86_32 ( const void * key, int len, uint32_t seed, void * out );
|
||||
|
||||
void MurmurHash3_x86_128 ( const void * key, int len, uint32_t seed, void * out );
|
||||
|
||||
void MurmurHash3_x64_128 ( const void * key, int len, uint32_t seed, void * out );
|
||||
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
#endif // _MURMURHASH3_H_
|
142
deps/cmph/cxxmph/benchmark.cc
vendored
Normal file
142
deps/cmph/cxxmph/benchmark.cc
vendored
Normal file
@ -0,0 +1,142 @@
|
||||
#include "benchmark.h"
|
||||
|
||||
#include <cerrno>
|
||||
#include <cstring>
|
||||
#include <cstdio>
|
||||
#include <memory>
|
||||
#include <sys/time.h>
|
||||
#include <sys/resource.h>
|
||||
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
|
||||
using std::cerr;
|
||||
using std::cout;
|
||||
using std::endl;
|
||||
using std::setfill;
|
||||
using std::setw;
|
||||
using std::string;
|
||||
using std::ostringstream;
|
||||
using std::vector;
|
||||
|
||||
namespace {
|
||||
|
||||
/* Subtract the `struct timeval' values X and Y,
|
||||
storing the result in RESULT.
|
||||
Return 1 if the difference is negative, otherwise 0. */
|
||||
int timeval_subtract (
|
||||
struct timeval *result, struct timeval *x, struct timeval* y) {
|
||||
/* Perform the carry for the later subtraction by updating y. */
|
||||
if (x->tv_usec < y->tv_usec) {
|
||||
int nsec = (y->tv_usec - x->tv_usec) / 1000000 + 1;
|
||||
y->tv_usec -= 1000000 * nsec;
|
||||
y->tv_sec += nsec;
|
||||
}
|
||||
if (x->tv_usec - y->tv_usec > 1000000) {
|
||||
int nsec = (x->tv_usec - y->tv_usec) / 1000000;
|
||||
y->tv_usec += 1000000 * nsec;
|
||||
y->tv_sec -= nsec;
|
||||
}
|
||||
|
||||
/* Compute the time remaining to wait.
|
||||
tv_usec is certainly positive. */
|
||||
result->tv_sec = x->tv_sec - y->tv_sec;
|
||||
result->tv_usec = x->tv_usec - y->tv_usec;
|
||||
|
||||
/* Return 1 if result is negative. */
|
||||
return x->tv_sec < y->tv_sec;
|
||||
}
|
||||
|
||||
// C++ iostream is terrible for formatting.
|
||||
string timeval_to_string(timeval tv) {
|
||||
ostringstream out;
|
||||
out << setfill(' ') << setw(3) << tv.tv_sec << '.';
|
||||
out << setfill('0') << setw(6) << tv.tv_usec;
|
||||
return out.str();
|
||||
}
|
||||
|
||||
struct rusage getrusage_or_die() {
|
||||
struct rusage rs;
|
||||
int ret = getrusage(RUSAGE_SELF, &rs);
|
||||
if (ret != 0) {
|
||||
cerr << "rusage failed: " << strerror(errno) << endl;
|
||||
exit(-1);
|
||||
}
|
||||
return rs;
|
||||
}
|
||||
|
||||
struct timeval gettimeofday_or_die() {
|
||||
struct timeval tv;
|
||||
int ret = gettimeofday(&tv, NULL);
|
||||
if (ret != 0) {
|
||||
cerr << "gettimeofday failed: " << strerror(errno) << endl;
|
||||
exit(-1);
|
||||
}
|
||||
return tv;
|
||||
}
|
||||
|
||||
#ifdef HAVE_CXA_DEMANGLE
|
||||
string demangle(const string& name) {
|
||||
char buf[1024];
|
||||
unsigned int size = 1024;
|
||||
int status;
|
||||
char* res = abi::__cxa_demangle(
|
||||
name.c_str(), buf, &size, &status);
|
||||
return res;
|
||||
}
|
||||
#else
|
||||
string demangle(const string& name) { return name; }
|
||||
#endif
|
||||
|
||||
|
||||
static vector<cxxmph::Benchmark*> g_benchmarks;
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
/* static */ void Benchmark::Register(Benchmark* bm) {
|
||||
if (bm->name().empty()) {
|
||||
string name = demangle(typeid(*bm).name());
|
||||
bm->set_name(name);
|
||||
}
|
||||
g_benchmarks.push_back(bm);
|
||||
}
|
||||
|
||||
/* static */ void Benchmark::RunAll() {
|
||||
for (uint32_t i = 0; i < g_benchmarks.size(); ++i) {
|
||||
std::auto_ptr<Benchmark> bm(g_benchmarks[i]);
|
||||
if (!bm->SetUp()) {
|
||||
cerr << "Set up phase for benchmark "
|
||||
<< bm->name() << " failed." << endl;
|
||||
continue;
|
||||
}
|
||||
bm->MeasureRun();
|
||||
bm->TearDown();
|
||||
}
|
||||
}
|
||||
|
||||
void Benchmark::MeasureRun() {
|
||||
struct timeval walltime_begin = gettimeofday_or_die();
|
||||
struct rusage begin = getrusage_or_die();
|
||||
Run();
|
||||
struct rusage end = getrusage_or_die();
|
||||
struct timeval walltime_end = gettimeofday_or_die();
|
||||
|
||||
struct timeval utime;
|
||||
timeval_subtract(&utime, &end.ru_utime, &begin.ru_utime);
|
||||
struct timeval stime;
|
||||
timeval_subtract(&stime, &end.ru_stime, &begin.ru_stime);
|
||||
struct timeval wtime;
|
||||
timeval_subtract(&wtime, &walltime_end, &walltime_begin);
|
||||
|
||||
cout << "Benchmark: " << name_ << endl;
|
||||
cout << "CPU User time : " << timeval_to_string(utime) << endl;
|
||||
cout << "CPU System time: " << timeval_to_string(stime) << endl;
|
||||
cout << "Wall clock time: " << timeval_to_string(wtime) << endl;
|
||||
cout << endl;
|
||||
}
|
||||
|
||||
} // namespace cxxmph
|
32
deps/cmph/cxxmph/benchmark.h
vendored
Normal file
32
deps/cmph/cxxmph/benchmark.h
vendored
Normal file
@ -0,0 +1,32 @@
|
||||
#ifndef __CXXMPH_BENCHMARK_H__
|
||||
#define __CXXMPH_BENCHMARK_H__
|
||||
|
||||
#include <string>
|
||||
#include <typeinfo>
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
class Benchmark {
|
||||
public:
|
||||
Benchmark() {}
|
||||
virtual ~Benchmark() {}
|
||||
|
||||
const std::string& name() { return name_; }
|
||||
void set_name(const std::string& name) { name_ = name; }
|
||||
|
||||
static void Register(Benchmark* bm);
|
||||
static void RunAll();
|
||||
|
||||
protected:
|
||||
virtual bool SetUp() { return true; };
|
||||
virtual void Run() = 0;
|
||||
virtual bool TearDown() { return true; };
|
||||
|
||||
private:
|
||||
std::string name_;
|
||||
void MeasureRun();
|
||||
};
|
||||
|
||||
} // namespace cxxmph
|
||||
|
||||
#endif
|
75
deps/cmph/cxxmph/bm_common.cc
vendored
Normal file
75
deps/cmph/cxxmph/bm_common.cc
vendored
Normal file
@ -0,0 +1,75 @@
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
#include <limits>
|
||||
#include <iostream>
|
||||
#include <set>
|
||||
|
||||
#include "bm_common.h"
|
||||
|
||||
using std::cerr;
|
||||
using std::endl;
|
||||
using std::set;
|
||||
using std::string;
|
||||
using std::vector;
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
UrlsBenchmark::~UrlsBenchmark() {}
|
||||
bool UrlsBenchmark::SetUp() {
|
||||
vector<string> urls;
|
||||
std::ifstream f(urls_file_.c_str());
|
||||
if (!f.is_open()) {
|
||||
cerr << "Failed to open urls file " << urls_file_ << endl;
|
||||
return false;
|
||||
}
|
||||
string buffer;
|
||||
while(std::getline(f, buffer)) urls.push_back(buffer);
|
||||
set<string> unique(urls.begin(), urls.end());
|
||||
if (unique.size() != urls.size()) {
|
||||
cerr << "Input file has repeated keys." << endl;
|
||||
return false;
|
||||
}
|
||||
urls.swap(urls_);
|
||||
return true;
|
||||
}
|
||||
|
||||
SearchUrlsBenchmark::~SearchUrlsBenchmark() {}
|
||||
bool SearchUrlsBenchmark::SetUp() {
|
||||
if (!UrlsBenchmark::SetUp()) return false;
|
||||
int32_t miss_ratio_int32 = std::numeric_limits<int32_t>::max() * miss_ratio_;
|
||||
forced_miss_urls_.resize(nsearches_);
|
||||
random_.resize(nsearches_);
|
||||
for (uint32_t i = 0; i < nsearches_; ++i) {
|
||||
random_[i] = urls_[random() % urls_.size()];
|
||||
if (random() < miss_ratio_int32) {
|
||||
forced_miss_urls_[i] = random_[i].as_string() + ".force_miss";
|
||||
random_[i] = forced_miss_urls_[i];
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
Uint64Benchmark::~Uint64Benchmark() {}
|
||||
bool Uint64Benchmark::SetUp() {
|
||||
set<uint64_t> unique;
|
||||
for (uint32_t i = 0; i < count_; ++i) {
|
||||
uint64_t v;
|
||||
do { v = random(); } while (unique.find(v) != unique.end());
|
||||
values_.push_back(v);
|
||||
unique.insert(v);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
SearchUint64Benchmark::~SearchUint64Benchmark() {}
|
||||
bool SearchUint64Benchmark::SetUp() {
|
||||
if (!Uint64Benchmark::SetUp()) return false;
|
||||
random_.resize(nsearches_);
|
||||
for (uint32_t i = 0; i < nsearches_; ++i) {
|
||||
uint32_t pos = random() % values_.size();
|
||||
random_[i] = values_[pos];
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace cxxmph
|
73
deps/cmph/cxxmph/bm_common.h
vendored
Normal file
73
deps/cmph/cxxmph/bm_common.h
vendored
Normal file
@ -0,0 +1,73 @@
|
||||
#ifndef __CXXMPH_BM_COMMON_H__
|
||||
#define __CXXMPH_BM_COMMON_H__
|
||||
|
||||
#include "stringpiece.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map> // std::hash
|
||||
#include "MurmurHash3.h"
|
||||
|
||||
#include "benchmark.h"
|
||||
|
||||
namespace std {
|
||||
template <> struct hash<cxxmph::StringPiece> {
|
||||
uint32_t operator()(const cxxmph::StringPiece& k) const {
|
||||
uint32_t out;
|
||||
MurmurHash3_x86_32(k.data(), k.length(), 1, &out);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
} // namespace std
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
class UrlsBenchmark : public Benchmark {
|
||||
public:
|
||||
UrlsBenchmark(const std::string& urls_file) : urls_file_(urls_file) { }
|
||||
virtual ~UrlsBenchmark();
|
||||
protected:
|
||||
virtual bool SetUp();
|
||||
const std::string urls_file_;
|
||||
std::vector<std::string> urls_;
|
||||
};
|
||||
|
||||
class SearchUrlsBenchmark : public UrlsBenchmark {
|
||||
public:
|
||||
SearchUrlsBenchmark(const std::string& urls_file, uint32_t nsearches, float miss_ratio)
|
||||
: UrlsBenchmark(urls_file), nsearches_(nsearches), miss_ratio_(miss_ratio) {}
|
||||
virtual ~SearchUrlsBenchmark();
|
||||
protected:
|
||||
virtual bool SetUp();
|
||||
const uint32_t nsearches_;
|
||||
float miss_ratio_;
|
||||
std::vector<std::string> forced_miss_urls_;
|
||||
std::vector<StringPiece> random_;
|
||||
};
|
||||
|
||||
class Uint64Benchmark : public Benchmark {
|
||||
public:
|
||||
Uint64Benchmark(uint32_t count) : count_(count) { }
|
||||
virtual ~Uint64Benchmark();
|
||||
virtual void Run() {}
|
||||
protected:
|
||||
virtual bool SetUp();
|
||||
const uint32_t count_;
|
||||
std::vector<uint64_t> values_;
|
||||
};
|
||||
|
||||
class SearchUint64Benchmark : public Uint64Benchmark {
|
||||
public:
|
||||
SearchUint64Benchmark(uint32_t count, uint32_t nsearches)
|
||||
: Uint64Benchmark(count), nsearches_(nsearches) { }
|
||||
virtual ~SearchUint64Benchmark();
|
||||
virtual void Run() {};
|
||||
protected:
|
||||
virtual bool SetUp();
|
||||
const uint32_t nsearches_;
|
||||
std::vector<uint64_t> random_;
|
||||
};
|
||||
|
||||
} // namespace cxxmph
|
||||
|
||||
#endif // __CXXMPH_BM_COMMON_H__
|
149
deps/cmph/cxxmph/bm_index.cc
vendored
Normal file
149
deps/cmph/cxxmph/bm_index.cc
vendored
Normal file
@ -0,0 +1,149 @@
|
||||
#include <cmph.h>
|
||||
|
||||
#include <cstdio>
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
|
||||
#include "bm_common.h"
|
||||
#include "stringpiece.h"
|
||||
#include "mph_index.h"
|
||||
|
||||
using namespace cxxmph;
|
||||
|
||||
using std::string;
|
||||
using std::unordered_map;
|
||||
|
||||
class BM_MPHIndexCreate : public UrlsBenchmark {
|
||||
public:
|
||||
BM_MPHIndexCreate(const std::string& urls_file)
|
||||
: UrlsBenchmark(urls_file) { }
|
||||
protected:
|
||||
virtual void Run() {
|
||||
SimpleMPHIndex<StringPiece> index;
|
||||
index.Reset(urls_.begin(), urls_.end(), urls_.size());
|
||||
}
|
||||
};
|
||||
|
||||
class BM_STLIndexCreate : public UrlsBenchmark {
|
||||
public:
|
||||
BM_STLIndexCreate(const std::string& urls_file)
|
||||
: UrlsBenchmark(urls_file) { }
|
||||
protected:
|
||||
virtual void Run() {
|
||||
unordered_map<StringPiece, uint32_t> index;
|
||||
int idx = 0;
|
||||
for (auto it = urls_.begin(); it != urls_.end(); ++it) {
|
||||
index.insert(make_pair(*it, idx++));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class BM_MPHIndexSearch : public SearchUrlsBenchmark {
|
||||
public:
|
||||
BM_MPHIndexSearch(const std::string& urls_file, int nsearches)
|
||||
: SearchUrlsBenchmark(urls_file, nsearches, 0) { }
|
||||
virtual void Run() {
|
||||
uint64_t sum = 0;
|
||||
for (auto it = random_.begin(); it != random_.end(); ++it) {
|
||||
auto idx = index_.index(*it);
|
||||
// Collision check to be fair with STL
|
||||
if (strcmp(urls_[idx].c_str(), it->data()) != 0) idx = -1;
|
||||
sum += idx;
|
||||
}
|
||||
}
|
||||
protected:
|
||||
virtual bool SetUp () {
|
||||
if (!SearchUrlsBenchmark::SetUp()) return false;
|
||||
index_.Reset(urls_.begin(), urls_.end(), urls_.size());
|
||||
return true;
|
||||
}
|
||||
SimpleMPHIndex<StringPiece> index_;
|
||||
};
|
||||
|
||||
class BM_CmphIndexSearch : public SearchUrlsBenchmark {
|
||||
public:
|
||||
BM_CmphIndexSearch(const std::string& urls_file, int nsearches)
|
||||
: SearchUrlsBenchmark(urls_file, nsearches, 0) { }
|
||||
~BM_CmphIndexSearch() { if (index_) cmph_destroy(index_); }
|
||||
virtual void Run() {
|
||||
uint64_t sum = 0;
|
||||
for (auto it = random_.begin(); it != random_.end(); ++it) {
|
||||
auto idx = cmph_search(index_, it->data(), it->length());
|
||||
// Collision check to be fair with STL
|
||||
if (strcmp(urls_[idx].c_str(), it->data()) != 0) idx = -1;
|
||||
sum += idx;
|
||||
}
|
||||
}
|
||||
protected:
|
||||
virtual bool SetUp() {
|
||||
if (!SearchUrlsBenchmark::SetUp()) {
|
||||
cerr << "Parent class setup failed." << endl;
|
||||
return false;
|
||||
}
|
||||
FILE* f = fopen(urls_file_.c_str(), "r");
|
||||
if (!f) {
|
||||
cerr << "Faied to open " << urls_file_ << endl;
|
||||
return false;
|
||||
}
|
||||
cmph_io_adapter_t* source = cmph_io_nlfile_adapter(f);
|
||||
if (!source) {
|
||||
cerr << "Faied to create io adapter for " << urls_file_ << endl;
|
||||
return false;
|
||||
}
|
||||
cmph_config_t* config = cmph_config_new(source);
|
||||
if (!config) {
|
||||
cerr << "Failed to create config" << endl;
|
||||
return false;
|
||||
}
|
||||
cmph_config_set_algo(config, CMPH_BDZ);
|
||||
cmph_t* mphf = cmph_new(config);
|
||||
if (!mphf) {
|
||||
cerr << "Failed to create mphf." << endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
cmph_config_destroy(config);
|
||||
cmph_io_nlfile_adapter_destroy(source);
|
||||
fclose(f);
|
||||
index_ = mphf;
|
||||
return true;
|
||||
}
|
||||
cmph_t* index_;
|
||||
};
|
||||
|
||||
|
||||
class BM_STLIndexSearch : public SearchUrlsBenchmark {
|
||||
public:
|
||||
BM_STLIndexSearch(const std::string& urls_file, int nsearches)
|
||||
: SearchUrlsBenchmark(urls_file, nsearches, 0) { }
|
||||
virtual void Run() {
|
||||
uint64_t sum = 0;
|
||||
for (auto it = random_.begin(); it != random_.end(); ++it) {
|
||||
auto idx = index_.find(*it);
|
||||
sum += idx->second;
|
||||
}
|
||||
}
|
||||
protected:
|
||||
virtual bool SetUp () {
|
||||
if (!SearchUrlsBenchmark::SetUp()) return false;
|
||||
unordered_map<StringPiece, uint32_t> index;
|
||||
int idx = 0;
|
||||
for (auto it = urls_.begin(); it != urls_.end(); ++it) {
|
||||
index.insert(make_pair(*it, idx++));
|
||||
}
|
||||
index.swap(index_);
|
||||
return true;
|
||||
}
|
||||
unordered_map<StringPiece, uint32_t> index_;
|
||||
};
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
Benchmark::Register(new BM_MPHIndexCreate("URLS100k"));
|
||||
Benchmark::Register(new BM_STLIndexCreate("URLS100k"));
|
||||
Benchmark::Register(new BM_MPHIndexSearch("URLS100k", 10*1000*1000));
|
||||
Benchmark::Register(new BM_STLIndexSearch("URLS100k", 10*1000*1000));
|
||||
Benchmark::Register(new BM_CmphIndexSearch("URLS100k", 10*1000*1000));
|
||||
Benchmark::RunAll();
|
||||
return 0;
|
||||
}
|
126
deps/cmph/cxxmph/bm_map.cc
vendored
Normal file
126
deps/cmph/cxxmph/bm_map.cc
vendored
Normal file
@ -0,0 +1,126 @@
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
|
||||
#include "hopscotch_map.h"
|
||||
|
||||
#include "bm_common.h"
|
||||
#include "mph_map.h"
|
||||
|
||||
using std::string;
|
||||
|
||||
// Another reference benchmark:
|
||||
// http://blog.aggregateknowledge.com/tag/bigmemory/
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
template <class MapType, class T>
|
||||
const T* myfind(const MapType& mymap, const T& k) {
|
||||
auto it = mymap.find(k);
|
||||
auto end = mymap.end();
|
||||
if (it == end) return NULL;
|
||||
return &it->second;
|
||||
}
|
||||
|
||||
template <class MapType>
|
||||
class BM_CreateUrls : public UrlsBenchmark {
|
||||
public:
|
||||
BM_CreateUrls(const string& urls_file) : UrlsBenchmark(urls_file) { }
|
||||
virtual void Run() {
|
||||
MapType mymap;
|
||||
for (auto it = urls_.begin(); it != urls_.end(); ++it) {
|
||||
mymap[*it] = *it;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <class MapType>
|
||||
class BM_SearchUrls : public SearchUrlsBenchmark {
|
||||
public:
|
||||
BM_SearchUrls(const std::string& urls_file, int nsearches, float miss_ratio)
|
||||
: SearchUrlsBenchmark(urls_file, nsearches, miss_ratio) { }
|
||||
virtual ~BM_SearchUrls() {}
|
||||
virtual void Run() {
|
||||
uint32_t total = 1;
|
||||
for (auto it = random_.begin(); it != random_.end(); ++it) {
|
||||
auto v = myfind(mymap_, *it);
|
||||
if (v) total += v->length();
|
||||
}
|
||||
fprintf(stderr, "Total: %u\n", total);
|
||||
}
|
||||
protected:
|
||||
virtual bool SetUp() {
|
||||
if (!SearchUrlsBenchmark::SetUp()) return false;
|
||||
for (auto it = urls_.begin(); it != urls_.end(); ++it) {
|
||||
mymap_[*it] = *it;
|
||||
}
|
||||
mymap_.rehash(mymap_.bucket_count());
|
||||
fprintf(stderr, "Occupation: %f\n", static_cast<float>(mymap_.size())/mymap_.bucket_count());
|
||||
return true;
|
||||
}
|
||||
MapType mymap_;
|
||||
};
|
||||
|
||||
template <class MapType>
|
||||
class BM_SearchUint64 : public SearchUint64Benchmark {
|
||||
public:
|
||||
BM_SearchUint64() : SearchUint64Benchmark(100000, 10*1000*1000) { }
|
||||
virtual bool SetUp() {
|
||||
if (!SearchUint64Benchmark::SetUp()) return false;
|
||||
for (uint32_t i = 0; i < values_.size(); ++i) {
|
||||
mymap_[values_[i]] = values_[i];
|
||||
}
|
||||
mymap_.rehash(mymap_.bucket_count());
|
||||
// Double check if everything is all right
|
||||
cerr << "Doing double check" << endl;
|
||||
for (uint32_t i = 0; i < values_.size(); ++i) {
|
||||
if (mymap_[values_[i]] != values_[i]) {
|
||||
cerr << "Looking for " << i << " th key value " << values_[i];
|
||||
cerr << " yielded " << mymap_[values_[i]] << endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
virtual void Run() {
|
||||
for (auto it = random_.begin(); it != random_.end(); ++it) {
|
||||
auto v = myfind(mymap_, *it);
|
||||
if (*v != *it) {
|
||||
cerr << "Looked for " << *it << " got " << *v << endl;
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
}
|
||||
MapType mymap_;
|
||||
};
|
||||
|
||||
} // namespace cxxmph
|
||||
|
||||
using namespace cxxmph;
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
srandom(4);
|
||||
Benchmark::Register(new BM_CreateUrls<dense_hash_map<StringPiece, StringPiece>>("URLS100k"));
|
||||
Benchmark::Register(new BM_CreateUrls<std::unordered_map<StringPiece, StringPiece>>("URLS100k"));
|
||||
Benchmark::Register(new BM_CreateUrls<mph_map<StringPiece, StringPiece>>("URLS100k"));
|
||||
Benchmark::Register(new BM_CreateUrls<sparse_hash_map<StringPiece, StringPiece>>("URLS100k"));
|
||||
Benchmark::Register(new BM_CreateUrls<tsl::hopscotch_map<StringPiece, StringPiece>>("URLS100k"));
|
||||
|
||||
Benchmark::Register(new BM_SearchUrls<dense_hash_map<StringPiece, StringPiece>>("URLS100k", 10*1000 * 1000, 0));
|
||||
Benchmark::Register(new BM_SearchUrls<std::unordered_map<StringPiece, StringPiece, Murmur3StringPiece>>("URLS100k", 10*1000 * 1000, 0));
|
||||
Benchmark::Register(new BM_SearchUrls<mph_map<StringPiece, StringPiece>>("URLS100k", 10*1000 * 1000, 0));
|
||||
Benchmark::Register(new BM_SearchUrls<sparse_hash_map<StringPiece, StringPiece>>("URLS100k", 10*1000 * 1000, 0));
|
||||
Benchmark::Register(new BM_SearchUrls<tsl::hopscotch_map<StringPiece, StringPiece>>("URLS100k", 10*1000 * 1000, 0));
|
||||
|
||||
Benchmark::Register(new BM_SearchUrls<dense_hash_map<StringPiece, StringPiece>>("URLS100k", 10*1000 * 1000, 0.9));
|
||||
Benchmark::Register(new BM_SearchUrls<std::unordered_map<StringPiece, StringPiece, Murmur3StringPiece>>("URLS100k", 10*1000 * 1000, 0.9));
|
||||
Benchmark::Register(new BM_SearchUrls<mph_map<StringPiece, StringPiece>>("URLS100k", 10*1000 * 1000, 0.9));
|
||||
Benchmark::Register(new BM_SearchUrls<sparse_hash_map<StringPiece, StringPiece>>("URLS100k", 10*1000 * 1000, 0.9));
|
||||
Benchmark::Register(new BM_SearchUrls<tsl::hopscotch_map<StringPiece, StringPiece>>("URLS100k", 10*1000 * 1000, 0.9));
|
||||
|
||||
Benchmark::Register(new BM_SearchUint64<dense_hash_map<uint64_t, uint64_t>>);
|
||||
Benchmark::Register(new BM_SearchUint64<std::unordered_map<uint64_t, uint64_t>>);
|
||||
Benchmark::Register(new BM_SearchUint64<mph_map<uint64_t, uint64_t>>);
|
||||
Benchmark::Register(new BM_SearchUint64<sparse_hash_map<uint64_t, uint64_t>>);
|
||||
Benchmark::Register(new BM_SearchUint64<tsl::hopscotch_map<uint64_t, uint64_t>>);
|
||||
Benchmark::RunAll();
|
||||
}
|
74
deps/cmph/cxxmph/cxxmph.cc
vendored
Normal file
74
deps/cmph/cxxmph/cxxmph.cc
vendored
Normal file
@ -0,0 +1,74 @@
|
||||
// Copyright 2010 Google Inc. All Rights Reserved.
|
||||
// Author: davi@google.com (Davi Reis)
|
||||
|
||||
#include <getopt.h>
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "mph_map.h"
|
||||
#include "config.h"
|
||||
|
||||
using std::cerr;
|
||||
using std::cout;
|
||||
using std::endl;
|
||||
using std::getline;
|
||||
using std::ifstream;
|
||||
using std::string;
|
||||
using std::vector;
|
||||
|
||||
using cxxmph::mph_map;
|
||||
|
||||
void usage(const char* prg) {
|
||||
cerr << "usage: " << prg << " [-v] [-h] [-V] <keys.txt>" << endl;
|
||||
}
|
||||
void usage_long(const char* prg) {
|
||||
usage(prg);
|
||||
cerr << " -h\t print this help message" << endl;
|
||||
cerr << " -V\t print version number and exit" << endl;
|
||||
cerr << " -v\t increase verbosity (may be used multiple times)" << endl;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
int verbosity = 0;
|
||||
while (1) {
|
||||
char ch = (char)getopt(argc, argv, "hvV");
|
||||
if (ch == -1) break;
|
||||
switch (ch) {
|
||||
case 'h':
|
||||
usage_long(argv[0]);
|
||||
return 0;
|
||||
case 'V':
|
||||
std::cout << VERSION << std::endl;
|
||||
return 0;
|
||||
case 'v':
|
||||
++verbosity;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (optind != argc - 1) {
|
||||
usage(argv[0]);
|
||||
return 1;
|
||||
}
|
||||
vector<string> keys;
|
||||
ifstream f(argv[optind]);
|
||||
if (!f.is_open()) {
|
||||
std::cerr << "Failed to open " << argv[optind] << std::endl;
|
||||
exit(-1);
|
||||
}
|
||||
string buffer;
|
||||
while (!getline(f, buffer).eof()) keys.push_back(buffer);
|
||||
for (uint32_t i = 0; i < keys.size(); ++i) string s = keys[i];
|
||||
mph_map<string, string> table;
|
||||
|
||||
for (uint32_t i = 0; i < keys.size(); ++i) table[keys[i]] = keys[i];
|
||||
mph_map<string, string>::const_iterator it = table.begin();
|
||||
mph_map<string, string>::const_iterator end = table.end();
|
||||
for (int i = 0; it != end; ++it, ++i) {
|
||||
cout << i << ": " << it->first
|
||||
<<" -> " << it->second << endl;
|
||||
}
|
||||
}
|
25
deps/cmph/cxxmph/dense_hash_map_test.cc
vendored
Normal file
25
deps/cmph/cxxmph/dense_hash_map_test.cc
vendored
Normal file
@ -0,0 +1,25 @@
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
#include "mph_map.h"
|
||||
#include "map_tester.h"
|
||||
#include "test.h"
|
||||
|
||||
using namespace cxxmph;
|
||||
|
||||
typedef MapTester<dense_hash_map> Tester;
|
||||
|
||||
CXXMPH_CXX_TEST_CASE(empty_find, Tester::empty_find);
|
||||
CXXMPH_CXX_TEST_CASE(empty_erase, Tester::empty_erase);
|
||||
CXXMPH_CXX_TEST_CASE(small_insert, Tester::small_insert);
|
||||
CXXMPH_CXX_TEST_CASE(large_insert, Tester::large_insert);
|
||||
CXXMPH_CXX_TEST_CASE(small_search, Tester::small_search);
|
||||
CXXMPH_CXX_TEST_CASE(default_search, Tester::default_search);
|
||||
CXXMPH_CXX_TEST_CASE(large_search, Tester::large_search);
|
||||
CXXMPH_CXX_TEST_CASE(string_search, Tester::string_search);
|
||||
CXXMPH_CXX_TEST_CASE(rehash_zero, Tester::rehash_zero);
|
||||
CXXMPH_CXX_TEST_CASE(rehash_size, Tester::rehash_size);
|
||||
CXXMPH_CXX_TEST_CASE(erase_value, Tester::erase_value);
|
||||
CXXMPH_CXX_TEST_CASE(erase_iterator, Tester::erase_iterator);
|
81
deps/cmph/cxxmph/hollow_iterator.h
vendored
Normal file
81
deps/cmph/cxxmph/hollow_iterator.h
vendored
Normal file
@ -0,0 +1,81 @@
|
||||
#ifndef __CXXMPH_HOLLOW_ITERATOR_H__
|
||||
#define __CXXMPH_HOLLOW_ITERATOR_H__
|
||||
|
||||
#include <vector>
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
using std::vector;
|
||||
|
||||
template <typename container_type>
|
||||
struct is_empty {
|
||||
public:
|
||||
is_empty() : c_(NULL), p_(NULL) {};
|
||||
is_empty(const container_type* c, const vector<bool>* p) : c_(c), p_(p) {};
|
||||
bool operator()(typename container_type::const_iterator it) const {
|
||||
if (it == c_->end()) return false;
|
||||
return !(*p_)[it - c_->begin()];
|
||||
}
|
||||
private:
|
||||
const container_type* c_;
|
||||
const vector<bool>* p_;
|
||||
};
|
||||
|
||||
template <typename iterator, typename is_empty>
|
||||
struct hollow_iterator_base
|
||||
: public std::iterator<std::forward_iterator_tag,
|
||||
typename iterator::value_type> {
|
||||
public:
|
||||
typedef hollow_iterator_base<iterator, is_empty> self_type;
|
||||
typedef self_type& self_reference;
|
||||
typedef typename iterator::reference reference;
|
||||
typedef typename iterator::pointer pointer;
|
||||
inline hollow_iterator_base() : it_(), empty_() { }
|
||||
inline hollow_iterator_base(iterator it, is_empty empty, bool solid) : it_(it), empty_(empty) {
|
||||
if (!solid) advance();
|
||||
}
|
||||
// Same as above, assumes solid==true.
|
||||
inline hollow_iterator_base(iterator it, is_empty empty) : it_(it), empty_(empty) {}
|
||||
inline hollow_iterator_base(const self_type& rhs) { it_ = rhs.it_; empty_ = rhs.empty_; }
|
||||
template <typename const_iterator>
|
||||
hollow_iterator_base(const hollow_iterator_base<const_iterator, is_empty>& rhs) { it_ = rhs.it_; empty_ = rhs.empty_; }
|
||||
|
||||
reference operator*() { return *it_; }
|
||||
pointer operator->() { return &(*it_); }
|
||||
self_reference operator++() { ++it_; advance(); return *this; }
|
||||
// self_type operator++() { auto tmp(*this); ++tmp; return tmp; }
|
||||
|
||||
template <typename const_iterator>
|
||||
bool operator==(const hollow_iterator_base<const_iterator, is_empty>& rhs) { return rhs.it_ == it_; }
|
||||
template <typename const_iterator>
|
||||
bool operator!=(const hollow_iterator_base<const_iterator, is_empty>& rhs) { return rhs.it_ != it_; }
|
||||
|
||||
// should be friend
|
||||
iterator it_;
|
||||
is_empty empty_;
|
||||
|
||||
private:
|
||||
void advance() {
|
||||
while (empty_(it_)) ++it_;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename container_type, typename iterator>
|
||||
inline auto make_solid(
|
||||
container_type* v, const vector<bool>* p, iterator it) ->
|
||||
hollow_iterator_base<iterator, is_empty<const container_type>> {
|
||||
return hollow_iterator_base<iterator, is_empty<const container_type>>(
|
||||
it, is_empty<const container_type>(v, p));
|
||||
}
|
||||
|
||||
template <typename container_type, typename iterator>
|
||||
inline auto make_hollow(
|
||||
container_type* v, const vector<bool>* p, iterator it) ->
|
||||
hollow_iterator_base<iterator, is_empty<const container_type>> {
|
||||
return hollow_iterator_base<iterator, is_empty<const container_type>>(
|
||||
it, is_empty<const container_type>(v, p), false);
|
||||
}
|
||||
|
||||
} // namespace cxxmph
|
||||
|
||||
#endif // __CXXMPH_HOLLOW_ITERATOR_H__
|
49
deps/cmph/cxxmph/hollow_iterator_test.cc
vendored
Normal file
49
deps/cmph/cxxmph/hollow_iterator_test.cc
vendored
Normal file
@ -0,0 +1,49 @@
|
||||
#include <cstdlib>
|
||||
#include <cstdio>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
|
||||
using std::cerr;
|
||||
using std::endl;
|
||||
using std::vector;
|
||||
#include "hollow_iterator.h"
|
||||
using cxxmph::hollow_iterator_base;
|
||||
using cxxmph::make_hollow;
|
||||
using cxxmph::is_empty;
|
||||
|
||||
int main(int, char**) {
|
||||
vector<int> v;
|
||||
vector<bool> p;
|
||||
for (int i = 0; i < 100; ++i) {
|
||||
v.push_back(i);
|
||||
p.push_back(i % 2 == 0);
|
||||
}
|
||||
auto begin = make_hollow(&v, &p, v.begin());
|
||||
auto end = make_hollow(&v, &p, v.end());
|
||||
for (auto it = begin; it != end; ++it) {
|
||||
if (((*it) % 2) != 0) exit(-1);
|
||||
}
|
||||
const vector<int>* cv(&v);
|
||||
auto cbegin(make_hollow(cv, &p, cv->begin()));
|
||||
auto cend(make_hollow(cv, &p, cv->begin()));
|
||||
for (auto it = cbegin; it != cend; ++it) {
|
||||
if (((*it) % 2) != 0) exit(-1);
|
||||
}
|
||||
const vector<bool>* cp(&p);
|
||||
cbegin = make_hollow(cv, cp, v.begin());
|
||||
cend = make_hollow(cv, cp, cv->end());
|
||||
|
||||
vector<int>::iterator vit1 = v.begin();
|
||||
vector<int>::const_iterator vit2 = v.begin();
|
||||
if (vit1 != vit2) exit(-1);
|
||||
auto it1 = make_hollow(&v, &p, vit1);
|
||||
auto it2 = make_hollow(&v, &p, vit2);
|
||||
if (it1 != it2) exit(-1);
|
||||
|
||||
typedef is_empty<const vector<int>> iev;
|
||||
hollow_iterator_base<vector<int>::iterator, iev> default_constructed;
|
||||
default_constructed = make_hollow(&v, &p, v.begin());
|
||||
return 0;
|
||||
}
|
||||
|
4
deps/cmph/cxxmph/map_tester.cc
vendored
Normal file
4
deps/cmph/cxxmph/map_tester.cc
vendored
Normal file
@ -0,0 +1,4 @@
|
||||
#include "map_tester.h"
|
||||
|
||||
namespace cxxxmph {
|
||||
}
|
138
deps/cmph/cxxmph/map_tester.h
vendored
Normal file
138
deps/cmph/cxxmph/map_tester.h
vendored
Normal file
@ -0,0 +1,138 @@
|
||||
#ifndef __CXXMPH_MAP_TEST_HELPER_H__
|
||||
#define __CXXMPH_MAP_TEST_HELPER_H__
|
||||
|
||||
#include <cstdint>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
#include "string_util.h"
|
||||
#include <check.h>
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
using namespace cxxmph;
|
||||
using namespace std;
|
||||
|
||||
template <template<typename...> class map_type>
|
||||
struct MapTester {
|
||||
static bool empty_find() {
|
||||
map_type<int64_t, int64_t> m;
|
||||
for (int i = 0; i < 1000; ++i) {
|
||||
if (m.find(i) != m.end()) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
static bool empty_erase() {
|
||||
map_type<int64_t, int64_t> m;
|
||||
for (int i = 0; i < 1000; ++i) {
|
||||
m.erase(i);
|
||||
if (m.size()) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
static bool small_insert() {
|
||||
map_type<int64_t, int64_t> m;
|
||||
// Start counting from 1 to not touch default constructed value bugs
|
||||
for (int i = 1; i < 12; ++i) m.insert(make_pair(i, i));
|
||||
return m.size() == 11;
|
||||
}
|
||||
static bool large_insert() {
|
||||
map_type<int64_t, int64_t> m;
|
||||
// Start counting from 1 to not touch default constructed value bugs
|
||||
int nkeys = 12 * 256 * 256;
|
||||
for (int i = 1; i < nkeys; ++i) m.insert(make_pair(i, i));
|
||||
return static_cast<int>(m.size()) == nkeys - 1;
|
||||
}
|
||||
static bool small_search() {
|
||||
map_type<int64_t, int64_t> m;
|
||||
// Start counting from 1 to not touch default constructed value bugs
|
||||
for (int i = 1; i < 12; ++i) m.insert(make_pair(i, i));
|
||||
for (int i = 1; i < 12; ++i) if (m.find(i) == m.end()) return false;
|
||||
return true;
|
||||
}
|
||||
static bool default_search() {
|
||||
map_type<int64_t, int64_t> m;
|
||||
if (m.find(0) != m.end()) return false;
|
||||
for (int i = 1; i < 256; ++i) m.insert(make_pair(i, i));
|
||||
if (m.find(0) != m.end()) return false;
|
||||
for (int i = 0; i < 256; ++i) m.insert(make_pair(i, i));
|
||||
if (m.find(0) == m.end()) return false;
|
||||
return true;
|
||||
}
|
||||
static bool large_search() {
|
||||
int nkeys = 10 * 1000;
|
||||
map_type<int64_t, int64_t> m;
|
||||
for (int i = 0; i < nkeys; ++i) m.insert(make_pair(i, i));
|
||||
for (int i = 0; i < nkeys; ++i) if (m.find(i) == m.end()) return false;
|
||||
return true;
|
||||
}
|
||||
static bool string_search() {
|
||||
int nkeys = 10 * 1000;
|
||||
vector<string> keys;
|
||||
for (int i = 0; i < nkeys; ++i) {
|
||||
keys.push_back(format("%v", i));
|
||||
}
|
||||
map_type<string, int64_t> m;
|
||||
for (int i = 0; i < nkeys; ++i) m.insert(make_pair(keys[i], i));
|
||||
for (int i = 0; i < nkeys; ++i) {
|
||||
auto it = m.find(keys[i]);
|
||||
if (it == m.end()) return false;
|
||||
if (it->second != i) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
static bool rehash_zero() {
|
||||
map_type<int64_t, int64_t> m;
|
||||
m.rehash(0);
|
||||
return m.size() == 0;
|
||||
}
|
||||
static bool rehash_size() {
|
||||
map_type<int64_t, int64_t> m;
|
||||
int nkeys = 10 * 1000;
|
||||
for (int i = 0; i < nkeys; ++i) { m.insert(make_pair(i, i)); }
|
||||
m.rehash(nkeys);
|
||||
for (int i = 0; i < nkeys; ++i) { if (m.find(i) == m.end()) return false; }
|
||||
for (int i = nkeys; i < nkeys * 2; ++i) {
|
||||
if (m.find(i) != m.end()) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
static bool erase_iterator() {
|
||||
map_type<int64_t, int64_t> m;
|
||||
int nkeys = 10 * 1000;
|
||||
for (int i = 0; i < nkeys; ++i) { m.insert(make_pair(i, i)); }
|
||||
for (int i = 0; i < nkeys; ++i) {
|
||||
if (m.find(i) == m.end()) return false;
|
||||
}
|
||||
for (int i = nkeys - 1; i >= 0; --i) { if (m.find(i) == m.end()) return false; }
|
||||
for (int i = nkeys - 1; i >= 0; --i) {
|
||||
fail_unless(m.find(i) != m.end(), "after erase %d cannot be found", i);
|
||||
fail_unless(m.find(i)->first == i, "after erase key %d cannot be found", i);
|
||||
}
|
||||
for (int i = nkeys - 1; i >= 0; --i) {
|
||||
fail_unless(m.find(i) != m.end(), "after erase %d cannot be found", i);
|
||||
fail_unless(m.find(i)->first == i, "after erase key %d cannot be found", i);
|
||||
if (!(m.find(i)->first == i)) return false;
|
||||
m.erase(m.find(i));
|
||||
if (static_cast<int>(m.size()) != i) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
static bool erase_value() {
|
||||
map_type<int64_t, int64_t> m;
|
||||
int nkeys = 10 * 1000;
|
||||
for (int i = 0; i < nkeys; ++i) { m.insert(make_pair(i, i)); }
|
||||
for (int i = nkeys - 1; i >= 0; --i) {
|
||||
fail_unless(m.find(i) != m.end());
|
||||
m.erase(i);
|
||||
if (static_cast<int>(m.size()) != i) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace cxxxmph
|
||||
|
||||
#endif // __CXXMPH_MAP_TEST_HELPER_H__
|
17
deps/cmph/cxxmph/map_tester_test.cc
vendored
Normal file
17
deps/cmph/cxxmph/map_tester_test.cc
vendored
Normal file
@ -0,0 +1,17 @@
|
||||
#include "map_tester.h"
|
||||
#include "test.h"
|
||||
|
||||
using namespace cxxmph;
|
||||
|
||||
typedef MapTester<std::unordered_map> Tester;
|
||||
|
||||
CXXMPH_CXX_TEST_CASE(small_insert, Tester::small_insert);
|
||||
CXXMPH_CXX_TEST_CASE(large_insert, Tester::large_insert);
|
||||
CXXMPH_CXX_TEST_CASE(small_search, Tester::small_search);
|
||||
CXXMPH_CXX_TEST_CASE(default_search, Tester::default_search);
|
||||
CXXMPH_CXX_TEST_CASE(large_search, Tester::large_search);
|
||||
CXXMPH_CXX_TEST_CASE(string_search, Tester::string_search);
|
||||
CXXMPH_CXX_TEST_CASE(rehash_zero, Tester::rehash_zero);
|
||||
CXXMPH_CXX_TEST_CASE(rehash_size, Tester::rehash_size);
|
||||
CXXMPH_CXX_TEST_CASE(erase_value, Tester::erase_value);
|
||||
CXXMPH_CXX_TEST_CASE(erase_iterator, Tester::erase_iterator);
|
11
deps/cmph/cxxmph/mph_bits.cc
vendored
Normal file
11
deps/cmph/cxxmph/mph_bits.cc
vendored
Normal file
@ -0,0 +1,11 @@
|
||||
#include "mph_bits.h"
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
const uint8_t dynamic_2bitset::vmask[] = { 0xfc, 0xf3, 0xcf, 0x3f};
|
||||
dynamic_2bitset::dynamic_2bitset() : size_(0), fill_(false) {}
|
||||
dynamic_2bitset::dynamic_2bitset(uint32_t size, bool fill)
|
||||
: size_(size), fill_(fill), data_(ceil(size / 4.0), ones()*fill) {}
|
||||
dynamic_2bitset::~dynamic_2bitset() {}
|
||||
|
||||
}
|
73
deps/cmph/cxxmph/mph_bits.h
vendored
Normal file
73
deps/cmph/cxxmph/mph_bits.h
vendored
Normal file
@ -0,0 +1,73 @@
|
||||
#ifndef __CXXMPH_MPH_BITS_H__
|
||||
#define __CXXMPH_MPH_BITS_H__
|
||||
|
||||
#include <stdint.h> // for uint32_t and friends
|
||||
|
||||
#include <array>
|
||||
#include <cassert>
|
||||
#include <climits>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <vector>
|
||||
#include <utility>
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
class dynamic_2bitset {
|
||||
public:
|
||||
dynamic_2bitset();
|
||||
~dynamic_2bitset();
|
||||
dynamic_2bitset(uint32_t size, bool fill = false);
|
||||
|
||||
const uint8_t operator[](uint32_t i) const { return get(i); }
|
||||
const uint8_t get(uint32_t i) const {
|
||||
assert(i < size());
|
||||
assert((i >> 2) < data_.size());
|
||||
return (data_[(i >> 2)] >> (((i & 3) << 1)) & 3);
|
||||
}
|
||||
void set(uint32_t i, uint8_t v) {
|
||||
assert((i >> 2) < data_.size());
|
||||
data_[(i >> 2)] |= ones() ^ dynamic_2bitset::vmask[i & 3];
|
||||
data_[(i >> 2)] &= ((v << ((i & 3) << 1)) | dynamic_2bitset::vmask[i & 3]);
|
||||
assert(v <= 3);
|
||||
assert(get(i) == v);
|
||||
}
|
||||
void resize(uint32_t size) {
|
||||
size_ = size;
|
||||
data_.resize(size >> 2, fill_*ones());
|
||||
}
|
||||
void swap(dynamic_2bitset& other) {
|
||||
std::swap(other.size_, size_);
|
||||
std::swap(other.fill_, fill_);
|
||||
other.data_.swap(data_);
|
||||
}
|
||||
void clear() { data_.clear(); size_ = 0; }
|
||||
|
||||
uint32_t size() const { return size_; }
|
||||
static const uint8_t vmask[];
|
||||
const std::vector<uint8_t>& data() const { return data_; }
|
||||
private:
|
||||
uint32_t size_;
|
||||
bool fill_;
|
||||
std::vector<uint8_t> data_;
|
||||
const uint8_t ones() { return std::numeric_limits<uint8_t>::max(); }
|
||||
};
|
||||
|
||||
static uint32_t nextpoweroftwo(uint32_t k) {
|
||||
if (k == 0) return 1;
|
||||
k--;
|
||||
for (uint32_t i=1; i<sizeof(uint32_t)*CHAR_BIT; i<<=1) k = k | k >> i;
|
||||
return k+1;
|
||||
}
|
||||
// Interesting bit tricks that might end up here:
|
||||
// http://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
|
||||
// Fast a % (k*2^t)
|
||||
// http://www.azillionmonkeys.com/qed/adiv.html
|
||||
// rank and select:
|
||||
// http://vigna.dsi.unimi.it/ftp/papers/Broadword.pdf
|
||||
|
||||
} // namespace cxxmph
|
||||
|
||||
#endif
|
61
deps/cmph/cxxmph/mph_bits_test.cc
vendored
Normal file
61
deps/cmph/cxxmph/mph_bits_test.cc
vendored
Normal file
@ -0,0 +1,61 @@
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
|
||||
#include "mph_bits.h"
|
||||
|
||||
using cxxmph::dynamic_2bitset;
|
||||
using cxxmph::nextpoweroftwo;
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
dynamic_2bitset small(256, true);
|
||||
for (uint32_t i = 0; i < small.size(); ++i) small.set(i, i % 4);
|
||||
for (uint32_t i = 0; i < small.size(); ++i) {
|
||||
if (small[i] != i % 4) {
|
||||
fprintf(stderr, "wrong bits %d at %d expected %d\n", small[i], i, i % 4);
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t size = 256;
|
||||
dynamic_2bitset bits(size, true /* fill with ones */);
|
||||
for (uint32_t i = 0; i < size; ++i) {
|
||||
if (bits[i] != 3) {
|
||||
fprintf(stderr, "wrong bits %d at %d expected %d\n", bits[i], i, 3);
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
for (uint32_t i = 0; i < size; ++i) bits.set(i, 0);
|
||||
for (uint32_t i = 0; i < size; ++i) {
|
||||
if (bits[i] != 0) {
|
||||
fprintf(stderr, "wrong bits %d at %d expected %d\n", bits[i], i, 0);
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
for (uint32_t i = 0; i < size; ++i) bits.set(i, i % 4);
|
||||
for (uint32_t i = 0; i < size; ++i) {
|
||||
if (bits[i] != i % 4) {
|
||||
fprintf(stderr, "wrong bits %d at %d expected %d\n", bits[i], i, i % 4);
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
dynamic_2bitset size_corner1(1);
|
||||
if (size_corner1.size() != 1) exit(-1);
|
||||
dynamic_2bitset size_corner2(2);
|
||||
if (size_corner2.size() != 2) exit(-1);
|
||||
(dynamic_2bitset(4, true)).swap(size_corner2);
|
||||
if (size_corner2.size() != 4) exit(-1);
|
||||
for (uint32_t i = 0; i < size_corner2.size(); ++i) {
|
||||
if (size_corner2[i] != 3) exit(-1);
|
||||
}
|
||||
size_corner2.clear();
|
||||
if (size_corner2.size() != 0) exit(-1);
|
||||
|
||||
dynamic_2bitset empty;
|
||||
empty.clear();
|
||||
dynamic_2bitset large(1000, true);
|
||||
empty.swap(large);
|
||||
|
||||
if (nextpoweroftwo(3) != 4) exit(-1);
|
||||
}
|
||||
|
||||
|
229
deps/cmph/cxxmph/mph_index.cc
vendored
Normal file
229
deps/cmph/cxxmph/mph_index.cc
vendored
Normal file
@ -0,0 +1,229 @@
|
||||
#include <limits>
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
using std::cerr;
|
||||
using std::endl;
|
||||
|
||||
#include "mph_index.h"
|
||||
|
||||
using std::vector;
|
||||
|
||||
namespace {
|
||||
|
||||
static const uint8_t kUnassigned = 3;
|
||||
// table used for looking up the number of assigned vertices to a 8-bit integer
|
||||
static uint8_t kBdzLookupIndex[] =
|
||||
{
|
||||
4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2,
|
||||
4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2,
|
||||
4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2,
|
||||
3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1,
|
||||
4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2,
|
||||
4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2,
|
||||
4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2,
|
||||
3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1,
|
||||
4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2,
|
||||
4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2,
|
||||
4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2,
|
||||
3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1,
|
||||
3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1,
|
||||
3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1,
|
||||
3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1,
|
||||
2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 0
|
||||
};
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
MPHIndex::~MPHIndex() {
|
||||
clear();
|
||||
|
||||
}
|
||||
|
||||
void MPHIndex::clear() {
|
||||
std::vector<uint32_t> empty_ranktable;
|
||||
ranktable_.swap(empty_ranktable);
|
||||
dynamic_2bitset empty_g;
|
||||
g_.swap(empty_g);
|
||||
}
|
||||
|
||||
bool MPHIndex::GenerateQueue(
|
||||
TriGraph* graph, vector<uint32_t>* queue_output) {
|
||||
uint32_t queue_head = 0, queue_tail = 0;
|
||||
uint32_t nedges = m_;
|
||||
uint32_t nvertices = n_;
|
||||
// Relies on vector<bool> using 1 bit per element
|
||||
vector<bool> marked_edge(nedges + 1, false);
|
||||
vector<uint32_t> queue(nvertices, 0);
|
||||
for (uint32_t i = 0; i < nedges; ++i) {
|
||||
const TriGraph::Edge& e = graph->edges()[i];
|
||||
if (graph->vertex_degree()[e[0]] == 1 ||
|
||||
graph->vertex_degree()[e[1]] == 1 ||
|
||||
graph->vertex_degree()[e[2]] == 1) {
|
||||
if (!marked_edge[i]) {
|
||||
queue[queue_head++] = i;
|
||||
marked_edge[i] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
/*
|
||||
for (unsigned int i = 0; i < marked_edge.size(); ++i) {
|
||||
cerr << "vertex with degree " << static_cast<uint32_t>(graph->vertex_degree()[i]) << " marked " << marked_edge[i] << endl;
|
||||
}
|
||||
for (unsigned int i = 0; i < queue.size(); ++i) {
|
||||
cerr << "vertex " << i << " queued at " << queue[i] << endl;
|
||||
}
|
||||
*/
|
||||
// At this point queue head is the number of edges touching at least one
|
||||
// vertex of degree 1.
|
||||
// cerr << "Queue head " << queue_head << " Queue tail " << queue_tail << endl;
|
||||
// graph->DebugGraph();
|
||||
while (queue_tail != queue_head) {
|
||||
uint32_t current_edge = queue[queue_tail++];
|
||||
graph->RemoveEdge(current_edge);
|
||||
const TriGraph::Edge& e = graph->edges()[current_edge];
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
uint32_t v = e[i];
|
||||
if (graph->vertex_degree()[v] == 1) {
|
||||
uint32_t first_edge = graph->first_edge()[v];
|
||||
if (!marked_edge[first_edge]) {
|
||||
queue[queue_head++] = first_edge;
|
||||
marked_edge[first_edge] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/*
|
||||
for (unsigned int i = 0; i < queue.size(); ++i) {
|
||||
cerr << "vertex " << i << " queued at " << queue[i] << endl;
|
||||
}
|
||||
*/
|
||||
int cycles = queue_head - nedges;
|
||||
if (cycles == 0) queue.swap(*queue_output);
|
||||
return cycles == 0;
|
||||
}
|
||||
|
||||
void MPHIndex::Assigning(
|
||||
const vector<TriGraph::Edge>& edges, const vector<uint32_t>& queue) {
|
||||
uint32_t current_edge = 0;
|
||||
vector<bool> marked_vertices(n_ + 1);
|
||||
dynamic_2bitset(8, true).swap(g_);
|
||||
// Initialize vector of half nibbles with all bits set.
|
||||
dynamic_2bitset g(n_, true /* set bits to 1 */);
|
||||
|
||||
uint32_t nedges = m_; // for legibility
|
||||
for (int i = nedges - 1; i + 1 >= 1; --i) {
|
||||
current_edge = queue[i];
|
||||
const TriGraph::Edge& e = edges[current_edge];
|
||||
/*
|
||||
cerr << "B: " << e[0] << " " << e[1] << " " << e[2] << " -> "
|
||||
<< get_2bit_value(g_, e[0]) << " "
|
||||
<< get_2bit_value(g_, e[1]) << " "
|
||||
<< get_2bit_value(g_, e[2]) << " edge " << current_edge << endl;
|
||||
*/
|
||||
if (!marked_vertices[e[0]]) {
|
||||
if (!marked_vertices[e[1]]) {
|
||||
g.set(e[1], kUnassigned);
|
||||
marked_vertices[e[1]] = true;
|
||||
}
|
||||
if (!marked_vertices[e[2]]) {
|
||||
g.set(e[2], kUnassigned);
|
||||
assert(marked_vertices.size() > e[2]);
|
||||
marked_vertices[e[2]] = true;
|
||||
}
|
||||
g.set(e[0], (6 - (g[e[1]] + g[e[2]])) % 3);
|
||||
marked_vertices[e[0]] = true;
|
||||
} else if (!marked_vertices[e[1]]) {
|
||||
if (!marked_vertices[e[2]]) {
|
||||
g.set(e[2], kUnassigned);
|
||||
marked_vertices[e[2]] = true;
|
||||
}
|
||||
g.set(e[1], (7 - (g[e[0]] + g[e[2]])) % 3);
|
||||
marked_vertices[e[1]] = true;
|
||||
} else {
|
||||
g.set(e[2], (8 - (g[e[0]] + g[e[1]])) % 3);
|
||||
marked_vertices[e[2]] = true;
|
||||
}
|
||||
/*
|
||||
cerr << "A: " << e[0] << " " << e[1] << " " << e[2] << " -> "
|
||||
<< static_cast<uint32_t>(g[e[0]]) << " "
|
||||
<< static_cast<uint32_t>(g[e[1]]) << " "
|
||||
<< static_cast<uint32_t>(g[e[2]]) << " " << endl;
|
||||
*/
|
||||
}
|
||||
g_.swap(g);
|
||||
}
|
||||
|
||||
void MPHIndex::Ranking() {
|
||||
uint32_t nbytes_total = static_cast<uint32_t>(ceil(n_ / 4.0));
|
||||
uint32_t size = k_ >> 2U;
|
||||
uint32_t ranktable_size = static_cast<uint32_t>(
|
||||
ceil(n_ / static_cast<double>(k_)));
|
||||
vector<uint32_t> ranktable(ranktable_size);
|
||||
uint32_t offset = 0;
|
||||
uint32_t count = 0;
|
||||
uint32_t i = 1;
|
||||
while (1) {
|
||||
if (i == ranktable.size()) break;
|
||||
uint32_t nbytes = size < nbytes_total ? size : nbytes_total;
|
||||
for (uint32_t j = 0; j < nbytes; ++j) {
|
||||
count += kBdzLookupIndex[g_.data()[offset + j]];
|
||||
}
|
||||
ranktable[i] = count;
|
||||
offset += nbytes;
|
||||
nbytes_total -= size;
|
||||
++i;
|
||||
}
|
||||
ranktable_.swap(ranktable);
|
||||
}
|
||||
|
||||
uint32_t MPHIndex::Rank(uint32_t vertex) const {
|
||||
if (ranktable_.empty()) return 0;
|
||||
uint32_t index = vertex >> b_;
|
||||
uint32_t base_rank = ranktable_[index];
|
||||
uint32_t beg_idx_v = index << b_;
|
||||
uint32_t beg_idx_b = beg_idx_v >> 2;
|
||||
uint32_t end_idx_b = vertex >> 2;
|
||||
while (beg_idx_b < end_idx_b) {
|
||||
assert(g_.data().size() > beg_idx_b);
|
||||
base_rank += kBdzLookupIndex[g_.data()[beg_idx_b++]];
|
||||
}
|
||||
beg_idx_v = beg_idx_b << 2;
|
||||
/*
|
||||
cerr << "beg_idx_v: " << beg_idx_v << endl;
|
||||
cerr << "base rank: " << base_rank << endl;
|
||||
cerr << "G: ";
|
||||
for (unsigned int i = 0; i < n_; ++i) {
|
||||
cerr << static_cast<uint32_t>(g_[i]) << " ";
|
||||
}
|
||||
cerr << endl;
|
||||
*/
|
||||
while (beg_idx_v < vertex) {
|
||||
if (g_[beg_idx_v] != kUnassigned) ++base_rank;
|
||||
++beg_idx_v;
|
||||
}
|
||||
// cerr << "Base rank: " << base_rank << endl;
|
||||
return base_rank;
|
||||
}
|
||||
|
||||
void MPHIndex::swap(std::vector<uint32_t>& params, dynamic_2bitset& g, std::vector<uint32_t>& ranktable) {
|
||||
params.resize(12);
|
||||
uint32_t rounded_c = c_ * 1000 * 1000;
|
||||
std::swap(params[0], rounded_c);
|
||||
c_ = static_cast<double>(rounded_c) / 1000 / 1000;
|
||||
std::swap(params[1], m_);
|
||||
std::swap(params[2], n_);
|
||||
std::swap(params[3], k_);
|
||||
uint32_t uint32_square = static_cast<uint32_t>(square_);
|
||||
std::swap(params[4], uint32_square);
|
||||
square_ = uint32_square;
|
||||
std::swap(params[5], hash_seed_[0]);
|
||||
std::swap(params[6], hash_seed_[1]);
|
||||
std::swap(params[7], hash_seed_[2]);
|
||||
g.swap(g_);
|
||||
ranktable.swap(ranktable_);
|
||||
}
|
||||
|
||||
} // namespace cxxmph
|
270
deps/cmph/cxxmph/mph_index.h
vendored
Normal file
270
deps/cmph/cxxmph/mph_index.h
vendored
Normal file
@ -0,0 +1,270 @@
|
||||
#ifndef __CXXMPH_MPH_INDEX_H__
|
||||
#define __CXXMPH_MPH_INDEX_H__
|
||||
|
||||
// Minimal perfect hash abstraction implementing the BDZ algorithm
|
||||
//
|
||||
// This is a data structure that given a set of known keys S, will create a
|
||||
// mapping from S to [0..|S|). The class is informed about S through the Reset
|
||||
// method and the mapping is queried by calling index(key).
|
||||
//
|
||||
// This is a pretty uncommon data structure, and if you application has a real
|
||||
// use case for it, chances are that it is a real win. If all you are doing is
|
||||
// a straightforward implementation of an in-memory associative mapping data
|
||||
// structure, then it will probably be slower. Take a look at mph_map.h
|
||||
// instead.
|
||||
//
|
||||
// Thesis presenting this and similar algorithms:
|
||||
// http://homepages.dcc.ufmg.br/~fbotelho/en/talks/thesis2008/thesis.pdf
|
||||
//
|
||||
// Notes:
|
||||
//
|
||||
// Most users can use the SimpleMPHIndex wrapper instead of the MPHIndex which
|
||||
// have confusing template parameters.
|
||||
// This class only implements a minimal perfect hash function, it does not
|
||||
// implement an associative mapping data structure.
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include <cassert>
|
||||
#include <climits>
|
||||
#include <cmath>
|
||||
#include <unordered_map> // for std::hash
|
||||
#include <vector>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
using std::cerr;
|
||||
using std::endl;
|
||||
|
||||
#include "seeded_hash.h"
|
||||
#include "mph_bits.h"
|
||||
#include "trigraph.h"
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
class MPHIndex {
|
||||
public:
|
||||
MPHIndex(bool square = false, double c = 1.23, uint8_t b = 7) :
|
||||
c_(c), b_(b), m_(0), n_(0), k_(0), square_(square), r_(1), g_(8, true) {
|
||||
nest_displacement_[0] = 0;
|
||||
nest_displacement_[1] = r_;
|
||||
nest_displacement_[2] = (r_ << 1);
|
||||
}
|
||||
~MPHIndex();
|
||||
|
||||
template <class SeededHashFcn, class ForwardIterator>
|
||||
bool Reset(ForwardIterator begin, ForwardIterator end, uint32_t size);
|
||||
template <class SeededHashFcn, class Key> // must agree with Reset
|
||||
// Get a unique identifier for k, in the range [0;size()). If x wasn't part
|
||||
// of the input in the last Reset call, returns a random value.
|
||||
uint32_t index(const Key& x) const;
|
||||
uint32_t size() const { return m_; }
|
||||
void clear();
|
||||
|
||||
// Advanced users functions. Please avoid unless you know what you are doing.
|
||||
uint32_t perfect_hash_size() const { return n_; }
|
||||
template <class SeededHashFcn, class Key> // must agree with Reset
|
||||
uint32_t perfect_hash(const Key& x) const; // way faster than the minimal
|
||||
template <class SeededHashFcn, class Key> // must agree with Reset
|
||||
uint32_t perfect_square(const Key& x) const; // even faster but needs square=true
|
||||
uint32_t minimal_perfect_hash_size() const { return size(); }
|
||||
template <class SeededHashFcn, class Key> // must agree with Reset
|
||||
uint32_t minimal_perfect_hash(const Key& x) const;
|
||||
|
||||
// Experimental api to use as a serialization building block.
|
||||
// Since this signature exposes some implementation details, expect it to
|
||||
// change.
|
||||
void swap(std::vector<uint32_t>& params, dynamic_2bitset& g, std::vector<uint32_t>& ranktable);
|
||||
|
||||
private:
|
||||
template <class SeededHashFcn, class ForwardIterator>
|
||||
bool Mapping(ForwardIterator begin, ForwardIterator end,
|
||||
std::vector<TriGraph::Edge>* edges,
|
||||
std::vector<uint32_t>* queue);
|
||||
bool GenerateQueue(TriGraph* graph, std::vector<uint32_t>* queue);
|
||||
void Assigning(const std::vector<TriGraph::Edge>& edges,
|
||||
const std::vector<uint32_t>& queue);
|
||||
void Ranking();
|
||||
uint32_t Rank(uint32_t vertex) const;
|
||||
|
||||
// Algorithm parameters
|
||||
// Perfect hash function density. If this was a 2graph,
|
||||
// then probability of having an acyclic graph would be
|
||||
// sqrt(1-(2/c)^2). See section 3 for details.
|
||||
// http://www.it-c.dk/people/pagh/papers/simpleperf.pdf
|
||||
double c_;
|
||||
uint8_t b_; // Number of bits of the kth index in the ranktable
|
||||
|
||||
// Values used during generation
|
||||
uint32_t m_; // edges count
|
||||
uint32_t n_; // vertex count
|
||||
uint32_t k_; // kth index in ranktable, $k = log_2(n=3r)\varepsilon$
|
||||
bool square_; // make bit vector size a power of 2
|
||||
|
||||
// Values used during search
|
||||
|
||||
// Partition vertex count, derived from c parameter.
|
||||
uint32_t r_;
|
||||
uint32_t nest_displacement_[3]; // derived from r_
|
||||
|
||||
// The array containing the minimal perfect hash function graph.
|
||||
dynamic_2bitset g_;
|
||||
uint8_t threebit_mod3[10]; // speed up mod3 calculation for 3bit ints
|
||||
// The table used for the rank step of the minimal perfect hash function
|
||||
std::vector<uint32_t> ranktable_;
|
||||
// The selected hash seed triplet for finding the edges in the minimal
|
||||
// perfect hash function graph.
|
||||
uint32_t hash_seed_[3];
|
||||
};
|
||||
|
||||
// Template method needs to go in the header file.
|
||||
template <class SeededHashFcn, class ForwardIterator>
|
||||
bool MPHIndex::Reset(
|
||||
ForwardIterator begin, ForwardIterator end, uint32_t size) {
|
||||
if (end == begin) {
|
||||
clear();
|
||||
return true;
|
||||
}
|
||||
m_ = size;
|
||||
r_ = static_cast<uint32_t>(ceil((c_*m_)/3));
|
||||
if ((r_ % 2) == 0) r_ += 1;
|
||||
// This can be used to speed mods, but increases occupation too much.
|
||||
// Needs to try http://gmplib.org/manual/Integer-Exponentiation.html instead
|
||||
if (square_) r_ = nextpoweroftwo(r_);
|
||||
nest_displacement_[0] = 0;
|
||||
nest_displacement_[1] = r_;
|
||||
nest_displacement_[2] = (r_ << 1);
|
||||
for (uint32_t i = 0; i < sizeof(threebit_mod3); ++i) threebit_mod3[i] = i % 3;
|
||||
|
||||
n_ = 3*r_;
|
||||
k_ = 1U << b_;
|
||||
|
||||
// cerr << "m " << m_ << " n " << n_ << " r " << r_ << endl;
|
||||
|
||||
int iterations = 1000;
|
||||
std::vector<TriGraph::Edge> edges;
|
||||
std::vector<uint32_t> queue;
|
||||
while (1) {
|
||||
// cerr << "Iterations missing: " << iterations << endl;
|
||||
for (int i = 0; i < 3; ++i) hash_seed_[i] = random();
|
||||
if (Mapping<SeededHashFcn>(begin, end, &edges, &queue)) break;
|
||||
else --iterations;
|
||||
if (iterations == 0) break;
|
||||
}
|
||||
if (iterations == 0) return false;
|
||||
Assigning(edges, queue);
|
||||
std::vector<TriGraph::Edge>().swap(edges);
|
||||
Ranking();
|
||||
return true;
|
||||
}
|
||||
|
||||
template <class SeededHashFcn, class ForwardIterator>
|
||||
bool MPHIndex::Mapping(
|
||||
ForwardIterator begin, ForwardIterator end,
|
||||
std::vector<TriGraph::Edge>* edges, std::vector<uint32_t>* queue) {
|
||||
TriGraph graph(n_, m_);
|
||||
for (ForwardIterator it = begin; it != end; ++it) {
|
||||
h128 h = SeededHashFcn().hash128(*it, hash_seed_[0]);
|
||||
// for (int i = 0; i < 3; ++i) h[i] = SeededHashFcn()(*it, hash_seed_[i]);
|
||||
uint32_t v0 = h[0] % r_;
|
||||
uint32_t v1 = h[1] % r_ + r_;
|
||||
uint32_t v2 = h[2] % r_ + (r_ << 1);
|
||||
// cerr << "Key: " << *it << " edge " << it - begin << " (" << v0 << "," << v1 << "," << v2 << ")" << endl;
|
||||
graph.AddEdge(TriGraph::Edge(v0, v1, v2));
|
||||
}
|
||||
if (GenerateQueue(&graph, queue)) {
|
||||
graph.ExtractEdgesAndClear(edges);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template <class SeededHashFcn, class Key>
|
||||
uint32_t MPHIndex::perfect_square(const Key& key) const {
|
||||
h128 h = SeededHashFcn().hash128(key, hash_seed_[0]);
|
||||
h[0] = (h[0] & (r_-1)) + nest_displacement_[0];
|
||||
h[1] = (h[1] & (r_-1)) + nest_displacement_[1];
|
||||
h[2] = (h[2] & (r_-1)) + nest_displacement_[2];
|
||||
assert((h[0]) < g_.size());
|
||||
assert((h[1]) < g_.size());
|
||||
assert((h[2]) < g_.size());
|
||||
uint8_t nest = threebit_mod3[g_[h[0]] + g_[h[1]] + g_[h[2]]];
|
||||
uint32_t vertex = h[nest];
|
||||
return vertex;
|
||||
}
|
||||
|
||||
template <class SeededHashFcn, class Key>
|
||||
uint32_t MPHIndex::perfect_hash(const Key& key) const {
|
||||
if (!g_.size()) return 0;
|
||||
h128 h = SeededHashFcn().hash128(key, hash_seed_[0]);
|
||||
h[0] = (h[0] % r_) + nest_displacement_[0];
|
||||
h[1] = (h[1] % r_) + nest_displacement_[1];
|
||||
h[2] = (h[2] % r_) + nest_displacement_[2];
|
||||
assert((h[0]) < g_.size());
|
||||
assert((h[1]) < g_.size());
|
||||
assert((h[2]) < g_.size());
|
||||
uint8_t nest = threebit_mod3[g_[h[0]] + g_[h[1]] + g_[h[2]]];
|
||||
uint32_t vertex = h[nest];
|
||||
return vertex;
|
||||
}
|
||||
|
||||
template <class SeededHashFcn, class Key>
|
||||
uint32_t MPHIndex::minimal_perfect_hash(const Key& key) const {
|
||||
return Rank(perfect_hash<SeededHashFcn, Key>(key));
|
||||
}
|
||||
|
||||
template <class SeededHashFcn, class Key>
|
||||
uint32_t MPHIndex::index(const Key& key) const {
|
||||
return minimal_perfect_hash<SeededHashFcn, Key>(key);
|
||||
}
|
||||
|
||||
// Simple wrapper around MPHIndex to simplify calling code. Please refer to the
|
||||
// MPHIndex class for documentation.
|
||||
template <class Key, class HashFcn = typename seeded_hash<std::hash<Key>>::hash_function>
|
||||
class SimpleMPHIndex : public MPHIndex {
|
||||
public:
|
||||
SimpleMPHIndex(bool advanced_usage = false) : MPHIndex(advanced_usage) {}
|
||||
template <class ForwardIterator>
|
||||
bool Reset(ForwardIterator begin, ForwardIterator end, uint32_t size) {
|
||||
return MPHIndex::Reset<HashFcn>(begin, end, size);
|
||||
}
|
||||
uint32_t index(const Key& key) const { return MPHIndex::index<HashFcn>(key); }
|
||||
};
|
||||
|
||||
// The parameters minimal and square trade memory usage for evaluation speed.
|
||||
// Minimal decreases speed and memory usage, and square does the opposite.
|
||||
// Using minimal=true and square=false is the same as SimpleMPHIndex.
|
||||
template <bool minimal, bool square, class Key, class HashFcn>
|
||||
struct FlexibleMPHIndex {};
|
||||
|
||||
template <class Key, class HashFcn>
|
||||
struct FlexibleMPHIndex<true, false, Key, HashFcn>
|
||||
: public SimpleMPHIndex<Key, HashFcn> {
|
||||
FlexibleMPHIndex() : SimpleMPHIndex<Key, HashFcn>(false) {}
|
||||
uint32_t index(const Key& key) const {
|
||||
return MPHIndex::minimal_perfect_hash<HashFcn>(key); }
|
||||
uint32_t size() const { return MPHIndex::minimal_perfect_hash_size(); }
|
||||
};
|
||||
template <class Key, class HashFcn>
|
||||
struct FlexibleMPHIndex<false, true, Key, HashFcn>
|
||||
: public SimpleMPHIndex<Key, HashFcn> {
|
||||
FlexibleMPHIndex() : SimpleMPHIndex<Key, HashFcn>(true) {}
|
||||
uint32_t index(const Key& key) const {
|
||||
return MPHIndex::perfect_square<HashFcn>(key); }
|
||||
uint32_t size() const { return MPHIndex::perfect_hash_size(); }
|
||||
};
|
||||
template <class Key, class HashFcn>
|
||||
struct FlexibleMPHIndex<false, false, Key, HashFcn>
|
||||
: public SimpleMPHIndex<Key, HashFcn> {
|
||||
FlexibleMPHIndex() : SimpleMPHIndex<Key, HashFcn>(false) {}
|
||||
uint32_t index(const Key& key) const {
|
||||
return MPHIndex::perfect_hash<HashFcn>(key); }
|
||||
uint32_t size() const { return MPHIndex::perfect_hash_size(); }
|
||||
};
|
||||
// From a trade-off perspective this case does not make much sense.
|
||||
// template <class Key, class HashFcn>
|
||||
// class FlexibleMPHIndex<true, true, Key, HashFcn>
|
||||
|
||||
} // namespace cxxmph
|
||||
|
||||
#endif // __CXXMPH_MPH_INDEX_H__
|
53
deps/cmph/cxxmph/mph_index_test.cc
vendored
Normal file
53
deps/cmph/cxxmph/mph_index_test.cc
vendored
Normal file
@ -0,0 +1,53 @@
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "mph_index.h"
|
||||
|
||||
using std::string;
|
||||
using std::vector;
|
||||
using namespace cxxmph;
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
srand(1);
|
||||
vector<string> keys;
|
||||
keys.push_back("davi");
|
||||
keys.push_back("paulo");
|
||||
keys.push_back("joao");
|
||||
keys.push_back("maria");
|
||||
keys.push_back("bruno");
|
||||
keys.push_back("paula");
|
||||
keys.push_back("diego");
|
||||
keys.push_back("diogo");
|
||||
keys.push_back("algume");
|
||||
|
||||
SimpleMPHIndex<string> mph_index;
|
||||
if (!mph_index.Reset(keys.begin(), keys.end(), keys.size())) { exit(-1); }
|
||||
vector<int> ids;
|
||||
for (vector<int>::size_type i = 0; i < keys.size(); ++i) {
|
||||
ids.push_back(mph_index.index(keys[i]));
|
||||
cerr << " " << *(ids.end() - 1);
|
||||
}
|
||||
cerr << endl;
|
||||
sort(ids.begin(), ids.end());
|
||||
for (vector<int>::size_type i = 0; i < ids.size(); ++i) assert(ids[i] == static_cast<vector<int>::value_type>(i));
|
||||
|
||||
// Test serialization
|
||||
vector<uint32_t> params;
|
||||
dynamic_2bitset g;
|
||||
vector<uint32_t> ranktable;
|
||||
mph_index.swap(params, g, ranktable);
|
||||
assert(mph_index.size() == 0);
|
||||
mph_index.swap(params, g, ranktable);
|
||||
assert(mph_index.size() == ids.size());
|
||||
for (vector<int>::size_type i = 0; i < ids.size(); ++i) assert(ids[i] == static_cast<vector<int>::value_type>(i));
|
||||
|
||||
FlexibleMPHIndex<false, true, int64_t, seeded_hash<std::hash<int64_t>>::hash_function> square_empty;
|
||||
auto id = square_empty.index(1);
|
||||
FlexibleMPHIndex<false, false, int64_t, seeded_hash<std::hash<int64_t>>::hash_function> unordered_empty;
|
||||
id ^= unordered_empty.index(1);
|
||||
FlexibleMPHIndex<true, false, int64_t, seeded_hash<std::hash<int64_t>>::hash_function> minimal_empty;
|
||||
id ^= minimal_empty.index(1);
|
||||
}
|
272
deps/cmph/cxxmph/mph_map.h
vendored
Normal file
272
deps/cmph/cxxmph/mph_map.h
vendored
Normal file
@ -0,0 +1,272 @@
|
||||
#ifndef __CXXMPH_MPH_MAP_H__
|
||||
#define __CXXMPH_MPH_MAP_H__
|
||||
// Implementation of the unordered associative mapping interface using a
|
||||
// minimal perfect hash function.
|
||||
//
|
||||
// Since these are header-mostly libraries, make sure you compile your code
|
||||
// with -DNDEBUG and -O3. The code requires a modern C++11 compiler.
|
||||
//
|
||||
// The container comes in 3 flavors, all in the cxxmph namespace and drop-in
|
||||
// replacement for the popular classes with the same names.
|
||||
// * dense_hash_map
|
||||
// -> fast, uses more memory, 2.93 bits per bucket, ~50% occupation
|
||||
// * unordered_map (aliases: hash_map, mph_map)
|
||||
// -> middle ground, uses 2.93 bits per bucket, ~81% occupation
|
||||
// * sparse_hash_map -> slower, uses 3.6 bits per bucket
|
||||
// -> less fast, uses 3.6 bits per bucket, 100% occupation
|
||||
//
|
||||
// Those classes are not necessarily faster than their existing counterparts.
|
||||
// Benchmark your code before using it. The larger the key, the larger the
|
||||
// number of elements inserted, and the bigger the number of failed searches,
|
||||
// the more likely those classes will outperform existing code.
|
||||
//
|
||||
// For large sets of urls (>100k), which are a somewhat expensive to compare, I
|
||||
// found those class to be about 10%-50% faster than unordered_map.
|
||||
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <limits>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
#include <utility> // for std::pair
|
||||
|
||||
#include "string_util.h"
|
||||
#include "hollow_iterator.h"
|
||||
#include "mph_bits.h"
|
||||
#include "mph_index.h"
|
||||
#include "seeded_hash.h"
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
using std::pair;
|
||||
using std::make_pair;
|
||||
using std::vector;
|
||||
|
||||
// Save on repetitive typing.
|
||||
#define MPH_MAP_TMPL_SPEC \
|
||||
template <bool minimal, bool square, \
|
||||
class Key, class Data, class HashFcn, class EqualKey, class Alloc>
|
||||
#define MPH_MAP_CLASS_SPEC mph_map_base<minimal, square, Key, Data, HashFcn, EqualKey, Alloc>
|
||||
#define MPH_MAP_METHOD_DECL(r, m) MPH_MAP_TMPL_SPEC typename MPH_MAP_CLASS_SPEC::r MPH_MAP_CLASS_SPEC::m
|
||||
#define MPH_MAP_INLINE_METHOD_DECL(r, m) MPH_MAP_TMPL_SPEC inline typename MPH_MAP_CLASS_SPEC::r MPH_MAP_CLASS_SPEC::m
|
||||
|
||||
template <bool minimal, bool square, class Key, class Data, class HashFcn = std::hash<Key>, class EqualKey = std::equal_to<Key>, class Alloc = std::allocator<Data> >
|
||||
class mph_map_base {
|
||||
public:
|
||||
typedef Key key_type;
|
||||
typedef Data data_type;
|
||||
typedef pair<Key, Data> value_type;
|
||||
typedef HashFcn hasher;
|
||||
typedef EqualKey key_equal;
|
||||
|
||||
typedef typename vector<value_type>::pointer pointer;
|
||||
typedef typename vector<value_type>::reference reference;
|
||||
typedef typename vector<value_type>::const_reference const_reference;
|
||||
typedef typename vector<value_type>::size_type size_type;
|
||||
typedef typename vector<value_type>::difference_type difference_type;
|
||||
|
||||
typedef is_empty<const vector<value_type>> is_empty_type;
|
||||
typedef hollow_iterator_base<typename vector<value_type>::iterator, is_empty_type> iterator;
|
||||
typedef hollow_iterator_base<typename vector<value_type>::const_iterator, is_empty_type> const_iterator;
|
||||
|
||||
// For making macros simpler.
|
||||
typedef void void_type;
|
||||
typedef bool bool_type;
|
||||
typedef pair<iterator, bool> insert_return_type;
|
||||
|
||||
mph_map_base();
|
||||
~mph_map_base();
|
||||
|
||||
iterator begin();
|
||||
iterator end();
|
||||
const_iterator begin() const;
|
||||
const_iterator end() const;
|
||||
size_type size() const;
|
||||
bool empty() const;
|
||||
void clear();
|
||||
void erase(iterator pos);
|
||||
void erase(const key_type& k);
|
||||
pair<iterator, bool> insert(const value_type& x);
|
||||
inline iterator find(const key_type& k);
|
||||
inline const_iterator find(const key_type& k) const;
|
||||
typedef int32_t my_int32_t; // help macros
|
||||
inline int32_t index(const key_type& k) const;
|
||||
data_type& operator[](const key_type &k);
|
||||
const data_type& operator[](const key_type &k) const;
|
||||
|
||||
size_type bucket_count() const { return index_.size() + slack_.bucket_count(); }
|
||||
void rehash(size_type nbuckets /*ignored*/);
|
||||
|
||||
protected: // mimicking STL implementation
|
||||
EqualKey equal_;
|
||||
|
||||
private:
|
||||
template <typename iterator>
|
||||
struct iterator_first : public iterator {
|
||||
iterator_first(iterator it) : iterator(it) { }
|
||||
const typename iterator::value_type::first_type& operator*() {
|
||||
return this->iterator::operator*().first;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename iterator>
|
||||
iterator_first<iterator> make_iterator_first(iterator it) {
|
||||
return iterator_first<iterator>(it);
|
||||
}
|
||||
|
||||
void pack();
|
||||
vector<value_type> values_;
|
||||
vector<bool> present_;
|
||||
FlexibleMPHIndex<minimal, square, Key, typename seeded_hash<HashFcn>::hash_function> index_;
|
||||
// TODO(davi) optimize slack to use hash from index rather than calculate its own
|
||||
typedef std::unordered_map<h128, uint32_t, h128::hash32> slack_type;
|
||||
slack_type slack_;
|
||||
size_type size_;
|
||||
typename seeded_hash<HashFcn>::hash_function hasher128_;
|
||||
};
|
||||
|
||||
MPH_MAP_TMPL_SPEC
|
||||
bool operator==(const MPH_MAP_CLASS_SPEC& lhs, const MPH_MAP_CLASS_SPEC& rhs) {
|
||||
return lhs.size() == rhs.size() && std::equal(lhs.begin(), lhs.end(), rhs.begin());
|
||||
}
|
||||
|
||||
MPH_MAP_TMPL_SPEC MPH_MAP_CLASS_SPEC::mph_map_base() : size_(0) {
|
||||
clear();
|
||||
pack();
|
||||
}
|
||||
MPH_MAP_TMPL_SPEC MPH_MAP_CLASS_SPEC::~mph_map_base() { }
|
||||
|
||||
MPH_MAP_METHOD_DECL(insert_return_type, insert)(const value_type& x) {
|
||||
auto it = find(x.first);
|
||||
auto it_end = end();
|
||||
if (it != it_end) return make_pair(it, false);
|
||||
bool should_pack = false;
|
||||
if (values_.capacity() == values_.size() && values_.size() > 256) {
|
||||
should_pack = true;
|
||||
}
|
||||
values_.push_back(x);
|
||||
present_.push_back(true);
|
||||
++size_;
|
||||
h128 h = hasher128_.hash128(x.first, 0);
|
||||
if (slack_.find(h) != slack_.end()) should_pack = true; // unavoidable pack
|
||||
else slack_.insert(std::make_pair(h, values_.size() - 1));
|
||||
if (should_pack) pack();
|
||||
it = find(x.first);
|
||||
return make_pair(it, true);
|
||||
}
|
||||
|
||||
MPH_MAP_METHOD_DECL(void_type, pack)() {
|
||||
// CXXMPH_DEBUGLN("Packing %v values")(values_.size());
|
||||
if (values_.empty()) return;
|
||||
assert(std::unordered_set<key_type>(make_iterator_first(begin()), make_iterator_first(end())).size() == size());
|
||||
bool success = index_.Reset(
|
||||
make_iterator_first(begin()),
|
||||
make_iterator_first(end()), size_);
|
||||
if (!success) { exit(-1); }
|
||||
vector<value_type> new_values(index_.size());
|
||||
new_values.reserve(new_values.size() * 2);
|
||||
vector<bool> new_present(index_.size(), false);
|
||||
new_present.reserve(new_present.size() * 2);
|
||||
for (iterator it = begin(), it_end = end(); it != it_end; ++it) {
|
||||
size_type id = index_.index(it->first);
|
||||
assert(id < index_.size());
|
||||
assert(id < new_values.size());
|
||||
new_values[id] = *it;
|
||||
new_present[id] = true;
|
||||
}
|
||||
// fprintf(stderr, "Collision ratio: %f\n", collisions*1.0/size());
|
||||
values_.swap(new_values);
|
||||
present_.swap(new_present);
|
||||
slack_type().swap(slack_);
|
||||
}
|
||||
|
||||
MPH_MAP_METHOD_DECL(iterator, begin)() { return make_hollow(&values_, &present_, values_.begin()); }
|
||||
MPH_MAP_METHOD_DECL(iterator, end)() { return make_solid(&values_, &present_, values_.end()); }
|
||||
MPH_MAP_METHOD_DECL(const_iterator, begin)() const { return make_hollow(&values_, &present_, values_.begin()); }
|
||||
MPH_MAP_METHOD_DECL(const_iterator, end)() const { return make_solid(&values_, &present_, values_.end()); }
|
||||
MPH_MAP_METHOD_DECL(bool_type, empty)() const { return size_ == 0; }
|
||||
MPH_MAP_METHOD_DECL(size_type, size)() const { return size_; }
|
||||
|
||||
MPH_MAP_METHOD_DECL(void_type, clear)() {
|
||||
values_.clear();
|
||||
present_.clear();
|
||||
slack_.clear();
|
||||
index_.clear();
|
||||
size_ = 0;
|
||||
}
|
||||
|
||||
MPH_MAP_METHOD_DECL(void_type, erase)(iterator pos) {
|
||||
assert(pos.it_ - values_.begin() < present_.size());
|
||||
assert(present_[pos.it_ - values_.begin()]);
|
||||
present_[pos.it_ - values_.begin()] = false;
|
||||
*pos = value_type();
|
||||
--size_;
|
||||
}
|
||||
MPH_MAP_METHOD_DECL(void_type, erase)(const key_type& k) {
|
||||
iterator it = find(k);
|
||||
if (it == end()) return;
|
||||
erase(it);
|
||||
}
|
||||
|
||||
MPH_MAP_INLINE_METHOD_DECL(const_iterator, find)(const key_type& k) const {
|
||||
auto idx = index(k);
|
||||
typename vector<value_type>::const_iterator vit = values_.begin() + idx;
|
||||
if (idx == -1 || !equal_(vit->first, k)) return end();
|
||||
return make_solid(&values_, &present_, vit);;
|
||||
}
|
||||
|
||||
MPH_MAP_INLINE_METHOD_DECL(iterator, find)(const key_type& k) {
|
||||
auto idx = index(k);
|
||||
typename vector<value_type>::iterator vit = values_.begin() + idx;
|
||||
if (idx == -1 || !equal_(vit->first, k)) return end();
|
||||
return make_solid(&values_, &present_, vit);;
|
||||
}
|
||||
|
||||
MPH_MAP_INLINE_METHOD_DECL(my_int32_t, index)(const key_type& k) const {
|
||||
if (__builtin_expect(!slack_.empty(), 0)) {
|
||||
auto sit = slack_.find(hasher128_.hash128(k, 0));
|
||||
if (sit != slack_.end()) return sit->second;
|
||||
}
|
||||
if (__builtin_expect(index_.size(), 1)) {
|
||||
auto id = index_.index(k);
|
||||
if (__builtin_expect(present_[id], true)) return id;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
MPH_MAP_METHOD_DECL(data_type&, operator[])(const key_type& k) {
|
||||
return insert(make_pair(k, data_type())).first->second;
|
||||
}
|
||||
MPH_MAP_METHOD_DECL(void_type, rehash)(size_type /*nbuckets*/) {
|
||||
pack();
|
||||
vector<value_type>(values_.begin(), values_.end()).swap(values_);
|
||||
vector<bool>(present_.begin(), present_.end()).swap(present_);
|
||||
slack_type().swap(slack_);
|
||||
}
|
||||
|
||||
#define MPH_MAP_PREAMBLE template <class Key, class Data,\
|
||||
class HashFcn = std::hash<Key>, class EqualKey = std::equal_to<Key>,\
|
||||
class Alloc = std::allocator<Data> >
|
||||
|
||||
MPH_MAP_PREAMBLE class mph_map : public mph_map_base<
|
||||
false, false, Key, Data, HashFcn, EqualKey, Alloc> {};
|
||||
MPH_MAP_PREAMBLE class unordered_map : public mph_map_base<
|
||||
false, false, Key, Data, HashFcn, EqualKey, Alloc> {};
|
||||
MPH_MAP_PREAMBLE class hash_map : public mph_map_base<
|
||||
false, false, Key, Data, HashFcn, EqualKey, Alloc> {};
|
||||
|
||||
MPH_MAP_PREAMBLE class dense_hash_map : public mph_map_base<
|
||||
false, true, Key, Data, HashFcn, EqualKey, Alloc> {};
|
||||
MPH_MAP_PREAMBLE class sparse_hash_map : public mph_map_base<
|
||||
true, false, Key, Data, HashFcn, EqualKey, Alloc> {};
|
||||
|
||||
#undef MPH_MAP_TMPL_SPEC
|
||||
#undef MPH_MAP_CLASS_SPEC
|
||||
#undef MPH_MAP_METHOD_DECL
|
||||
#undef MPH_MAP_INLINE_METHOD_DECL
|
||||
#undef MPH_MAP_PREAMBLE
|
||||
|
||||
} // namespace cxxmph
|
||||
|
||||
#endif // __CXXMPH_MPH_MAP_H__
|
25
deps/cmph/cxxmph/mph_map_test.cc
vendored
Normal file
25
deps/cmph/cxxmph/mph_map_test.cc
vendored
Normal file
@ -0,0 +1,25 @@
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
#include "mph_map.h"
|
||||
#include "map_tester.h"
|
||||
#include "test.h"
|
||||
|
||||
using namespace cxxmph;
|
||||
|
||||
typedef MapTester<mph_map> Tester;
|
||||
|
||||
CXXMPH_CXX_TEST_CASE(empty_find, Tester::empty_find);
|
||||
CXXMPH_CXX_TEST_CASE(empty_erase, Tester::empty_erase);
|
||||
CXXMPH_CXX_TEST_CASE(small_insert, Tester::small_insert);
|
||||
CXXMPH_CXX_TEST_CASE(large_insert, Tester::large_insert);
|
||||
CXXMPH_CXX_TEST_CASE(small_search, Tester::small_search);
|
||||
CXXMPH_CXX_TEST_CASE(default_search, Tester::default_search);
|
||||
CXXMPH_CXX_TEST_CASE(large_search, Tester::large_search);
|
||||
CXXMPH_CXX_TEST_CASE(string_search, Tester::string_search);
|
||||
CXXMPH_CXX_TEST_CASE(rehash_zero, Tester::rehash_zero);
|
||||
CXXMPH_CXX_TEST_CASE(rehash_size, Tester::rehash_size);
|
||||
CXXMPH_CXX_TEST_CASE(erase_value, Tester::erase_value);
|
||||
CXXMPH_CXX_TEST_CASE(erase_iterator, Tester::erase_iterator);
|
147
deps/cmph/cxxmph/seeded_hash.h
vendored
Normal file
147
deps/cmph/cxxmph/seeded_hash.h
vendored
Normal file
@ -0,0 +1,147 @@
|
||||
#ifndef __CXXMPH_SEEDED_HASH_H__
|
||||
#define __CXXMPH_SEEDED_HASH_H__
|
||||
|
||||
#include <stdint.h> // for uint32_t and friends
|
||||
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <unordered_map> // for std::hash
|
||||
|
||||
#include "MurmurHash3.h"
|
||||
#include "stringpiece.h"
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
struct h128 {
|
||||
const uint32_t& operator[](uint8_t i) const { return uint32[i]; }
|
||||
uint32_t& operator[](uint8_t i) { return uint32[i]; }
|
||||
uint64_t get64(bool second) const { return (static_cast<uint64_t>(uint32[second << 1]) << 32) | uint32[1 + (second << 1)]; }
|
||||
void set64(uint64_t v, bool second) { uint32[second << 1] = v >> 32; uint32[1+(second<<1)] = ((v << 32) >> 32); }
|
||||
bool operator==(const h128 rhs) const { return memcmp(uint32, rhs.uint32, sizeof(uint32)) == 0; }
|
||||
|
||||
uint32_t uint32[4];
|
||||
|
||||
struct hash32 { uint32_t operator()(const cxxmph::h128& h) const { return h[3]; } };
|
||||
};
|
||||
|
||||
template <class HashFcn>
|
||||
struct seeded_hash_function {
|
||||
template <class Key>
|
||||
uint32_t operator()(const Key& k, uint32_t seed) const {
|
||||
uint32_t h;
|
||||
uint32_t h0 = HashFcn()(k);
|
||||
MurmurHash3_x86_32(reinterpret_cast<const void*>(&h0), 4, seed, &h);
|
||||
return h;
|
||||
}
|
||||
template <class Key>
|
||||
h128 hash128(const Key& k, uint32_t seed) const {
|
||||
h128 h;
|
||||
uint32_t h0 = HashFcn()(k);
|
||||
MurmurHash3_x64_128(reinterpret_cast<const void*>(&h0), 4, seed, &h);
|
||||
return h;
|
||||
}
|
||||
};
|
||||
|
||||
struct Murmur3 {
|
||||
template<class Key>
|
||||
uint32_t operator()(const Key& k) const {
|
||||
uint32_t out;
|
||||
MurmurHash3_x86_32(reinterpret_cast<const void*>(&k), sizeof(Key), 1 /* seed */, &out);
|
||||
return out;
|
||||
}
|
||||
template <class Key>
|
||||
h128 hash128(const Key& k) const {
|
||||
h128 h;
|
||||
MurmurHash3_x64_128(reinterpret_cast<const void*>(&k), sizeof(Key), 1 /* seed */, &h);
|
||||
return h;
|
||||
}
|
||||
};
|
||||
|
||||
struct Murmur3StringPiece {
|
||||
template <class Key>
|
||||
uint32_t operator()(const Key& k) const {
|
||||
StringPiece s(k);
|
||||
uint32_t out;
|
||||
MurmurHash3_x86_32(s.data(), s.length(), 1 /* seed */, &out);
|
||||
return out;
|
||||
}
|
||||
template <class Key>
|
||||
h128 hash128(const Key& k) const {
|
||||
h128 h;
|
||||
StringPiece s(k);
|
||||
MurmurHash3_x64_128(s.data(), s.length(), 1 /* seed */, &h);
|
||||
return h;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct seeded_hash_function<Murmur3> {
|
||||
template <class Key>
|
||||
uint32_t operator()(const Key& k, uint32_t seed) const {
|
||||
uint32_t out;
|
||||
MurmurHash3_x86_32(reinterpret_cast<const void*>(&k), sizeof(Key), seed, &out);
|
||||
return out;
|
||||
}
|
||||
template <class Key>
|
||||
h128 hash128(const Key& k, uint32_t seed) const {
|
||||
h128 h;
|
||||
MurmurHash3_x64_128(reinterpret_cast<const void*>(&k), sizeof(Key), seed, &h);
|
||||
return h;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct seeded_hash_function<Murmur3StringPiece> {
|
||||
template <class Key>
|
||||
uint32_t operator()(const Key& k, uint32_t seed) const {
|
||||
StringPiece s(k);
|
||||
uint32_t out;
|
||||
MurmurHash3_x86_32(s.data(), s.length(), seed, &out);
|
||||
return out;
|
||||
}
|
||||
template <class Key>
|
||||
h128 hash128(const Key& k, uint32_t seed) const {
|
||||
h128 h;
|
||||
StringPiece s(k);
|
||||
MurmurHash3_x64_128(s.data(), s.length(), seed, &h);
|
||||
return h;
|
||||
}
|
||||
};
|
||||
|
||||
template <class HashFcn> struct seeded_hash
|
||||
{ typedef seeded_hash_function<HashFcn> hash_function; };
|
||||
// Use Murmur3 instead for all types defined in std::hash, plus
|
||||
// std::string which is commonly extended.
|
||||
template <> struct seeded_hash<std::hash<char*> >
|
||||
{ typedef seeded_hash_function<Murmur3StringPiece> hash_function; };
|
||||
template <> struct seeded_hash<std::hash<const char*> >
|
||||
{ typedef seeded_hash_function<Murmur3StringPiece> hash_function; };
|
||||
template <> struct seeded_hash<std::hash<std::string> >
|
||||
{ typedef seeded_hash_function<Murmur3StringPiece> hash_function; };
|
||||
template <> struct seeded_hash<std::hash<cxxmph::StringPiece> >
|
||||
{ typedef seeded_hash_function<Murmur3StringPiece> hash_function; };
|
||||
|
||||
template <> struct seeded_hash<std::hash<char> >
|
||||
{ typedef seeded_hash_function<Murmur3> hash_function; };
|
||||
template <> struct seeded_hash<std::hash<unsigned char> >
|
||||
{ typedef seeded_hash_function<Murmur3> hash_function; };
|
||||
template <> struct seeded_hash<std::hash<short> >
|
||||
{ typedef seeded_hash_function<Murmur3> hash_function; };
|
||||
template <> struct seeded_hash<std::hash<unsigned short> >
|
||||
{ typedef seeded_hash_function<Murmur3> hash_function; };
|
||||
template <> struct seeded_hash<std::hash<int> >
|
||||
{ typedef seeded_hash_function<Murmur3> hash_function; };
|
||||
template <> struct seeded_hash<std::hash<unsigned int> >
|
||||
{ typedef seeded_hash_function<Murmur3> hash_function; };
|
||||
template <> struct seeded_hash<std::hash<long> >
|
||||
{ typedef seeded_hash_function<Murmur3> hash_function; };
|
||||
template <> struct seeded_hash<std::hash<unsigned long> >
|
||||
{ typedef seeded_hash_function<Murmur3> hash_function; };
|
||||
template <> struct seeded_hash<std::hash<long long> >
|
||||
{ typedef seeded_hash_function<Murmur3> hash_function; };
|
||||
template <> struct seeded_hash<std::hash<unsigned long long> >
|
||||
{ typedef seeded_hash_function<Murmur3> hash_function; };
|
||||
|
||||
} // namespace cxxmph
|
||||
|
||||
#endif // __CXXMPH_SEEDED_HASH_H__
|
59
deps/cmph/cxxmph/seeded_hash_test.cc
vendored
Normal file
59
deps/cmph/cxxmph/seeded_hash_test.cc
vendored
Normal file
@ -0,0 +1,59 @@
|
||||
#include "seeded_hash.h"
|
||||
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
|
||||
using std::cerr;
|
||||
using std::endl;
|
||||
using std::string;
|
||||
using std::unordered_map;
|
||||
using namespace cxxmph;
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
auto hasher = seeded_hash_function<Murmur3StringPiece>();
|
||||
string key1("0");
|
||||
string key2("1");
|
||||
auto h1 = hasher.hash128(key1, 1);
|
||||
auto h2 = hasher.hash128(key2, 1);
|
||||
if (h1 == h2) {
|
||||
fprintf(stderr, "unexpected murmur collision\n");
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
unordered_map<uint64_t, int> g;
|
||||
for (int i = 0; i < 1000; ++i) g[i] = i;
|
||||
for (int i = 0; i < 1000; ++i) if (g[i] != i) exit(-1);
|
||||
|
||||
auto inthasher = seeded_hash_function<std::hash<uint64_t>>();
|
||||
unordered_map<h128, uint64_t, h128::hash32> g2;
|
||||
for (uint64_t i = 0; i < 1000; ++i) {
|
||||
auto h = inthasher.hash128(i, 0);
|
||||
if (g2.find(h) != g2.end()) {
|
||||
std::cerr << "Incorrectly found " << i << std::endl;
|
||||
exit(-1);
|
||||
}
|
||||
if (h128::hash32()(h) != h[3]) {
|
||||
cerr << "Buggy hash method." << endl;
|
||||
exit(-1);
|
||||
}
|
||||
auto h2 = inthasher.hash128(i, 0);
|
||||
if (!(h == h2)) {
|
||||
cerr << "h 64(0) " << h.get64(0) << " h 64(1) " << h.get64(1) << endl;
|
||||
cerr << " h2 64(0) " << h2.get64(0) << " h2 64(1) " << h2.get64(1) << endl;
|
||||
cerr << "Broken equality for h128" << endl;
|
||||
exit(-1);
|
||||
}
|
||||
if (h128::hash32()(h) != h128::hash32()(h2)) {
|
||||
cerr << "Inconsistent hash method." << endl;
|
||||
exit(-1);
|
||||
}
|
||||
g2[h] = i;
|
||||
if (g2.find(h) == g2.end()) {
|
||||
std::cerr << "Incorrectly missed " << i << std::endl;
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
|
||||
for (uint64_t i = 0; i < 1000; ++i) if (g2[inthasher.hash128(i, 0)] != i) exit(-1);
|
||||
}
|
23
deps/cmph/cxxmph/string_util.cc
vendored
Normal file
23
deps/cmph/cxxmph/string_util.cc
vendored
Normal file
@ -0,0 +1,23 @@
|
||||
#include "string_util.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cstdint>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
bool stream_printf(
|
||||
const std::string& format_string, uint32_t offset, std::ostream* out) {
|
||||
if (offset == format_string.length()) return true;
|
||||
assert(offset < format_string.length());
|
||||
cerr << "length:" << format_string.length() << endl;
|
||||
cerr << "offset:" << offset << endl;
|
||||
auto txt = format_string.substr(offset, format_string.length() - offset);
|
||||
*out << txt;
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace cxxmph
|
133
deps/cmph/cxxmph/string_util.h
vendored
Normal file
133
deps/cmph/cxxmph/string_util.h
vendored
Normal file
@ -0,0 +1,133 @@
|
||||
#ifndef __CXXMPH_STRING_UTIL_H__
|
||||
#define __CXXMPH_STRING_UTIL_H__
|
||||
|
||||
// Helper functions for string formatting and terminal output. Should be used
|
||||
// only for debugging and tests, since performance was not a concern.
|
||||
// Implemented using variadic templates because it is cool.
|
||||
//
|
||||
// Adds the extra format %v to the printf formatting language. Uses the method
|
||||
// cxxmph::tostr to implement custom printers and fallback to operator
|
||||
// ostream::operator<< otherwise.
|
||||
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#define CXXMPH_DEBUGLN(fmt) variadic_print(__FILE__, __LINE__, &std::cerr, fmt)
|
||||
#define CXXMPH_INFOLN(fmt) variadic_print(__FILE__, __LINE__, &std::cout, fmt)
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
using std::pair;
|
||||
using std::string;
|
||||
using std::ostream;
|
||||
using std::vector;
|
||||
|
||||
template <class T> void tostr(ostream *out, const T& v) {
|
||||
*out << v;
|
||||
}
|
||||
inline void tostr(std::ostream* out, uint8_t v) {
|
||||
*out << static_cast<uint32_t>(v);
|
||||
}
|
||||
template <class V>
|
||||
inline void tostr(ostream* out, const vector<V>& v) {
|
||||
*out << "[";
|
||||
for (uint32_t i = 0; i < v.size(); ++i) {
|
||||
tostr(out, v[1]);
|
||||
if (i != v.size() - 1)*out << " ";
|
||||
}
|
||||
*out << "]";
|
||||
}
|
||||
template <class F, class S>
|
||||
inline void tostr(ostream* out, const pair<F, S>& v) {
|
||||
*out << "(";
|
||||
tostr(out, v.first);
|
||||
*out << ",";
|
||||
tostr(out, v.second);
|
||||
*out << ")";
|
||||
}
|
||||
|
||||
bool stream_printf(
|
||||
const std::string& format_string, uint32_t offset, std::ostream* out);
|
||||
|
||||
template <bool ispod> struct pod_snprintf {};
|
||||
template <> struct pod_snprintf<false> {
|
||||
template <class T>
|
||||
int operator()(char*, size_t, const char*, const T&) {
|
||||
return -1;
|
||||
}
|
||||
};
|
||||
template <> struct pod_snprintf<true> {
|
||||
template <class T>
|
||||
int operator()(char* str, size_t size, const char* format, const T& v) {
|
||||
return snprintf(str, size, format, v);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename... Args>
|
||||
bool stream_printf(const std::string& format_string, uint32_t offset,
|
||||
std::ostream* out, const T& value, Args&&... args) {
|
||||
auto txt = format_string.c_str() + offset;
|
||||
while (*txt) {
|
||||
auto b = txt;
|
||||
for (; *txt != '%'; ++txt);
|
||||
if (*(txt + 1) == '%') ++txt;
|
||||
else if (txt == b) break;
|
||||
*out << string(b, txt - b);
|
||||
if (*(txt - 1) == '%') ++txt;
|
||||
}
|
||||
auto fmt = txt + 1;
|
||||
while (*fmt && *fmt != '%') ++fmt;
|
||||
if (strncmp(txt, "%v", 2) == 0) {
|
||||
txt += 2;
|
||||
tostr(out, value);
|
||||
if (txt != fmt) *out << string(txt, fmt);
|
||||
} else {
|
||||
char buf[256]; // Is this enough?
|
||||
auto n = pod_snprintf<std::is_pod<T>::value>()(
|
||||
buf, 256, std::string(txt, fmt).c_str(), value);
|
||||
if (n < 0) return false;
|
||||
*out << buf;
|
||||
}
|
||||
return stream_printf(format_string, fmt - format_string.c_str(), out,
|
||||
std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
template <typename... Args>
|
||||
std::string format(const std::string& format_string, Args&&... args) {
|
||||
std::ostringstream out;
|
||||
if (!stream_printf(format_string, 0, &out, std::forward<Args>(args)...)) {
|
||||
return std::string();
|
||||
};
|
||||
return out.str();
|
||||
}
|
||||
|
||||
template <typename... Args>
|
||||
void infoln(const std::string& format_string, Args&&... args) {
|
||||
stream_printf(format_string + "\n", 0, &std::cout, std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
struct variadic_print {
|
||||
variadic_print(const std::string& file, uint32_t line, std::ostream* out,
|
||||
const std::string& format_line)
|
||||
: file_(file), line_(line), out_(out), format_line_(format_line) {}
|
||||
template <typename... Args>
|
||||
void operator()(Args&&... args) {
|
||||
std::string fancy_format = "%v:%d: ";
|
||||
fancy_format += format_line_ + "\n";
|
||||
stream_printf(fancy_format, 0, out_, file_, line_, std::forward<Args>(args)...);
|
||||
}
|
||||
const std::string& file_;
|
||||
const uint32_t& line_;
|
||||
std::ostream* out_;
|
||||
const std::string& format_line_;
|
||||
};
|
||||
|
||||
} // namespace cxxmph
|
||||
|
||||
#endif // __CXXMPH_STRING_UTIL_H__
|
27
deps/cmph/cxxmph/string_util_test.cc
vendored
Normal file
27
deps/cmph/cxxmph/string_util_test.cc
vendored
Normal file
@ -0,0 +1,27 @@
|
||||
#include "string_util.h"
|
||||
#include "test.h"
|
||||
|
||||
using namespace cxxmph;
|
||||
|
||||
bool test_format() {
|
||||
string expected = " %% 4 foo 0x0A bar ";
|
||||
string foo = "foo";
|
||||
string fmt = format(" %%%% %v %v 0x%.2X bar ", 4, foo, 10);
|
||||
fail_unless(fmt == expected, "expected\n-%s-\n got \n-%s-", expected.c_str(), fmt.c_str());
|
||||
return true;
|
||||
}
|
||||
|
||||
bool test_infoln() {
|
||||
infoln(string("%s:%d: MY INFO LINE"), __FILE__, __LINE__);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool test_macro() {
|
||||
CXXMPH_DEBUGLN("here i am")();
|
||||
return true;
|
||||
}
|
||||
|
||||
CXXMPH_TEST_CASE(test_format)
|
||||
CXXMPH_TEST_CASE(test_infoln)
|
||||
CXXMPH_TEST_CASE(test_macro)
|
182
deps/cmph/cxxmph/stringpiece.h
vendored
Normal file
182
deps/cmph/cxxmph/stringpiece.h
vendored
Normal file
@ -0,0 +1,182 @@
|
||||
// Copyright 2001-2010 The RE2 Authors. All Rights Reserved.
|
||||
// Use of this source code is governed by a BSD-style
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// A string-like object that points to a sized piece of memory.
|
||||
//
|
||||
// Functions or methods may use const StringPiece& parameters to accept either
|
||||
// a "const char*" or a "string" value that will be implicitly converted to
|
||||
// a StringPiece. The implicit conversion means that it is often appropriate
|
||||
// to include this .h file in other files rather than forward-declaring
|
||||
// StringPiece as would be appropriate for most other Google classes.
|
||||
//
|
||||
// Systematic usage of StringPiece is encouraged as it will reduce unnecessary
|
||||
// conversions from "const char*" to "string" and back again.
|
||||
//
|
||||
//
|
||||
// Arghh! I wish C++ literals were "string".
|
||||
|
||||
#ifndef CXXMPH_STRINGPIECE_H__
|
||||
#define CXXMPH_STRINGPIECE_H__
|
||||
|
||||
#include <cstddef>
|
||||
#include <string.h>
|
||||
#include <iosfwd>
|
||||
#include <string>
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
class StringPiece {
|
||||
private:
|
||||
const char* ptr_;
|
||||
int length_;
|
||||
|
||||
public:
|
||||
// We provide non-explicit singleton constructors so users can pass
|
||||
// in a "const char*" or a "string" wherever a "StringPiece" is
|
||||
// expected.
|
||||
StringPiece() : ptr_(NULL), length_(0) { }
|
||||
StringPiece(const char* str)
|
||||
: ptr_(str), length_((str == NULL) ? 0 : static_cast<int>(strlen(str))) { }
|
||||
StringPiece(const std::string& str)
|
||||
: ptr_(str.data()), length_(static_cast<int>(str.size())) { }
|
||||
StringPiece(const char* offset, int len) : ptr_(offset), length_(len) { }
|
||||
|
||||
// data() may return a pointer to a buffer with embedded NULs, and the
|
||||
// returned buffer may or may not be null terminated. Therefore it is
|
||||
// typically a mistake to pass data() to a routine that expects a NUL
|
||||
// terminated string.
|
||||
const char* data() const { return ptr_; }
|
||||
int size() const { return length_; }
|
||||
int length() const { return length_; }
|
||||
bool empty() const { return length_ == 0; }
|
||||
|
||||
void clear() { ptr_ = NULL; length_ = 0; }
|
||||
void set(const char* data, int len) { ptr_ = data; length_ = len; }
|
||||
void set(const char* str) {
|
||||
ptr_ = str;
|
||||
if (str != NULL)
|
||||
length_ = static_cast<int>(strlen(str));
|
||||
else
|
||||
length_ = 0;
|
||||
}
|
||||
void set(const void* data, int len) {
|
||||
ptr_ = reinterpret_cast<const char*>(data);
|
||||
length_ = len;
|
||||
}
|
||||
|
||||
char operator[](int i) const { return ptr_[i]; }
|
||||
|
||||
void remove_prefix(int n) {
|
||||
ptr_ += n;
|
||||
length_ -= n;
|
||||
}
|
||||
|
||||
void remove_suffix(int n) {
|
||||
length_ -= n;
|
||||
}
|
||||
|
||||
int compare(const StringPiece& x) const {
|
||||
int r = memcmp(ptr_, x.ptr_, std::min(length_, x.length_));
|
||||
if (r == 0) {
|
||||
if (length_ < x.length_) r = -1;
|
||||
else if (length_ > x.length_) r = +1;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
std::string as_string() const {
|
||||
return std::string(data(), size());
|
||||
}
|
||||
// We also define ToString() here, since many other string-like
|
||||
// interfaces name the routine that converts to a C++ string
|
||||
// "ToString", and it's confusing to have the method that does that
|
||||
// for a StringPiece be called "as_string()". We also leave the
|
||||
// "as_string()" method defined here for existing code.
|
||||
std::string ToString() const {
|
||||
return std::string(data(), size());
|
||||
}
|
||||
|
||||
void CopyToString(std::string* target) const;
|
||||
void AppendToString(std::string* target) const;
|
||||
|
||||
// Does "this" start with "x"
|
||||
bool starts_with(const StringPiece& x) const {
|
||||
return ((length_ >= x.length_) &&
|
||||
(memcmp(ptr_, x.ptr_, x.length_) == 0));
|
||||
}
|
||||
|
||||
// Does "this" end with "x"
|
||||
bool ends_with(const StringPiece& x) const {
|
||||
return ((length_ >= x.length_) &&
|
||||
(memcmp(ptr_ + (length_-x.length_), x.ptr_, x.length_) == 0));
|
||||
}
|
||||
|
||||
// standard STL container boilerplate
|
||||
typedef char value_type;
|
||||
typedef const char* pointer;
|
||||
typedef const char& reference;
|
||||
typedef const char& const_reference;
|
||||
typedef size_t size_type;
|
||||
typedef ptrdiff_t difference_type;
|
||||
static const size_type npos;
|
||||
typedef const char* const_iterator;
|
||||
typedef const char* iterator;
|
||||
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
|
||||
typedef std::reverse_iterator<iterator> reverse_iterator;
|
||||
iterator begin() const { return ptr_; }
|
||||
iterator end() const { return ptr_ + length_; }
|
||||
const_reverse_iterator rbegin() const {
|
||||
return const_reverse_iterator(ptr_ + length_);
|
||||
}
|
||||
const_reverse_iterator rend() const {
|
||||
return const_reverse_iterator(ptr_);
|
||||
}
|
||||
// STLS says return size_type, but Google says return int
|
||||
int max_size() const { return length_; }
|
||||
int capacity() const { return length_; }
|
||||
|
||||
int copy(char* buf, size_type n, size_type pos = 0) const;
|
||||
|
||||
int find(const StringPiece& s, size_type pos = 0) const;
|
||||
int find(char c, size_type pos = 0) const;
|
||||
int rfind(const StringPiece& s, size_type pos = npos) const;
|
||||
int rfind(char c, size_type pos = npos) const;
|
||||
|
||||
StringPiece substr(size_type pos, size_type n = npos) const;
|
||||
};
|
||||
|
||||
inline bool operator==(const StringPiece& x, const StringPiece& y) {
|
||||
return x.length() == y.length() && memcmp(x.data(), y.data(), x.length()) == 0;
|
||||
}
|
||||
|
||||
inline bool operator!=(const StringPiece& x, const StringPiece& y) {
|
||||
return !(x == y);
|
||||
}
|
||||
|
||||
inline bool operator<(const StringPiece& x, const StringPiece& y) {
|
||||
const int r = memcmp(x.data(), y.data(),
|
||||
std::min(x.size(), y.size()));
|
||||
return ((r < 0) || ((r == 0) && (x.size() < y.size())));
|
||||
}
|
||||
|
||||
inline bool operator>(const StringPiece& x, const StringPiece& y) {
|
||||
return y < x;
|
||||
}
|
||||
|
||||
inline bool operator<=(const StringPiece& x, const StringPiece& y) {
|
||||
return !(x > y);
|
||||
}
|
||||
|
||||
inline bool operator>=(const StringPiece& x, StringPiece& y) {
|
||||
return !(x < y);
|
||||
}
|
||||
|
||||
} // namespace cxxmph
|
||||
|
||||
// allow StringPiece to be logged
|
||||
inline std::ostream& operator<<(std::ostream& o, const cxxmph::StringPiece& piece) {
|
||||
o << piece.as_string(); return o;
|
||||
}
|
||||
|
||||
#endif // CXXMPH_STRINGPIECE_H__
|
22
deps/cmph/cxxmph/test.cc
vendored
Normal file
22
deps/cmph/cxxmph/test.cc
vendored
Normal file
@ -0,0 +1,22 @@
|
||||
#include <cstdlib> // For EXIT_SUCCESS, EXIT_FAILURE
|
||||
|
||||
#include "test.h"
|
||||
|
||||
Suite* global_suite() {
|
||||
static Suite* gs = suite_create("cxxmph_test_suite");
|
||||
return gs;
|
||||
}
|
||||
TCase* global_tc_core() {
|
||||
static TCase* gtc = tcase_create("Core");
|
||||
return gtc;
|
||||
}
|
||||
|
||||
int main (void) {
|
||||
suite_add_tcase(global_suite(), global_tc_core());
|
||||
int number_failed;
|
||||
SRunner *sr = srunner_create (global_suite());
|
||||
srunner_run_all (sr, CK_NORMAL);
|
||||
number_failed = srunner_ntests_failed (sr);
|
||||
srunner_free (sr);
|
||||
return (number_failed == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
|
||||
}
|
32
deps/cmph/cxxmph/test.h
vendored
Normal file
32
deps/cmph/cxxmph/test.h
vendored
Normal file
@ -0,0 +1,32 @@
|
||||
#ifndef __CXXMPH_TEST_H__
|
||||
#define __CXXMPH_TEST_H__
|
||||
|
||||
// Thin wrapper on top of check.h to get rid of boilerplate in tests. Assumes a
|
||||
// single test suite and test case per file, with each fixture represented by a
|
||||
// parameter-less boolean function.
|
||||
//
|
||||
// The check.h header macro-clashes with c++ libraries so this file needs to be
|
||||
// included last.
|
||||
|
||||
#include <check.h>
|
||||
#include <stdio.h>
|
||||
|
||||
Suite* global_suite();
|
||||
TCase* global_tc_core();
|
||||
|
||||
// Creates a new test case calling boolean_function. Name must be a valid,
|
||||
// unique c identifier when prefixed with tc_.
|
||||
#define CXXMPH_CXX_TEST_CASE(name, boolean_function) \
|
||||
START_TEST(tc_ ## name) \
|
||||
{ fail_unless(boolean_function()); } END_TEST \
|
||||
static TestCase global_cxxmph_tc_ ## name(tc_ ## name);
|
||||
|
||||
#define CXXMPH_TEST_CASE(name) CXXMPH_CXX_TEST_CASE(name, name)
|
||||
|
||||
struct TestCase {
|
||||
TestCase(void (*f)(int)) {
|
||||
tcase_add_test(global_tc_core(), f);
|
||||
}
|
||||
};
|
||||
|
||||
#endif // __CXXMPH_TEST_H__
|
4
deps/cmph/cxxmph/test_test.cc
vendored
Normal file
4
deps/cmph/cxxmph/test_test.cc
vendored
Normal file
@ -0,0 +1,4 @@
|
||||
#include "test.h"
|
||||
|
||||
bool tautology() { return true; }
|
||||
CXXMPH_TEST_CASE(tautology)
|
82
deps/cmph/cxxmph/trigraph.cc
vendored
Normal file
82
deps/cmph/cxxmph/trigraph.cc
vendored
Normal file
@ -0,0 +1,82 @@
|
||||
#include <cassert>
|
||||
#include <limits>
|
||||
#include <iostream>
|
||||
|
||||
#include "trigraph.h"
|
||||
|
||||
using std::cerr;
|
||||
using std::endl;
|
||||
using std::vector;
|
||||
|
||||
namespace {
|
||||
static const uint32_t kInvalidEdge = std::numeric_limits<uint32_t>::max();
|
||||
}
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
TriGraph::TriGraph(uint32_t nvertices, uint32_t nedges)
|
||||
: nedges_(0),
|
||||
edges_(nedges),
|
||||
next_edge_(nedges),
|
||||
first_edge_(nvertices, kInvalidEdge),
|
||||
vertex_degree_(nvertices, 0) { }
|
||||
TriGraph::~TriGraph() {}
|
||||
|
||||
void TriGraph::ExtractEdgesAndClear(vector<Edge>* edges) {
|
||||
vector<Edge>().swap(next_edge_);
|
||||
vector<uint32_t>().swap(first_edge_);
|
||||
vector<uint8_t>().swap(vertex_degree_);
|
||||
nedges_ = 0;
|
||||
edges->swap(edges_);
|
||||
}
|
||||
void TriGraph::AddEdge(const Edge& edge) {
|
||||
edges_[nedges_] = edge;
|
||||
assert(first_edge_.size() > edge[0]);
|
||||
assert(first_edge_.size() > edge[1]);
|
||||
assert(first_edge_.size() > edge[0]);
|
||||
assert(first_edge_.size() > edge[1]);
|
||||
assert(first_edge_.size() > edge[2]);
|
||||
assert(next_edge_.size() > nedges_);
|
||||
next_edge_[nedges_] = Edge(
|
||||
first_edge_[edge[0]], first_edge_[edge[1]], first_edge_[edge[2]]);
|
||||
first_edge_[edge[0]] = first_edge_[edge[1]] = first_edge_[edge[2]] = nedges_;
|
||||
++vertex_degree_[edge[0]];
|
||||
++vertex_degree_[edge[1]];
|
||||
++vertex_degree_[edge[2]];
|
||||
++nedges_;
|
||||
}
|
||||
|
||||
void TriGraph::RemoveEdge(uint32_t current_edge) {
|
||||
// cerr << "Removing edge " << current_edge << " from " << nedges_ << " existing edges " << endl;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
uint32_t vertex = edges_[current_edge][i];
|
||||
uint32_t edge1 = first_edge_[vertex];
|
||||
uint32_t edge2 = kInvalidEdge;
|
||||
uint32_t j = 0;
|
||||
while (edge1 != current_edge && edge1 != kInvalidEdge) {
|
||||
edge2 = edge1;
|
||||
if (edges_[edge1][0] == vertex) j = 0;
|
||||
else if (edges_[edge1][1] == vertex) j = 1;
|
||||
else j = 2;
|
||||
edge1 = next_edge_[edge1][j];
|
||||
}
|
||||
assert(edge1 != kInvalidEdge);
|
||||
if (edge2 != kInvalidEdge) next_edge_[edge2][j] = next_edge_[edge1][i];
|
||||
else first_edge_[vertex] = next_edge_[edge1][i];
|
||||
--vertex_degree_[vertex];
|
||||
}
|
||||
}
|
||||
|
||||
void TriGraph::DebugGraph() const {
|
||||
uint32_t i;
|
||||
for(i = 0; i < edges_.size(); i++){
|
||||
cerr << i << " " << edges_[i][0] << " " << edges_[i][1] << " " << edges_[i][2]
|
||||
<< " nexts " << next_edge_[i][0] << " " << next_edge_[i][1] << " " << next_edge_[i][2] << endl;
|
||||
}
|
||||
for(i = 0; i < first_edge_.size();i++){
|
||||
cerr << "first for vertice " <<i << " " << first_edge_[i] << endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
} // namespace cxxmph
|
49
deps/cmph/cxxmph/trigraph.h
vendored
Normal file
49
deps/cmph/cxxmph/trigraph.h
vendored
Normal file
@ -0,0 +1,49 @@
|
||||
#ifndef __CXXMPH_TRIGRAPH_H__
|
||||
#define __CXXMPH_TRIGRAPH_H__
|
||||
// Build a trigraph using a memory efficient representation.
|
||||
//
|
||||
// Prior knowledge of the number of edges and vertices for the graph is
|
||||
// required. For each vertex, we store how many edges touch it (degree) and the
|
||||
// index of the first edge in the vector of triples representing the edges.
|
||||
|
||||
#include <stdint.h> // for uint32_t and friends
|
||||
|
||||
#include <vector>
|
||||
|
||||
namespace cxxmph {
|
||||
|
||||
class TriGraph {
|
||||
public:
|
||||
struct Edge {
|
||||
Edge() { }
|
||||
Edge(uint32_t v0, uint32_t v1, uint32_t v2) {
|
||||
vertices[0] = v0;
|
||||
vertices[1] = v1;
|
||||
vertices[2] = v2;
|
||||
}
|
||||
uint32_t& operator[](uint8_t v) { return vertices[v]; }
|
||||
const uint32_t& operator[](uint8_t v) const { return vertices[v]; }
|
||||
uint32_t vertices[3];
|
||||
};
|
||||
TriGraph(uint32_t nedges, uint32_t nvertices);
|
||||
~TriGraph();
|
||||
void AddEdge(const Edge& edge);
|
||||
void RemoveEdge(uint32_t edge_id);
|
||||
void ExtractEdgesAndClear(std::vector<Edge>* edges);
|
||||
void DebugGraph() const;
|
||||
|
||||
const std::vector<Edge>& edges() const { return edges_; }
|
||||
const std::vector<uint8_t>& vertex_degree() const { return vertex_degree_; }
|
||||
const std::vector<uint32_t>& first_edge() const { return first_edge_; }
|
||||
|
||||
private:
|
||||
uint32_t nedges_; // total number of edges
|
||||
std::vector<Edge> edges_;
|
||||
std::vector<Edge> next_edge_; // for implementing removal
|
||||
std::vector<uint32_t> first_edge_; // the first edge for this vertex
|
||||
std::vector<uint8_t> vertex_degree_; // number of edges for this vertex
|
||||
};
|
||||
|
||||
} // namespace cxxmph
|
||||
|
||||
#endif // __CXXMPH_TRIGRAPH_H__
|
22
deps/cmph/cxxmph/trigraph_test.cc
vendored
Normal file
22
deps/cmph/cxxmph/trigraph_test.cc
vendored
Normal file
@ -0,0 +1,22 @@
|
||||
#include <cassert>
|
||||
|
||||
#include "trigraph.h"
|
||||
|
||||
using cxxmph::TriGraph;
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
TriGraph g(4, 2);
|
||||
g.AddEdge(TriGraph::Edge(0, 1, 2));
|
||||
g.AddEdge(TriGraph::Edge(1, 3, 2));
|
||||
assert(g.vertex_degree()[0] == 1);
|
||||
assert(g.vertex_degree()[1] == 2);
|
||||
assert(g.vertex_degree()[2] == 2);
|
||||
assert(g.vertex_degree()[3] == 1);
|
||||
g.RemoveEdge(0);
|
||||
assert(g.vertex_degree()[0] == 0);
|
||||
assert(g.vertex_degree()[1] == 1);
|
||||
assert(g.vertex_degree()[2] == 1);
|
||||
assert(g.vertex_degree()[3] == 1);
|
||||
std::vector<TriGraph::Edge> edges;
|
||||
g.ExtractEdgesAndClear(&edges);
|
||||
}
|
315
deps/cmph/docs/bdz.html
vendored
Normal file
315
deps/cmph/docs/bdz.html
vendored
Normal file
@ -0,0 +1,315 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
|
||||
<HTML>
|
||||
<HEAD>
|
||||
<META NAME="generator" CONTENT="http://txt2tags.org">
|
||||
<LINK REL="stylesheet" TYPE="text/css" HREF="DOC.css">
|
||||
<TITLE>BDZ Algorithm</TITLE>
|
||||
</HEAD><BODY BGCOLOR="white" TEXT="black">
|
||||
<CENTER>
|
||||
<H1>BDZ Algorithm</H1>
|
||||
</CENTER>
|
||||
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Introduction</H2>
|
||||
|
||||
<P>
|
||||
The BDZ algorithm was designed by Fabiano C. Botelho, Djamal Belazzougui, Rasmus Pagh and Nivio Ziviani. It is a simple, efficient, near-optimal space and practical algorithm to generate a family <IMG ALIGN="bottom" SRC="figs/bdz/img8.png" BORDER="0" ALT=""> of PHFs and MPHFs. It is also referred to as BPZ algorithm because the work presented by Botelho, Pagh and Ziviani in <A HREF="#papers">[2</A>]. In the Botelho's PhD. dissertation <A HREF="#papers">[1</A>] it is also referred to as RAM algorithm because it is more suitable for key sets that can be handled in internal memory.
|
||||
</P>
|
||||
<P>
|
||||
The BDZ algorithm uses <I>r</I>-uniform random hypergraphs given by function values of <I>r</I> uniform random hash functions on the input key set <I>S</I> for generating PHFs and MPHFs that require <I>O(n)</I> bits to be stored. A hypergraph is the generalization of a standard undirected graph where each edge connects <IMG ALIGN="middle" SRC="figs/bdz/img12.png" BORDER="0" ALT=""> vertices. This idea is not new, see e.g. <A HREF="#papers">[8</A>], but we have proceeded differently to achieve a space usage of <I>O(n)</I> bits rather than <I>O(n log n)</I> bits. Evaluation time for all schemes considered is constant. For <I>r=3</I> we obtain a space usage of approximately <I>2.6n</I> bits for an MPHF. More compact, and even simpler, representations can be achieved for larger <I>m</I>. For example, for <I>m=1.23n</I> we can get a space usage of <I>1.95n</I> bits.
|
||||
</P>
|
||||
<P>
|
||||
Our best MPHF space upper bound is within a factor of <I>2</I> from the information theoretical lower bound of approximately <I>1.44</I> bits. We have shown that the BDZ algorithm is far more practical than previous methods with proven space complexity, both because of its simplicity, and because the constant factor of the space complexity is more than <I>6</I> times lower than its closest competitor, for plausible problem sizes. We verify the practicality experimentally, using slightly more space than in the mentioned theoretical bounds.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>The Algorithm</H2>
|
||||
|
||||
<P>
|
||||
The BDZ algorithm is a three-step algorithm that generates PHFs and MPHFs based on random <I>r</I>-partite hypergraphs. This is an approach that provides a much tighter analysis and is much more simple than the one presented in <A HREF="#papers">[3</A>], where it was implicit how to construct similar PHFs.The fastest and most compact functions are generated when <I>r=3</I>. In this case a PHF can be stored in approximately <I>1.95</I> bits per key and an MPHF in approximately <I>2.62</I> bits per key.
|
||||
</P>
|
||||
<P>
|
||||
Figure 1 gives an overview of the algorithm for <I>r=3</I>, taking as input a key set <IMG ALIGN="middle" SRC="figs/bdz/img22.png" BORDER="0" ALT=""> containing three English words, i.e., <I>S={who,band,the}</I>. The edge-oriented data structure proposed in <A HREF="#papers">[4</A>] is used to represent hypergraphs, where each edge is explicitly represented as an array of <I>r</I> vertices and, for each vertex <I>v</I>, there is a list of edges that are incident on <I>v</I>.
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/bdz/img50.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><B>Figure 1:</B> (a) The mapping step generates a random acyclic <I>3</I>-partite hypergraph</TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD>with <I>m=6</I> vertices and <I>n=3</I> edges and a list <IMG ALIGN="middle" SRC="figs/bdz/img4.png" BORDER="0" ALT=""> of edges obtained when we test</TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD>whether the hypergraph is acyclic. (b) The assigning step builds an array <I>g</I> that</TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD>maps values from <I>[0,5]</I> to <I>[0,3]</I> to uniquely assign an edge to a vertex. (c) The ranking</TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD>step builds the data structure used to compute function <I>rank</I> in <I>O(1)</I> time.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
The <I>Mapping Step</I> in Figure 1(a) carries out two important tasks:
|
||||
</P>
|
||||
|
||||
<OL>
|
||||
<LI>It assumes that it is possible to find three uniform hash functions <I>h<sub>0</sub></I>, <I>h<sub>1</sub></I> and <I>h<sub>2</sub></I>, with ranges <I>{0,1}</I>, <I>{2,3}</I> and <I>{4,5}</I>, respectively. These functions build an one-to-one mapping of the key set <I>S</I> to the edge set <I>E</I> of a random acyclic <I>3</I>-partite hypergraph <I>G=(V,E)</I>, where <I>|V|=m=6</I> and <I>|E|=n=3</I>. In <A HREF="#papers">[1,2</A>] it is shown that it is possible to obtain such a hypergraph with probability tending to <I>1</I> as <I>n</I> tends to infinity whenever <I>m=cn</I> and <I>c > 1.22</I>. The value of that minimizes the hypergraph size (and thereby the amount of bits to represent the resulting functions) is in the range <I>(1.22,1.23)</I>. To illustrate the mapping, key "who" is mapped to edge <I>{h<sub>0</sub>("who"), h<sub>1</sub>("who"), h<sub>2</sub>("who")} = {1,3,5}</I>, key "band" is mapped to edge <I>{h<sub>0</sub>("band"), h<sub>1</sub>("band"), h<sub>2</sub>("band")} = {1,2,4}</I>, and key "the" is mapped to edge <I>{h<sub>0</sub>("the"), h<sub>1</sub>("the"), h<sub>2</sub>("the")} = {0,2,5}</I>.
|
||||
<P></P>
|
||||
<LI>It tests whether the resulting random <I>3</I>-partite hypergraph contains cycles by iteratively deleting edges connecting vertices of degree 1. The deleted edges are stored in the order of deletion in a list <IMG ALIGN="middle" SRC="figs/bdz/img4.png" BORDER="0" ALT=""> to be used in the assigning step. The first deleted edge in Figure 1(a) was <I>{1,2,4}</I>, the second one was <I>{1,3,5}</I> and the third one was <I>{0,2,5}</I>. If it ends with an empty graph, then the test succeeds, otherwise it fails.
|
||||
</OL>
|
||||
|
||||
<P>
|
||||
We now show how to use the Jenkins hash functions <A HREF="#papers">[7</A>] to implement the three hash functions <I>h<sub>i</sub></I>, which map values from <I>S</I> to <I>V<sub>i</sub></I>, where <IMG ALIGN="middle" SRC="figs/bdz/img52.png" BORDER="0" ALT="">. These functions are used to build a random <I>3</I>-partite hypergraph, where <IMG ALIGN="middle" SRC="figs/bdz/img53.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/bdz/img54.png" BORDER="0" ALT="">. Let <IMG ALIGN="middle" SRC="figs/bdz/img55.png" BORDER="0" ALT=""> be a Jenkins hash function for <IMG ALIGN="middle" SRC="figs/bdz/img56.png" BORDER="0" ALT="">, where
|
||||
<I>w=32 or 64</I> for 32-bit and 64-bit architectures, respectively.
|
||||
Let <I>H'</I> be an array of 3 <I>w</I>-bit values. The Jenkins hash function
|
||||
allow us to compute in parallel the three entries in <I>H'</I>
|
||||
and thereby the three hash functions <I>h<sub>i</sub></I>, as follows:
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><I>H' = h'(x)</I></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><I>h<sub>0</sub>(x) = H'[0] mod</I> <IMG ALIGN="middle" SRC="figs/bdz/img136.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><I>h<sub>1</sub>(x) = H'[1] mod</I> <IMG ALIGN="middle" SRC="figs/bdz/img136.png" BORDER="0" ALT=""> <I>+</I> <IMG ALIGN="middle" SRC="figs/bdz/img136.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><I>h<sub>2</sub>(x) = H'[2] mod</I> <IMG ALIGN="middle" SRC="figs/bdz/img136.png" BORDER="0" ALT=""> <I>+ 2</I><IMG ALIGN="middle" SRC="figs/bdz/img136.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
The <I>Assigning Step</I> in Figure 1(b) outputs a PHF that maps the key set <I>S</I> into the range <I>[0,m-1]</I> and is represented by an array <I>g</I> storing values from the range <I>[0,3]</I>. The array <I>g</I> allows to select one out of the <I>3</I> vertices of a given edge, which is associated with a key <I>k</I>. A vertex for a key <I>k</I> is given by either <I>h<sub>0</sub>(k)</I>, <I>h<sub>1</sub>(k)</I> or <I>h<sub>2</sub>(k)</I>. The function <I>h<sub>i</sub>(k)</I> to be used for <I>k</I> is chosen by calculating <I>i = (g[h<sub>0</sub>(k)] + g[h<sub>1</sub>(k)] + g[h<sub>2</sub>(k)]) mod 3</I>. For instance, the values 1 and 4 represent the keys "who" and "band" because <I>i = (g[1] + g[3] + g[5]) mod 3 = 0</I> and <I>h<sub>0</sub>("who") = 1</I>, and <I>i = (g[1] + g[2] + g[4]) mod 3 = 2</I> and <I>h<sub>2</sub>("band") = 4</I>, respectively. The assigning step firstly initializes <I>g[i]=3</I> to mark every vertex as unassigned and <I>Visited[i]= false</I>, <IMG ALIGN="middle" SRC="figs/bdz/img88.png" BORDER="0" ALT="">. Let <I>Visited</I> be a boolean vector of size <I>m</I> to indicate whether a vertex has been visited. Then, for each edge <IMG ALIGN="middle" SRC="figs/bdz/img90.png" BORDER="0" ALT=""> from tail to head, it looks for the first vertex <I>u</I> belonging <I>e</I> not yet visited. This is a sufficient condition for success <A HREF="#papers">[1,2,8</A>]. Let <I>j</I> be the index of <I>u</I> in <I>e</I> for <I>j</I> in the range <I>[0,2]</I>. Then, it assigns <IMG ALIGN="middle" SRC="figs/bdz/img95.png" BORDER="0" ALT="">. Whenever it passes through a vertex <I>u</I> from <I>e</I>, if <I>u</I> has not yet been visited, it sets <I>Visited[u] = true</I>.
|
||||
</P>
|
||||
<P>
|
||||
If we stop the BDZ algorithm in the assigning step we obtain a PHF with range <I>[0,m-1]</I>. The PHF has the following form: <I>phf(x) = h<sub>i(x)</sub>(x)</I>, where key <I>x</I> is in <I>S</I> and <I>i(x) = (g[h<sub>0</sub>(x)] + g[h<sub>1</sub>(x)] + g[h<sub>2</sub>(x)]) mod 3</I>. In this case we do not need information for ranking and can set <I>g[i] = 0</I> whenever <I>g[i]</I> is equal to <I>3</I>, where <I>i</I> is in the range <I>[0,m-1]</I>. Therefore, the range of the values stored in <I>g</I> is narrowed from <I>[0,3]</I> to <I>[0,2]</I>. By using arithmetic coding as block of values (see <A HREF="#papers">[1,2</A>] for details), or any compression technique that allows to perform random access in constant time to an array of compressed values <A HREF="#papers">[5,6,12</A>], we can store the resulting PHFs in <I>mlog 3 = cnlog 3</I> bits, where <I>c > 1.22</I>. For <I>c = 1.23</I>, the space requirement is <I>1.95n</I> bits.
|
||||
</P>
|
||||
<P>
|
||||
The <I>Ranking Step</I> in Figure 1 (c) outputs a data structure that permits to narrow the range of a PHF generated in the assigning step from <I>[0,m-1]</I> to <I>[0,n-1]</I> and thereby an MPHF is produced. The data structure allows to compute in constant time a function <I>rank</I> from <I>[0,m-1]</I> to <I>[0,n-1]</I> that counts the number of assigned positions before a given position <I>v</I> in <I>g</I>. For instance, <I>rank(4) = 2</I> because the positions <I>0</I> and <I>1</I> are assigned since <I>g[0]</I> and <I>g[1]</I> are not equal to <I>3</I>.
|
||||
</P>
|
||||
<P>
|
||||
For the implementation of the ranking step we have borrowed a simple and efficient implementation from <A HREF="#papers">[10</A>]. It requires <IMG ALIGN="middle" SRC="figs/bdz/img111.png" BORDER="0" ALT=""> additional bits of space, where <IMG ALIGN="middle" SRC="figs/bdz/img112.png" BORDER="0" ALT="">, and is obtained by storing explicitly the <I>rank</I> of every <I>k</I>th index in a rankTable, where <IMG ALIGN="middle" SRC="figs/bdz/img114.png" BORDER="0" ALT="">. The larger is <I>k</I> the more compact is the resulting MPHF. Therefore, the users can tradeoff space for evaluation time by setting <I>k</I> appropriately in the implementation. We only allow values for <I>k</I> that are power of two (i.e., <I>k=2<sup>b<sub>k</sub></sup></I> for some constant <I>b<sub>k</sub></I> in order to replace the expensive division and modulo operations by bit-shift and bitwise "and" operations, respectively. We have used <I>k=256</I> in the experiments for generating more succinct MPHFs. We remark that it is still possible to obtain a more compact data structure by using the results presented in <A HREF="#papers">[9,11</A>], but at the cost of a much more complex implementation.
|
||||
</P>
|
||||
<P>
|
||||
We need to use an additional lookup table <I>T<sub>r</sub></I> to guarantee the constant evaluation time of <I>rank(u)</I>. Let us illustrate how <I>rank(u)</I> is computed using both the rankTable and the lookup table <I>T<sub>r</sub></I>. We first look up the rank of the largest precomputed index <I>v</I> lower than or equal to <I>u</I> in the rankTable, and use <I>T<sub>r</sub></I> to count the number of assigned vertices from position <I>v</I> to <I>u-1</I>. The lookup table <I>T_r</I> allows us to count in constant time the number of assigned vertices in <IMG ALIGN="middle" SRC="figs/bdz/img122.png" BORDER="0" ALT=""> bits, where <IMG ALIGN="middle" SRC="figs/bdz/img112.png" BORDER="0" ALT="">. Thus the actual evaluation time is <IMG ALIGN="middle" SRC="figs/bdz/img123.png" BORDER="0" ALT="">. For simplicity and without loss of generality we let <IMG ALIGN="middle" SRC="figs/bdz/img124.png" BORDER="0" ALT=""> be a multiple of the number of bits <IMG ALIGN="middle" SRC="figs/bdz/img125.png" BORDER="0" ALT=""> used to encode each entry of <I>g</I>. As the values in <I>g</I> come from the range <I>[0,3]</I>,
|
||||
then <IMG ALIGN="middle" SRC="figs/bdz/img126.png" BORDER="0" ALT=""> bits and we have tried <IMG ALIGN="middle" SRC="figs/bdz/img124.png" BORDER="0" ALT=""> equal to <I>8</I> and <I>16</I>. We would expect that <IMG ALIGN="middle" SRC="figs/bdz/img124.png" BORDER="0" ALT=""> equal to 16 should provide a faster evaluation time because we would need to carry out fewer lookups in <I>T<sub>r</sub></I>. But, for both values the lookup table <I>T<sub>r</sub></I> fits entirely in the CPU cache and we did not realize any significant difference in the evaluation times. Therefore we settle for the value <I>8</I>. We remark that each value of <I>r</I> requires a different lookup table //T<sub>r</sub> that can be generated a priori.
|
||||
</P>
|
||||
<P>
|
||||
The resulting MPHFs have the following form: <I>h(x) = rank(phf(x))</I>. Then, we cannot get rid of the raking information by replacing the values 3 by 0 in the entries of <I>g</I>. In this case each entry in the array <I>g</I> is encoded with <I>2</I> bits and we need <IMG ALIGN="middle" SRC="figs/bdz/img133.png" BORDER="0" ALT=""> additional bits to compute function <I>rank</I> in constant time. Then, the total space to store the resulting functions is <IMG ALIGN="middle" SRC="figs/bdz/img134.png" BORDER="0" ALT=""> bits. By using <I>c = 1.23</I> and <IMG ALIGN="middle" SRC="figs/bdz/img135.png" BORDER="0" ALT=""> we have obtained MPHFs that require approximately <I>2.62</I> bits per key to be stored.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Memory Consumption</H2>
|
||||
|
||||
<P>
|
||||
Now we detail the memory consumption to generate and to store minimal perfect hash functions
|
||||
using the BDZ algorithm. The structures responsible for memory consumption are in the
|
||||
following:
|
||||
</P>
|
||||
|
||||
<UL>
|
||||
<LI>3-graph:
|
||||
<OL>
|
||||
<LI><B>first</B>: is a vector that stores <I>cn</I> integer numbers, each one representing
|
||||
the first edge (index in the vector edges) in the list of
|
||||
incident edges of each vertex. The integer numbers are 4 bytes long. Therefore,
|
||||
the vector first is stored in <I>4cn</I> bytes.
|
||||
<P></P>
|
||||
<LI><B>edges</B>: is a vector to represent the edges of the graph. As each edge
|
||||
is compounded by three vertices, each entry stores three integer numbers
|
||||
of 4 bytes that represent the vertices. As there are <I>n</I> edges, the
|
||||
vector edges is stored in <I>12n</I> bytes.
|
||||
<P></P>
|
||||
<LI><B>next</B>: given a vertex <IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT="">, we can discover the edges that
|
||||
contain <IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT=""> following its list of incident edges,
|
||||
which starts on first[<IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT="">] and the next
|
||||
edges are given by next[...first[<IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT="">]...]. Therefore, the vectors first and next represent
|
||||
the linked lists of edges of each vertex. As there are three vertices for each edge,
|
||||
when an edge is iserted in the 3-graph, it must be inserted in the three linked lists
|
||||
of the vertices in its composition. Therefore, there are <I>3n</I> entries of integer
|
||||
numbers in the vector next, so it is stored in <I>4*3n = 12n</I> bytes.
|
||||
<P></P>
|
||||
<LI><B>Vertices degree (vert_degree vector)</B>: is a vector of <I>cn</I> bytes
|
||||
that represents the degree of each vertex. We can use just one byte for each
|
||||
vertex because the 3-graph is sparse, once it has more vertices than edges.
|
||||
Therefore, the vertices degree is represented in <I>cn</I> bytes.
|
||||
<P></P>
|
||||
</OL>
|
||||
<LI>Acyclicity test:
|
||||
<OL>
|
||||
<LI><B>List of deleted edges obtained when we test whether the 3-graph is a forest (queue vector)</B>:
|
||||
is a vector of <I>n</I> integer numbers containing indexes of vector edges. Therefore, it
|
||||
requires <I>4n</I> bytes in internal memory.
|
||||
<P></P>
|
||||
<LI><B>Marked edges in the acyclicity test (marked_edges vector)</B>:
|
||||
is a bit vector of <I>n</I> bits to indicate the edges that have already been deleted during
|
||||
the acyclicity test. Therefore, it requires <I>n/8</I> bytes in internal memory.
|
||||
<P></P>
|
||||
</OL>
|
||||
<LI>MPHF description
|
||||
<OL>
|
||||
<LI><B>function <I>g</I></B>: is represented by a vector of <I>2cn</I> bits. Therefore, it is
|
||||
stored in <I>0.25cn</I> bytes
|
||||
<LI><B>ranktable</B>: is a lookup table used to store some precomputed ranking information.
|
||||
It has <I>(cn)/(2^b)</I> entries of 4-byte integer numbers. Therefore it is stored in
|
||||
<I>(4cn)/(2^b)</I> bytes. The larger is b, the more compact is the resulting MPHFs and
|
||||
the slower are the functions. So b imposes a trade-of between space and time.
|
||||
<LI><B>Total</B>: 0.25cn + (4cn)/(2^b) bytes
|
||||
</OL>
|
||||
</UL>
|
||||
|
||||
<P>
|
||||
Thus, the total memory consumption of BDZ algorithm for generating a minimal
|
||||
perfect hash function (MPHF) is: <I>(28.125 + 5c)n + 0.25cn + (4cn)/(2^b) + O(1)</I> bytes.
|
||||
As the value of constant <I>c</I> may be larger than or equal to 1.23 we have:
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" BORDER="1" CELLPADDING="4">
|
||||
<TR>
|
||||
<TH><I>c</I></TH>
|
||||
<TH><I>b</I></TH>
|
||||
<TH>Memory consumption to generate a MPHF (in bytes)</TH>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD>1.23</TD>
|
||||
<TD ALIGN="center"><I>7</I></TD>
|
||||
<TD ALIGN="center"><I>34.62n + O(1)</I></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD>1.23</TD>
|
||||
<TD ALIGN="center"><I>8</I></TD>
|
||||
<TD ALIGN="center"><I>34.60n + O(1)</I></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><B>Table 1:</B> Memory consumption to generate a MPHF using the BDZ algorithm.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
Now we present the memory consumption to store the resulting function.
|
||||
So we have:
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" BORDER="1" CELLPADDING="4">
|
||||
<TR>
|
||||
<TH><I>c</I></TH>
|
||||
<TH><I>b</I></TH>
|
||||
<TH>Memory consumption to store a MPHF (in bits)</TH>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD>1.23</TD>
|
||||
<TD ALIGN="center"><I>7</I></TD>
|
||||
<TD ALIGN="center"><I>2.77n + O(1)</I></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD>1.23</TD>
|
||||
<TD ALIGN="center"><I>8</I></TD>
|
||||
<TD ALIGN="center"><I>2.61n + O(1)</I></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><B>Table 2:</B> Memory consumption to store a MPHF generated by the BDZ algorithm.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Experimental Results</H2>
|
||||
|
||||
<P>
|
||||
Experimental results to compare the BDZ algorithm with the other ones in the CMPH
|
||||
library are presented in Botelho, Pagh and Ziviani <A HREF="#papers">[1,2</A>].
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<A NAME="papers"></A>
|
||||
<H2>Papers</H2>
|
||||
|
||||
<OL>
|
||||
<LI><A HREF="http://www.dcc.ufmg.br/~fbotelho">F. C. Botelho</A>. <A HREF="papers/thesis.pdf">Near-Optimal Space Perfect Hashing Algorithms</A>. <I>PhD. Thesis</I>, <I>Department of Computer Science</I>, <I>Federal University of Minas Gerais</I>, September 2008. Supervised by <A HREF="http://www.dcc.ufmg.br/~nivio">N. Ziviani</A>.
|
||||
<P></P>
|
||||
<LI><A HREF="http://www.dcc.ufmg.br/~fbotelho">F. C. Botelho</A>, <A HREF="http://www.itu.dk/~pagh/">R. Pagh</A>, <A HREF="http://www.dcc.ufmg.br/~nivio">N. Ziviani</A>. <A HREF="papers/wads07.pdf">Simple and space-efficient minimal perfect hash functions</A>. <I>In Proceedings of the 10th International Workshop on Algorithms and Data Structures (WADs'07),</I> Springer-Verlag Lecture Notes in Computer Science, vol. 4619, Halifax, Canada, August 2007, 139-150.
|
||||
<P></P>
|
||||
<LI>B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier filter: An efficient data structure for static support lookup tables. <I>In Proceedings of the 15th annual ACM-SIAM symposium on Discrete algorithms (SODA'04)</I>, pages 30–39, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.
|
||||
<P></P>
|
||||
<LI>J. Ebert. A versatile data structure for edges oriented graph algorithms. <I>Communication of The ACM</I>, (30):513–519, 1987.
|
||||
<P></P>
|
||||
<LI>K. Fredriksson and F. Nikitin. Simple compression code supporting random access and fast string matching. <I>In Proceedings of the 6th International Workshop on Efficient and Experimental Algorithms (WEA’07)</I>, pages 203–216, 2007.
|
||||
<P></P>
|
||||
<LI>R. Gonzalez and G. Navarro. Statistical encoding of succinct data structures. <I>In Proceedings of the 19th Annual Symposium on Combinatorial Pattern Matching (CPM’06)</I>, pages 294–305, 2006.
|
||||
<P></P>
|
||||
<LI>B. Jenkins. Algorithm alley: Hash functions. <I>Dr. Dobb's Journal of Software Tools</I>, 22(9), september 1997. Extended version available at <A HREF="http://burtleburtle.net/bob/hash/doobs.html">http://burtleburtle.net/bob/hash/doobs.html</A>.
|
||||
<P></P>
|
||||
<LI>B.S. Majewski, N.C. Wormald, G. Havas, and Z.J. Czech. A family of perfect hashing methods. <I>The Computer Journal</I>, 39(6):547–554, 1996.
|
||||
<P></P>
|
||||
<LI>D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary. <I>In Proceedings of the Workshop on Algorithm Engineering and Experiments (ALENEX’07)</I>, 2007.
|
||||
<P></P>
|
||||
<LI><A HREF="http://www.itu.dk/~pagh/">R. Pagh</A>. Low redundancy in static dictionaries with constant query time. <I>SIAM Journal on Computing</I>, 31(2):353–363, 2001.
|
||||
<P></P>
|
||||
<LI>R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. <I>In Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms (SODA’02)</I>, pages 233–242, Philadelphia PA, USA, 2002. Society for Industrial and Applied Mathematics.
|
||||
<P></P>
|
||||
<LI>K. Sadakane and R. Grossi. Squeezing succinct data structures into entropy bounds. <I>In Proceedings of the 17th annual ACM-SIAM symposium on Discrete algorithms (SODA’06)</I>, pages 1230–1239, 2006.
|
||||
</OL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><A HREF="index.html">Home</A></TD>
|
||||
<TD><A HREF="chd.html">CHD</A></TD>
|
||||
<TD><A HREF="bdz.html">BDZ</A></TD>
|
||||
<TD><A HREF="bmz.html">BMZ</A></TD>
|
||||
<TD><A HREF="chm.html">CHM</A></TD>
|
||||
<TD><A HREF="brz.html">BRZ</A></TD>
|
||||
<TD><A HREF="fch.html">FCH</A></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<P>
|
||||
Enjoy!
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:davi@users.sourceforge.net">Davi de Castro Reis</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:db8192@users.sourceforge.net">Djamel Belazzougui</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:fc_botelho@users.sourceforge.net">Fabiano Cupertino Botelho</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:nivio@dcc.ufmg.br">Nivio Ziviani</A>
|
||||
</P>
|
||||
<script type="text/javascript">
|
||||
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
|
||||
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
|
||||
</script>
|
||||
<script type="text/javascript">
|
||||
try {
|
||||
var pageTracker = _gat._getTracker("UA-7698683-2");
|
||||
pageTracker._trackPageview();
|
||||
} catch(err) {}</script>
|
||||
|
||||
<!-- html code generated by txt2tags 2.6 (http://txt2tags.org) -->
|
||||
<!-- cmdline: txt2tags -t html -i BDZ.t2t -o docs/bdz.html -->
|
||||
</BODY></HTML>
|
581
deps/cmph/docs/bmz.html
vendored
Normal file
581
deps/cmph/docs/bmz.html
vendored
Normal file
@ -0,0 +1,581 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
|
||||
<HTML>
|
||||
<HEAD>
|
||||
<META NAME="generator" CONTENT="http://txt2tags.org">
|
||||
<LINK REL="stylesheet" TYPE="text/css" HREF="DOC.css">
|
||||
<TITLE>BMZ Algorithm</TITLE>
|
||||
</HEAD><BODY BGCOLOR="white" TEXT="black">
|
||||
<CENTER>
|
||||
<H1>BMZ Algorithm</H1>
|
||||
</CENTER>
|
||||
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>History</H2>
|
||||
|
||||
<P>
|
||||
At the end of 2003, professor <A HREF="http://www.dcc.ufmg.br/~nivio">Nivio Ziviani</A> was
|
||||
finishing the second edition of his <A HREF="http://www.dcc.ufmg.br/algoritmos/">book</A>.
|
||||
During the <A HREF="http://www.dcc.ufmg.br/algoritmos/">book</A> writing,
|
||||
professor <A HREF="http://www.dcc.ufmg.br/~nivio">Nivio Ziviani</A> studied the problem of generating
|
||||
<A HREF="concepts.html">minimal perfect hash functions</A>
|
||||
(if you are not familiarized with this problem, see <A HREF="#papers">[1</A>]<A HREF="#papers">[2</A>]).
|
||||
Professor <A HREF="http://www.dcc.ufmg.br/~nivio">Nivio Ziviani</A> coded a modified version of
|
||||
the <A HREF="chm.html">CHM algorithm</A>, which was proposed by
|
||||
Czech, Havas and Majewski, and put it in his <A HREF="http://www.dcc.ufmg.br/algoritmos/">book</A>.
|
||||
The <A HREF="chm.html">CHM algorithm</A> is based on acyclic random graphs to generate
|
||||
<A HREF="concepts.html">order preserving minimal perfect hash functions</A> in linear time.
|
||||
Professor <A HREF="http://www.dcc.ufmg.br/~nivio">Nivio Ziviani</A>
|
||||
argued himself, why must the random graph
|
||||
be acyclic? In the modified version availalbe in his <A HREF="http://www.dcc.ufmg.br/algoritmos/">book</A> he got rid of this restriction.
|
||||
</P>
|
||||
<P>
|
||||
The modification presented a problem, it was impossible to generate minimal perfect hash functions
|
||||
for sets with more than 1000 keys.
|
||||
At the same time, <A HREF="http://www.dcc.ufmg.br/~fbotelho">Fabiano C. Botelho</A>,
|
||||
a master degree student at <A HREF="http://www.dcc.ufmg.br">Departament of Computer Science</A> in
|
||||
<A HREF="http://www.ufmg.br">Federal University of Minas Gerais</A>,
|
||||
started to be advised by <A HREF="http://www.dcc.ufmg.br/~nivio">Nivio Ziviani</A> who presented the problem
|
||||
to <A HREF="http://www.dcc.ufmg.br/~fbotelho">Fabiano</A>.
|
||||
</P>
|
||||
<P>
|
||||
During the master, <A HREF="http://www.dcc.ufmg.br/~fbotelho">Fabiano</A> and
|
||||
<A HREF="http://www.dcc.ufmg.br/~nivio">Nivio Ziviani</A> faced lots of problems.
|
||||
In april of 2004, <A HREF="http://www.dcc.ufmg.br/~fbotelho">Fabiano</A> was talking with a
|
||||
friend of him (David Menoti) about the problems
|
||||
and many ideas appeared.
|
||||
The ideas were implemented and a very fast algorithm to generate
|
||||
minimal perfect hash functions had been designed.
|
||||
We refer the algorithm to as <B>BMZ</B>, because it was conceived by Fabiano C. <B>B</B>otelho,
|
||||
David <B>M</B>enoti and Nivio <B>Z</B>iviani. The algorithm is described in <A HREF="#papers">[1</A>].
|
||||
To analyse BMZ algorithm we needed some results from the random graph theory, so
|
||||
we invited professor <A HREF="http://www.ime.usp.br/~yoshi">Yoshiharu Kohayakawa</A> to help us.
|
||||
The final description and analysis of BMZ algorithm is presented in <A HREF="#papers">[2</A>].
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>The Algorithm</H2>
|
||||
|
||||
<P>
|
||||
The BMZ algorithm shares several features with the <A HREF="chm.html">CHM algorithm</A>.
|
||||
In particular, BMZ algorithm is also
|
||||
based on the generation of random graphs <IMG ALIGN="middle" SRC="figs/img27.png" BORDER="0" ALT="">, where <IMG ALIGN="bottom" SRC="figs/img28.png" BORDER="0" ALT=""> is in
|
||||
one-to-one correspondence with the key set <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT=""> for which we wish to
|
||||
generate a <A HREF="concepts.html">minimal perfect hash function</A>.
|
||||
The two main differences between BMZ algorithm and CHM algorithm
|
||||
are as follows: (<I>i</I>) BMZ algorithm generates random
|
||||
graphs <IMG ALIGN="middle" SRC="figs/img27.png" BORDER="0" ALT=""> with <IMG ALIGN="middle" SRC="figs/img29.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img30.png" BORDER="0" ALT="">, where <IMG ALIGN="middle" SRC="figs/img31.png" BORDER="0" ALT="">,
|
||||
and hence <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> necessarily contains cycles,
|
||||
while CHM algorithm generates <I>acyclic</I> random
|
||||
graphs <IMG ALIGN="middle" SRC="figs/img27.png" BORDER="0" ALT=""> with <IMG ALIGN="middle" SRC="figs/img29.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img30.png" BORDER="0" ALT="">,
|
||||
with a greater number of vertices: <IMG ALIGN="middle" SRC="figs/img33.png" BORDER="0" ALT="">;
|
||||
(<I>ii</I>) CHM algorithm generates <A HREF="concepts.html">order preserving minimal perfect hash functions</A>
|
||||
while BMZ algorithm does not preserve order. Thus, BMZ algorithm improves
|
||||
the space requirement at the expense of generating functions that are not
|
||||
order preserving.
|
||||
</P>
|
||||
<P>
|
||||
Suppose <IMG ALIGN="bottom" SRC="figs/img14.png" BORDER="0" ALT=""> is a universe of <I>keys</I>.
|
||||
Let <IMG ALIGN="middle" SRC="figs/img17.png" BORDER="0" ALT=""> be a set of <IMG ALIGN="bottom" SRC="figs/img8.png" BORDER="0" ALT=""> keys from <IMG ALIGN="bottom" SRC="figs/img14.png" BORDER="0" ALT="">.
|
||||
Let us show how the BMZ algorithm constructs a minimal perfect hash function <IMG ALIGN="bottom" SRC="figs/img7.png" BORDER="0" ALT="">.
|
||||
We make use of two auxiliary random functions <IMG ALIGN="middle" SRC="figs/img41.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img55.png" BORDER="0" ALT="">,
|
||||
where <IMG ALIGN="middle" SRC="figs/img56.png" BORDER="0" ALT=""> for some suitably chosen integer <IMG ALIGN="bottom" SRC="figs/img57.png" BORDER="0" ALT="">,
|
||||
where <IMG ALIGN="middle" SRC="figs/img58.png" BORDER="0" ALT="">.We build a random graph <IMG ALIGN="middle" SRC="figs/img59.png" BORDER="0" ALT=""> on <IMG ALIGN="bottom" SRC="figs/img60.png" BORDER="0" ALT="">,
|
||||
whose edge set is <IMG ALIGN="middle" SRC="figs/img61.png" BORDER="0" ALT="">. There is an edge in <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> for each
|
||||
key in the set of keys <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">.
|
||||
</P>
|
||||
<P>
|
||||
In what follows, we shall be interested in the <I>2-core</I> of
|
||||
the random graph <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">, that is, the maximal subgraph
|
||||
of <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> with minimal degree at
|
||||
least 2 (see <A HREF="#papers">[2</A>] for details).
|
||||
Because of its importance in our context, we call the 2-core the
|
||||
<I>critical</I> subgraph of <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> and denote it by <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT="">.
|
||||
The vertices and edges in <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT=""> are said to be <I>critical</I>.
|
||||
We let <IMG ALIGN="middle" SRC="figs/img64.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img65.png" BORDER="0" ALT="">.
|
||||
Moreover, we let <IMG ALIGN="middle" SRC="figs/img66.png" BORDER="0" ALT=""> be the set of <I>non-critical</I>
|
||||
vertices in <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">.
|
||||
We also let <IMG ALIGN="middle" SRC="figs/img67.png" BORDER="0" ALT=""> be the set of all critical
|
||||
vertices that have at least one non-critical vertex as a neighbour.
|
||||
Let <IMG ALIGN="middle" SRC="figs/img68.png" BORDER="0" ALT=""> be the set of <I>non-critical</I> edges in <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">.
|
||||
Finally, we let <IMG ALIGN="middle" SRC="figs/img69.png" BORDER="0" ALT=""> be the <I>non-critical</I> subgraph
|
||||
of <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">.
|
||||
The non-critical subgraph <IMG ALIGN="middle" SRC="figs/img70.png" BORDER="0" ALT=""> corresponds to the <I>acyclic part</I>
|
||||
of <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">.
|
||||
We have <IMG ALIGN="middle" SRC="figs/img71.png" BORDER="0" ALT="">.
|
||||
</P>
|
||||
<P>
|
||||
We then construct a suitable labelling <IMG ALIGN="middle" SRC="figs/img72.png" BORDER="0" ALT=""> of the vertices
|
||||
of <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">: we choose <IMG ALIGN="middle" SRC="figs/img73.png" BORDER="0" ALT=""> for each <IMG ALIGN="middle" SRC="figs/img74.png" BORDER="0" ALT=""> in such
|
||||
a way that <IMG ALIGN="middle" SRC="figs/img75.png" BORDER="0" ALT=""> (<IMG ALIGN="middle" SRC="figs/img18.png" BORDER="0" ALT="">) is a
|
||||
minimal perfect hash function for <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">.
|
||||
This labelling <IMG ALIGN="middle" SRC="figs/img37.png" BORDER="0" ALT=""> can be found in linear time
|
||||
if the number of edges in <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT=""> is at most <IMG ALIGN="middle" SRC="figs/img76.png" BORDER="0" ALT=""> (see <A HREF="#papers">[2</A>]
|
||||
for details).
|
||||
</P>
|
||||
<P>
|
||||
Figure 1 presents a pseudo code for the BMZ algorithm.
|
||||
The procedure BMZ (<IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img37.png" BORDER="0" ALT="">) receives as input the set of
|
||||
keys <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT=""> and produces the labelling <IMG ALIGN="middle" SRC="figs/img37.png" BORDER="0" ALT="">.
|
||||
The method uses a mapping, ordering and searching approach.
|
||||
We now describe each step.
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD>procedure BMZ (<IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img37.png" BORDER="0" ALT="">)</TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD> Mapping (<IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">, <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">);</TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD> Ordering (<IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img70.png" BORDER="0" ALT="">);</TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD> Searching (<IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img70.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img37.png" BORDER="0" ALT="">);</TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><B>Figure 1</B>: Main steps of BMZ algorithm for constructing a minimal perfect hash function</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H3>Mapping Step</H3>
|
||||
|
||||
<P>
|
||||
The procedure Mapping (<IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">, <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">) receives as input the set
|
||||
of keys <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT=""> and generates the random graph <IMG ALIGN="middle" SRC="figs/img59.png" BORDER="0" ALT="">, by generating
|
||||
two auxiliary functions <IMG ALIGN="middle" SRC="figs/img41.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img78.png" BORDER="0" ALT="">.
|
||||
</P>
|
||||
<P>
|
||||
The functions <IMG ALIGN="middle" SRC="figs/img41.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img42.png" BORDER="0" ALT=""> are constructed as follows.
|
||||
We impose some upper bound <IMG ALIGN="bottom" SRC="figs/img79.png" BORDER="0" ALT=""> on the lengths of the keys in <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">.
|
||||
To define <IMG ALIGN="middle" SRC="figs/img80.png" BORDER="0" ALT=""> (<IMG ALIGN="middle" SRC="figs/img81.png" BORDER="0" ALT="">, <IMG ALIGN="bottom" SRC="figs/img62.png" BORDER="0" ALT="">), we generate
|
||||
an <IMG ALIGN="middle" SRC="figs/img82.png" BORDER="0" ALT=""> table of random integers <IMG ALIGN="middle" SRC="figs/img83.png" BORDER="0" ALT="">.
|
||||
For a key <IMG ALIGN="middle" SRC="figs/img18.png" BORDER="0" ALT=""> of length <IMG ALIGN="middle" SRC="figs/img84.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img85.png" BORDER="0" ALT="">, we let
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/img86.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
The random graph <IMG ALIGN="middle" SRC="figs/img59.png" BORDER="0" ALT=""> has vertex set <IMG ALIGN="middle" SRC="figs/img56.png" BORDER="0" ALT=""> and
|
||||
edge set <IMG ALIGN="middle" SRC="figs/img61.png" BORDER="0" ALT="">. We need <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> to be
|
||||
simple, i.e., <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> should have neither loops nor multiple edges.
|
||||
A loop occurs when <IMG ALIGN="middle" SRC="figs/img87.png" BORDER="0" ALT=""> for some <IMG ALIGN="middle" SRC="figs/img18.png" BORDER="0" ALT="">.
|
||||
We solve this in an ad hoc manner: we simply let <IMG ALIGN="middle" SRC="figs/img88.png" BORDER="0" ALT=""> in this case.
|
||||
If we still find a loop after this, we generate another pair <IMG ALIGN="middle" SRC="figs/img89.png" BORDER="0" ALT="">.
|
||||
When a multiple edge occurs we abort and generate a new pair <IMG ALIGN="middle" SRC="figs/img89.png" BORDER="0" ALT="">.
|
||||
Although the function above causes <A HREF="concepts.html">collisions</A> with probability <I>1/t</I>,
|
||||
in <A HREF="index.html">cmph library</A> we use faster hash
|
||||
functions (<A HREF="http://www.cs.yorku.ca/~oz/hash.html">DJB2 hash</A>, <A HREF="http://www.isthe.com/chongo/tech/comp/fnv/">FNV hash</A>,
|
||||
<A HREF="http://burtleburtle.net/bob/hash/doobs.html">Jenkins hash</A> and <A HREF="http://www.cs.yorku.ca/~oz/hash.html">SDBM hash</A>)
|
||||
in which we do not need to impose any upper bound <IMG ALIGN="bottom" SRC="figs/img79.png" BORDER="0" ALT=""> on the lengths of the keys in <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">.
|
||||
</P>
|
||||
<P>
|
||||
As mentioned before, for us to find the labelling <IMG ALIGN="middle" SRC="figs/img72.png" BORDER="0" ALT=""> of the
|
||||
vertices of <IMG ALIGN="middle" SRC="figs/img59.png" BORDER="0" ALT=""> in linear time,
|
||||
we require that <IMG ALIGN="middle" SRC="figs/img108.png" BORDER="0" ALT="">.
|
||||
The crucial step now is to determine the value
|
||||
of <IMG ALIGN="bottom" SRC="figs/img1.png" BORDER="0" ALT=""> (in <IMG ALIGN="bottom" SRC="figs/img57.png" BORDER="0" ALT="">) to obtain a random
|
||||
graph <IMG ALIGN="middle" SRC="figs/img71.png" BORDER="0" ALT=""> with <IMG ALIGN="middle" SRC="figs/img109.png" BORDER="0" ALT="">.
|
||||
Botelho, Menoti an Ziviani determinded emprically in <A HREF="#papers">[1</A>] that
|
||||
the value of <IMG ALIGN="bottom" SRC="figs/img1.png" BORDER="0" ALT=""> is <I>1.15</I>. This value is remarkably
|
||||
close to the theoretical value determined in <A HREF="#papers">[2</A>],
|
||||
which is around <IMG ALIGN="bottom" SRC="figs/img112.png" BORDER="0" ALT="">.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H3>Ordering Step</H3>
|
||||
|
||||
<P>
|
||||
The procedure Ordering (<IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img70.png" BORDER="0" ALT="">) receives
|
||||
as input the graph <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> and partitions <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> into the two
|
||||
subgraphs <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img70.png" BORDER="0" ALT="">, so that <IMG ALIGN="middle" SRC="figs/img71.png" BORDER="0" ALT="">.
|
||||
</P>
|
||||
<P>
|
||||
Figure 2 presents a sample graph with 9 vertices
|
||||
and 8 edges, where the degree of a vertex is shown besides each vertex.
|
||||
Initially, all vertices with degree 1 are added to a queue <IMG ALIGN="middle" SRC="figs/img136.png" BORDER="0" ALT="">.
|
||||
For the example shown in Figure 2(a), <IMG ALIGN="middle" SRC="figs/img137.png" BORDER="0" ALT=""> after the initialization step.
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/img138.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><B>Figure 2:</B> Ordering step for a graph with 9 vertices and 8 edges.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
Next, we remove one vertex <IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT=""> from the queue, decrement its degree and
|
||||
the degree of the vertices with degree greater than 0 in the adjacent
|
||||
list of <IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT="">, as depicted in Figure 2(b) for <IMG ALIGN="bottom" SRC="figs/img140.png" BORDER="0" ALT="">.
|
||||
At this point, the adjacencies of <IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT=""> with degree 1 are
|
||||
inserted into the queue, such as vertex 1.
|
||||
This process is repeated until the queue becomes empty.
|
||||
All vertices with degree 0 are non-critical vertices and the others are
|
||||
critical vertices, as depicted in Figure 2(c).
|
||||
Finally, to determine the vertices in <IMG ALIGN="middle" SRC="figs/img141.png" BORDER="0" ALT=""> we collect all
|
||||
vertices <IMG ALIGN="middle" SRC="figs/img142.png" BORDER="0" ALT=""> with at least one vertex <IMG ALIGN="bottom" SRC="figs/img143.png" BORDER="0" ALT=""> that
|
||||
is in Adj<IMG ALIGN="middle" SRC="figs/img144.png" BORDER="0" ALT=""> and in <IMG ALIGN="middle" SRC="figs/img145.png" BORDER="0" ALT="">, as the vertex 8 in Figure 2(c).
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H3>Searching Step</H3>
|
||||
|
||||
<P>
|
||||
In the searching step, the key part is
|
||||
the <I>perfect assignment problem</I>: find <IMG ALIGN="middle" SRC="figs/img153.png" BORDER="0" ALT=""> such that
|
||||
the function <IMG ALIGN="middle" SRC="figs/img154.png" BORDER="0" ALT=""> defined by
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/img155.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
is a bijection from <IMG ALIGN="middle" SRC="figs/img156.png" BORDER="0" ALT=""> to <IMG ALIGN="middle" SRC="figs/img157.png" BORDER="0" ALT=""> (recall <IMG ALIGN="middle" SRC="figs/img158.png" BORDER="0" ALT="">).
|
||||
We are interested in a labelling <IMG ALIGN="middle" SRC="figs/img72.png" BORDER="0" ALT=""> of
|
||||
the vertices of the graph <IMG ALIGN="middle" SRC="figs/img59.png" BORDER="0" ALT=""> with
|
||||
the property that if <IMG ALIGN="bottom" SRC="figs/img11.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img22.png" BORDER="0" ALT=""> are keys
|
||||
in <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">, then <IMG ALIGN="middle" SRC="figs/img159.png" BORDER="0" ALT="">; that is, if we associate
|
||||
to each edge the sum of the labels on its endpoints, then these values
|
||||
should be all distinct.
|
||||
Moreover, we require that all the sums <IMG ALIGN="middle" SRC="figs/img160.png" BORDER="0" ALT=""> (<IMG ALIGN="middle" SRC="figs/img18.png" BORDER="0" ALT="">)
|
||||
fall between <IMG ALIGN="bottom" SRC="figs/img115.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img161.png" BORDER="0" ALT="">, and thus we have a bijection
|
||||
between <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img157.png" BORDER="0" ALT="">.
|
||||
</P>
|
||||
<P>
|
||||
The procedure Searching (<IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img70.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img37.png" BORDER="0" ALT="">)
|
||||
receives as input <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img70.png" BORDER="0" ALT=""> and finds a
|
||||
suitable <IMG ALIGN="middle" SRC="figs/img162.png" BORDER="0" ALT=""> bit value for each vertex <IMG ALIGN="middle" SRC="figs/img74.png" BORDER="0" ALT="">, stored in the
|
||||
array <IMG ALIGN="middle" SRC="figs/img37.png" BORDER="0" ALT="">.
|
||||
This step is first performed for the vertices in the
|
||||
critical subgraph <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT=""> of <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> (the 2-core of <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">)
|
||||
and then it is performed for the vertices in <IMG ALIGN="middle" SRC="figs/img70.png" BORDER="0" ALT=""> (the non-critical subgraph
|
||||
of <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> that contains the "acyclic part" of <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">).
|
||||
The reason the assignment of the <IMG ALIGN="middle" SRC="figs/img37.png" BORDER="0" ALT=""> values is first
|
||||
performed on the vertices in <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT=""> is to resolve reassignments
|
||||
as early as possible (such reassignments are consequences of the cycles
|
||||
in <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT=""> and are depicted hereinafter).
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H4>Assignment of Values to Critical Vertices</H4>
|
||||
|
||||
<P>
|
||||
The labels <IMG ALIGN="middle" SRC="figs/img73.png" BORDER="0" ALT=""> (<IMG ALIGN="middle" SRC="figs/img142.png" BORDER="0" ALT="">)
|
||||
are assigned in increasing order following a greedy
|
||||
strategy where the critical vertices <IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT=""> are considered one at a time,
|
||||
according to a breadth-first search on <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT="">.
|
||||
If a candidate value <IMG ALIGN="bottom" SRC="figs/img11.png" BORDER="0" ALT=""> for <IMG ALIGN="middle" SRC="figs/img73.png" BORDER="0" ALT=""> is forbidden
|
||||
because setting <IMG ALIGN="middle" SRC="figs/img163.png" BORDER="0" ALT=""> would create two edges with the same sum,
|
||||
we try <IMG ALIGN="middle" SRC="figs/img164.png" BORDER="0" ALT=""> for <IMG ALIGN="middle" SRC="figs/img73.png" BORDER="0" ALT="">. This fact is referred to
|
||||
as a <I>reassignment</I>.
|
||||
</P>
|
||||
<P>
|
||||
Let <IMG ALIGN="middle" SRC="figs/img165.png" BORDER="0" ALT=""> be the set of addresses assigned to edges in <IMG ALIGN="middle" SRC="figs/img166.png" BORDER="0" ALT="">.
|
||||
Initially <IMG ALIGN="middle" SRC="figs/img167.png" BORDER="0" ALT="">.
|
||||
Let <IMG ALIGN="bottom" SRC="figs/img11.png" BORDER="0" ALT=""> be a candidate value for <IMG ALIGN="middle" SRC="figs/img73.png" BORDER="0" ALT="">.
|
||||
Initially <IMG ALIGN="bottom" SRC="figs/img168.png" BORDER="0" ALT="">.
|
||||
Considering the subgraph <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT=""> in Figure 2(c),
|
||||
a step by step example of the assignment of values to vertices in <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT=""> is
|
||||
presented in Figure 3.
|
||||
Initially, a vertex <IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT=""> is chosen, the assignment <IMG ALIGN="middle" SRC="figs/img163.png" BORDER="0" ALT=""> is made
|
||||
and <IMG ALIGN="bottom" SRC="figs/img11.png" BORDER="0" ALT=""> is set to <IMG ALIGN="middle" SRC="figs/img164.png" BORDER="0" ALT="">.
|
||||
For example, suppose that vertex <IMG ALIGN="bottom" SRC="figs/img169.png" BORDER="0" ALT=""> in Figure 3(a) is
|
||||
chosen, the assignment <IMG ALIGN="middle" SRC="figs/img170.png" BORDER="0" ALT=""> is made and <IMG ALIGN="bottom" SRC="figs/img11.png" BORDER="0" ALT=""> is set to <IMG ALIGN="bottom" SRC="figs/img96.png" BORDER="0" ALT="">.
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/img171.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><B>Figure 3:</B> Example of the assignment of values to critical vertices.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
In Figure 3(b), following the adjacent list of vertex <IMG ALIGN="bottom" SRC="figs/img169.png" BORDER="0" ALT="">,
|
||||
the unassigned vertex <IMG ALIGN="bottom" SRC="figs/img115.png" BORDER="0" ALT=""> is reached.
|
||||
At this point, we collect in the temporary variable <IMG ALIGN="bottom" SRC="figs/img172.png" BORDER="0" ALT=""> all adjacencies
|
||||
of vertex <IMG ALIGN="bottom" SRC="figs/img115.png" BORDER="0" ALT=""> that have been assigned an <IMG ALIGN="bottom" SRC="figs/img11.png" BORDER="0" ALT=""> value,
|
||||
and <IMG ALIGN="middle" SRC="figs/img173.png" BORDER="0" ALT="">.
|
||||
Next, for all <IMG ALIGN="middle" SRC="figs/img174.png" BORDER="0" ALT="">, we check if <IMG ALIGN="middle" SRC="figs/img175.png" BORDER="0" ALT="">.
|
||||
Since <IMG ALIGN="middle" SRC="figs/img176.png" BORDER="0" ALT="">, then <IMG ALIGN="middle" SRC="figs/img177.png" BORDER="0" ALT=""> is set
|
||||
to <IMG ALIGN="bottom" SRC="figs/img96.png" BORDER="0" ALT="">, <IMG ALIGN="bottom" SRC="figs/img11.png" BORDER="0" ALT=""> is incremented
|
||||
by 1 (now <IMG ALIGN="bottom" SRC="figs/img178.png" BORDER="0" ALT="">) and <IMG ALIGN="middle" SRC="figs/img179.png" BORDER="0" ALT="">.
|
||||
Next, vertex <IMG ALIGN="bottom" SRC="figs/img180.png" BORDER="0" ALT=""> is reached, <IMG ALIGN="middle" SRC="figs/img181.png" BORDER="0" ALT=""> is set
|
||||
to <IMG ALIGN="bottom" SRC="figs/img62.png" BORDER="0" ALT="">, <IMG ALIGN="bottom" SRC="figs/img11.png" BORDER="0" ALT=""> is set to <IMG ALIGN="bottom" SRC="figs/img180.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img182.png" BORDER="0" ALT="">.
|
||||
Next, vertex <IMG ALIGN="bottom" SRC="figs/img183.png" BORDER="0" ALT=""> is reached and <IMG ALIGN="middle" SRC="figs/img184.png" BORDER="0" ALT="">.
|
||||
Since <IMG ALIGN="middle" SRC="figs/img185.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img186.png" BORDER="0" ALT="">, then <IMG ALIGN="middle" SRC="figs/img187.png" BORDER="0" ALT=""> is
|
||||
set to <IMG ALIGN="bottom" SRC="figs/img180.png" BORDER="0" ALT="">, <IMG ALIGN="bottom" SRC="figs/img11.png" BORDER="0" ALT=""> is set to <IMG ALIGN="bottom" SRC="figs/img183.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img188.png" BORDER="0" ALT="">.
|
||||
Finally, vertex <IMG ALIGN="bottom" SRC="figs/img189.png" BORDER="0" ALT=""> is reached and <IMG ALIGN="middle" SRC="figs/img190.png" BORDER="0" ALT="">.
|
||||
Since <IMG ALIGN="middle" SRC="figs/img191.png" BORDER="0" ALT="">, <IMG ALIGN="bottom" SRC="figs/img11.png" BORDER="0" ALT=""> is incremented by 1 and set to 5, as depicted in
|
||||
Figure 3(c).
|
||||
Since <IMG ALIGN="middle" SRC="figs/img192.png" BORDER="0" ALT="">, <IMG ALIGN="bottom" SRC="figs/img11.png" BORDER="0" ALT=""> is again incremented by 1 and set to 6,
|
||||
as depicted in Figure 3(d).
|
||||
These two reassignments are indicated by the arrows in Figure 3.
|
||||
Since <IMG ALIGN="middle" SRC="figs/img193.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img194.png" BORDER="0" ALT="">, then <IMG ALIGN="middle" SRC="figs/img195.png" BORDER="0" ALT=""> is set
|
||||
to <IMG ALIGN="bottom" SRC="figs/img196.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img197.png" BORDER="0" ALT="">. This finishes the algorithm.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H4>Assignment of Values to Non-Critical Vertices</H4>
|
||||
|
||||
<P>
|
||||
As <IMG ALIGN="middle" SRC="figs/img70.png" BORDER="0" ALT=""> is acyclic, we can impose the order in which addresses are
|
||||
associated with edges in <IMG ALIGN="middle" SRC="figs/img70.png" BORDER="0" ALT="">, making this step simple to solve
|
||||
by a standard depth first search algorithm.
|
||||
Therefore, in the assignment of values to vertices in <IMG ALIGN="middle" SRC="figs/img70.png" BORDER="0" ALT=""> we
|
||||
benefit from the unused addresses in the gaps left by the assignment of values
|
||||
to vertices in <IMG ALIGN="middle" SRC="figs/img63.png" BORDER="0" ALT="">.
|
||||
For that, we start the depth-first search from the vertices in <IMG ALIGN="middle" SRC="figs/img141.png" BORDER="0" ALT=""> because
|
||||
the <IMG ALIGN="middle" SRC="figs/img37.png" BORDER="0" ALT=""> values for these critical vertices were already assigned
|
||||
and cannot be changed.
|
||||
</P>
|
||||
<P>
|
||||
Considering the subgraph <IMG ALIGN="middle" SRC="figs/img70.png" BORDER="0" ALT=""> in Figure 2(c),
|
||||
a step by step example of the assignment of values to vertices in <IMG ALIGN="middle" SRC="figs/img70.png" BORDER="0" ALT=""> is
|
||||
presented in Figure 4.
|
||||
Figure 4(a) presents the initial state of the algorithm.
|
||||
The critical vertex 8 is the only one that has non-critical vertices as
|
||||
adjacent.
|
||||
In the example presented in Figure 3, the addresses <IMG ALIGN="middle" SRC="figs/img198.png" BORDER="0" ALT=""> were not used.
|
||||
So, taking the first unused address <IMG ALIGN="bottom" SRC="figs/img115.png" BORDER="0" ALT=""> and the vertex <IMG ALIGN="bottom" SRC="figs/img96.png" BORDER="0" ALT="">,
|
||||
which is reached from the vertex <IMG ALIGN="bottom" SRC="figs/img169.png" BORDER="0" ALT="">, <IMG ALIGN="middle" SRC="figs/img199.png" BORDER="0" ALT=""> is set
|
||||
to <IMG ALIGN="middle" SRC="figs/img200.png" BORDER="0" ALT="">, as shown in Figure 4(b).
|
||||
The only vertex that is reached from vertex <IMG ALIGN="bottom" SRC="figs/img96.png" BORDER="0" ALT=""> is vertex <IMG ALIGN="bottom" SRC="figs/img62.png" BORDER="0" ALT="">, so
|
||||
taking the unused address <IMG ALIGN="bottom" SRC="figs/img183.png" BORDER="0" ALT=""> we set <IMG ALIGN="middle" SRC="figs/img201.png" BORDER="0" ALT=""> to <IMG ALIGN="middle" SRC="figs/img202.png" BORDER="0" ALT="">,
|
||||
as shown in Figure 4(c).
|
||||
This process is repeated until the UnAssignedAddresses list becomes empty.
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/img203.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><B>Figure 4:</B> Example of the assignment of values to non-critical vertices.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<A NAME="heuristic"></A>
|
||||
<H2>The Heuristic</H2>
|
||||
|
||||
<P>
|
||||
We now present an heuristic for BMZ algorithm that
|
||||
reduces the value of <IMG ALIGN="bottom" SRC="figs/img1.png" BORDER="0" ALT=""> to any given value between <I>1.15</I> and <I>0.93</I>.
|
||||
This reduces the space requirement to store the resulting function
|
||||
to any given value between <IMG ALIGN="bottom" SRC="figs/img12.png" BORDER="0" ALT=""> words and <IMG ALIGN="bottom" SRC="figs/img13.png" BORDER="0" ALT=""> words.
|
||||
The heuristic reuses, when possible, the set
|
||||
of <IMG ALIGN="bottom" SRC="figs/img11.png" BORDER="0" ALT=""> values that caused reassignments, just before
|
||||
trying <IMG ALIGN="middle" SRC="figs/img164.png" BORDER="0" ALT="">.
|
||||
Decreasing the value of <IMG ALIGN="bottom" SRC="figs/img1.png" BORDER="0" ALT=""> leads to an increase in the number of
|
||||
iterations to generate <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT="">.
|
||||
For example, for <IMG ALIGN="bottom" SRC="figs/img244.png" BORDER="0" ALT=""> and <IMG ALIGN="bottom" SRC="figs/img6.png" BORDER="0" ALT="">, the analytical expected number
|
||||
of iterations are <IMG ALIGN="bottom" SRC="figs/img245.png" BORDER="0" ALT=""> and <IMG ALIGN="bottom" SRC="figs/img246.png" BORDER="0" ALT="">, respectively (see <A HREF="#papers">[2</A>]
|
||||
for details),
|
||||
while for <IMG ALIGN="bottom" SRC="figs/img128.png" BORDER="0" ALT=""> the same value is around <I>2.13</I>.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Memory Consumption</H2>
|
||||
|
||||
<P>
|
||||
Now we detail the memory consumption to generate and to store minimal perfect hash functions
|
||||
using the BMZ algorithm. The structures responsible for memory consumption are in the
|
||||
following:
|
||||
</P>
|
||||
|
||||
<UL>
|
||||
<LI>Graph:
|
||||
<OL>
|
||||
<LI><B>first</B>: is a vector that stores <I>cn</I> integer numbers, each one representing
|
||||
the first edge (index in the vector edges) in the list of
|
||||
edges of each vertex.
|
||||
The integer numbers are 4 bytes long. Therefore,
|
||||
the vector first is stored in <I>4cn</I> bytes.
|
||||
<P></P>
|
||||
<LI><B>edges</B>: is a vector to represent the edges of the graph. As each edge
|
||||
is compounded by a pair of vertices, each entry stores two integer numbers
|
||||
of 4 bytes that represent the vertices. As there are <I>n</I> edges, the
|
||||
vector edges is stored in <I>8n</I> bytes.
|
||||
<P></P>
|
||||
<LI><B>next</B>: given a vertex <IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT="">, we can discover the edges that
|
||||
contain <IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT=""> following its list of edges,
|
||||
which starts on first[<IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT="">] and the next
|
||||
edges are given by next[...first[<IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT="">]...]. Therefore, the vectors first and next represent
|
||||
the linked lists of edges of each vertex. As there are two vertices for each edge,
|
||||
when an edge is iserted in the graph, it must be inserted in the two linked lists
|
||||
of the vertices in its composition. Therefore, there are <I>2n</I> entries of integer
|
||||
numbers in the vector next, so it is stored in <I>4*2n = 8n</I> bytes.
|
||||
<P></P>
|
||||
<LI><B>critical vertices(critical_nodes vector)</B>: is a vector of <I>cn</I> bits,
|
||||
where each bit indicates if a vertex is critical (1) or non-critical (0).
|
||||
Therefore, the critical and non-critical vertices are represented in <I>cn/8</I> bytes.
|
||||
<P></P>
|
||||
<LI><B>critical edges (used_edges vector)</B>: is a vector of <I>n</I> bits, where each
|
||||
bit indicates if an edge is critical (1) or non-critical (0). Therefore, the
|
||||
critical and non-critical edges are represented in <I>n/8</I> bytes.
|
||||
<P></P>
|
||||
</OL>
|
||||
<LI>Other auxiliary structures
|
||||
<OL>
|
||||
<LI><B>queue</B>: is a queue of integer numbers used in the breadth-first search of the
|
||||
assignment of values to critical vertices. There is an entry in the queue for
|
||||
each two critical vertices. Let <IMG ALIGN="middle" SRC="figs/img110.png" BORDER="0" ALT=""> be the expected number of critical
|
||||
vertices. Therefore, the queue is stored in <I>4*0.5*<IMG ALIGN="middle" SRC="figs/img110.png" BORDER="0" ALT="">=2<IMG ALIGN="middle" SRC="figs/img110.png" BORDER="0" ALT=""></I>.
|
||||
<P></P>
|
||||
<LI><B>visited</B>: is a vector of <I>cn</I> bits, where each bit indicates if the g value of
|
||||
a given vertex was already defined. Therefore, the vector visited is stored
|
||||
in <I>cn/8</I> bytes.
|
||||
<P></P>
|
||||
<LI><B>function <I>g</I></B>: is represented by a vector of <I>cn</I> integer numbers.
|
||||
As each integer number is 4 bytes long, the function <I>g</I> is stored in
|
||||
<I>4cn</I> bytes.
|
||||
</OL>
|
||||
</UL>
|
||||
|
||||
<P>
|
||||
Thus, the total memory consumption of BMZ algorithm for generating a minimal
|
||||
perfect hash function (MPHF) is: <I>(8.25c + 16.125)n +2<IMG ALIGN="middle" SRC="figs/img110.png" BORDER="0" ALT=""> + O(1)</I> bytes.
|
||||
As the value of constant <I>c</I> may be 1.15 and 0.93 we have:
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" BORDER="1" CELLPADDING="4">
|
||||
<TR>
|
||||
<TH><I>c</I></TH>
|
||||
<TH><IMG ALIGN="middle" SRC="figs/img110.png" BORDER="0" ALT=""></TH>
|
||||
<TH>Memory consumption to generate a MPHF</TH>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD>0.93</TD>
|
||||
<TD ALIGN="center"><I>0.497n</I></TD>
|
||||
<TD ALIGN="center"><I>24.80n + O(1)</I></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD>1.15</TD>
|
||||
<TD ALIGN="center"><I>0.401n</I></TD>
|
||||
<TD ALIGN="center"><I>26.42n + O(1)</I></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><B>Table 1:</B> Memory consumption to generate a MPHF using the BMZ algorithm.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
The values of <IMG ALIGN="middle" SRC="figs/img110.png" BORDER="0" ALT=""> were calculated using Eq.(1) presented in <A HREF="#papers">[2</A>].
|
||||
</P>
|
||||
<P>
|
||||
Now we present the memory consumption to store the resulting function.
|
||||
We only need to store the <I>g</I> function. Thus, we need <I>4cn</I> bytes.
|
||||
Again we have:
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" BORDER="1" CELLPADDING="4">
|
||||
<TR>
|
||||
<TH><I>c</I></TH>
|
||||
<TH>Memory consumption to store a MPHF</TH>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD>0.93</TD>
|
||||
<TD ALIGN="center"><I>3.72n</I></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD>1.15</TD>
|
||||
<TD ALIGN="center"><I>4.60n</I></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><B>Table 2:</B> Memory consumption to store a MPHF generated by the BMZ algorithm.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Experimental Results</H2>
|
||||
|
||||
<P>
|
||||
<A HREF="comparison.html">CHM x BMZ</A>
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<A NAME="papers"></A>
|
||||
<H2>Papers</H2>
|
||||
|
||||
<OL>
|
||||
<LI><A HREF="http://www.dcc.ufmg.br/~fbotelho">F. C. Botelho</A>, D. Menoti, <A HREF="http://www.dcc.ufmg.br/~nivio">N. Ziviani</A>. <A HREF="papers/bmz_tr004_04.ps">A New algorithm for constructing minimal perfect hash functions</A>, Technical Report TR004/04, Department of Computer Science, Federal University of Minas Gerais, 2004.
|
||||
<P></P>
|
||||
<LI><A HREF="http://www.dcc.ufmg.br/~fbotelho">F. C. Botelho</A>, Y. Kohayakawa, and <A HREF="http://www.dcc.ufmg.br/~nivio">N. Ziviani</A>. <A HREF="papers/wea05.pdf">A Practical Minimal Perfect Hashing Method</A>. <I>4th International Workshop on efficient and Experimental Algorithms (WEA05),</I> Springer-Verlag Lecture Notes in Computer Science, vol. 3505, Santorini Island, Greece, May 2005, 488-500.
|
||||
</OL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><A HREF="index.html">Home</A></TD>
|
||||
<TD><A HREF="chd.html">CHD</A></TD>
|
||||
<TD><A HREF="bdz.html">BDZ</A></TD>
|
||||
<TD><A HREF="bmz.html">BMZ</A></TD>
|
||||
<TD><A HREF="chm.html">CHM</A></TD>
|
||||
<TD><A HREF="brz.html">BRZ</A></TD>
|
||||
<TD><A HREF="fch.html">FCH</A></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<P>
|
||||
Enjoy!
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:davi@users.sourceforge.net">Davi de Castro Reis</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:db8192@users.sourceforge.net">Djamel Belazzougui</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:fc_botelho@users.sourceforge.net">Fabiano Cupertino Botelho</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:nivio@dcc.ufmg.br">Nivio Ziviani</A>
|
||||
</P>
|
||||
<script type="text/javascript">
|
||||
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
|
||||
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
|
||||
</script>
|
||||
<script type="text/javascript">
|
||||
try {
|
||||
var pageTracker = _gat._getTracker("UA-7698683-2");
|
||||
pageTracker._trackPageview();
|
||||
} catch(err) {}</script>
|
||||
|
||||
<!-- html code generated by txt2tags 2.6 (http://txt2tags.org) -->
|
||||
<!-- cmdline: txt2tags -t html -i BMZ.t2t -o docs/bmz.html -->
|
||||
</BODY></HTML>
|
966
deps/cmph/docs/brz.html
vendored
Normal file
966
deps/cmph/docs/brz.html
vendored
Normal file
@ -0,0 +1,966 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
|
||||
<HTML>
|
||||
<HEAD>
|
||||
<META NAME="generator" CONTENT="http://txt2tags.org">
|
||||
<LINK REL="stylesheet" TYPE="text/css" HREF="DOC.css">
|
||||
<TITLE>External Memory Based Algorithm</TITLE>
|
||||
</HEAD><BODY BGCOLOR="white" TEXT="black">
|
||||
<CENTER>
|
||||
<H1>External Memory Based Algorithm</H1>
|
||||
</CENTER>
|
||||
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Introduction</H2>
|
||||
|
||||
<P>
|
||||
Until now, because of the limitations of current algorithms,
|
||||
the use of MPHFs is restricted to scenarios where the set of keys being hashed is
|
||||
relatively small.
|
||||
However, in many cases it is crucial to deal in an efficient way with very large
|
||||
sets of keys.
|
||||
Due to the exponential growth of the Web, the work with huge collections is becoming
|
||||
a daily task.
|
||||
For instance, the simple assignment of number identifiers to web pages of a collection
|
||||
can be a challenging task.
|
||||
While traditional databases simply cannot handle more traffic once the working
|
||||
set of URLs does not fit in main memory anymore<A HREF="#papers">[4</A>], the algorithm we propose here to
|
||||
construct MPHFs can easily scale to billions of entries.
|
||||
</P>
|
||||
<P>
|
||||
As there are many applications for MPHFs, it is
|
||||
important to design and implement space and time efficient algorithms for
|
||||
constructing such functions.
|
||||
The attractiveness of using MPHFs depends on the following issues:
|
||||
</P>
|
||||
|
||||
<OL>
|
||||
<LI>The amount of CPU time required by the algorithms for constructing MPHFs.
|
||||
<P></P>
|
||||
<LI>The space requirements of the algorithms for constructing MPHFs.
|
||||
<P></P>
|
||||
<LI>The amount of CPU time required by a MPHF for each retrieval.
|
||||
<P></P>
|
||||
<LI>The space requirements of the description of the resulting MPHFs to be used at retrieval time.
|
||||
</OL>
|
||||
|
||||
<P>
|
||||
We present here a novel external memory based algorithm for constructing MPHFs that
|
||||
are very efficient in the four requirements mentioned previously.
|
||||
First, the algorithm is linear on the size of keys to construct a MPHF,
|
||||
which is optimal.
|
||||
For instance, for a collection of 1 billion URLs
|
||||
collected from the web, each one 64 characters long on average, the time to construct a
|
||||
MPHF using a 2.4 gigahertz PC with 500 megabytes of available main memory
|
||||
is approximately 3 hours.
|
||||
Second, the algorithm needs a small a priori defined vector of <IMG ALIGN="middle" SRC="figs/brz/img23.png" BORDER="0" ALT=""> one
|
||||
byte entries in main memory to construct a MPHF.
|
||||
For the collection of 1 billion URLs and using <IMG ALIGN="middle" SRC="figs/brz/img4.png" BORDER="0" ALT="">, the algorithm needs only
|
||||
5.45 megabytes of internal memory.
|
||||
Third, the evaluation of the MPHF for each retrieval requires three memory accesses and
|
||||
the computation of three universal hash functions.
|
||||
This is not optimal as any MPHF requires at least one memory access and the computation
|
||||
of two universal hash functions.
|
||||
Fourth, the description of a MPHF takes a constant number of bits for each key, which is optimal.
|
||||
For the collection of 1 billion URLs, it needs 8.1 bits for each key,
|
||||
while the theoretical lower bound is <IMG ALIGN="middle" SRC="figs/brz/img24.png" BORDER="0" ALT=""> bits per key.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>The Algorithm</H2>
|
||||
|
||||
<P>
|
||||
The main idea supporting our algorithm is the classical divide and conquer technique.
|
||||
The algorithm is a two-step external memory based algorithm
|
||||
that generates a MPHF <I>h</I> for a set <I>S</I> of <I>n</I> keys.
|
||||
Figure 1 illustrates the two steps of the
|
||||
algorithm: the partitioning step and the searching step.
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/brz/brz.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><B>Figure 1:</B> Main steps of our algorithm.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
The partitioning step takes a key set <I>S</I> and uses a universal hash
|
||||
function <IMG ALIGN="middle" SRC="figs/brz/img42.png" BORDER="0" ALT=""> proposed by Jenkins<A HREF="#papers">[5</A>]
|
||||
to transform each key <IMG ALIGN="middle" SRC="figs/brz/img43.png" BORDER="0" ALT=""> into an integer <IMG ALIGN="middle" SRC="figs/brz/img44.png" BORDER="0" ALT="">.
|
||||
Reducing <IMG ALIGN="middle" SRC="figs/brz/img44.png" BORDER="0" ALT=""> modulo <IMG ALIGN="middle" SRC="figs/brz/img23.png" BORDER="0" ALT="">, we partition <I>S</I>
|
||||
into <IMG ALIGN="middle" SRC="figs/brz/img23.png" BORDER="0" ALT=""> buckets containing at most 256 keys in each bucket (with high
|
||||
probability).
|
||||
</P>
|
||||
<P>
|
||||
The searching step generates a MPHF<IMG ALIGN="middle" SRC="figs/brz/img46.png" BORDER="0" ALT=""> for each bucket <I>i</I>, <IMG ALIGN="middle" SRC="figs/brz/img47.png" BORDER="0" ALT="">.
|
||||
The resulting MPHF <I>h(k)</I>, <IMG ALIGN="middle" SRC="figs/brz/img43.png" BORDER="0" ALT="">, is given by
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/brz/img49.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
where <IMG ALIGN="middle" SRC="figs/brz/img50.png" BORDER="0" ALT="">.
|
||||
The <I>i</I>th entry <I>offset[i]</I> of the displacement vector
|
||||
<I>offset</I>, <IMG ALIGN="middle" SRC="figs/brz/img47.png" BORDER="0" ALT="">, contains the total number
|
||||
of keys in the buckets from 0 to <I>i-1</I>, that is, it gives the interval of the
|
||||
keys in the hash table addressed by the MPHF<IMG ALIGN="middle" SRC="figs/brz/img46.png" BORDER="0" ALT="">. In the following we explain
|
||||
each step in detail.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H3>Partitioning step</H3>
|
||||
|
||||
<P>
|
||||
The set <I>S</I> of <I>n</I> keys is partitioned into <IMG ALIGN="middle" SRC="figs/brz/img23.png" BORDER="0" ALT="">,
|
||||
where <I>b</I> is a suitable parameter chosen to guarantee
|
||||
that each bucket has at most 256 keys with high probability
|
||||
(see <A HREF="#papers">[2</A>] for details).
|
||||
The partitioning step works as follows:
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/brz/img54.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><B>Figure 2:</B> Partitioning step.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
Statement 1.1 of the <B>for</B> loop presented in Figure 2
|
||||
reads sequentially all the keys of block <IMG ALIGN="middle" SRC="figs/brz/img55.png" BORDER="0" ALT=""> from disk into an internal area
|
||||
of size <IMG ALIGN="middle" SRC="figs/brz/img8.png" BORDER="0" ALT="">.
|
||||
</P>
|
||||
<P>
|
||||
Statement 1.2 performs an indirect bucket sort of the keys in block <IMG ALIGN="middle" SRC="figs/brz/img55.png" BORDER="0" ALT=""> and
|
||||
at the same time updates the entries in the vector <I>size</I>.
|
||||
Let us briefly describe how <IMG ALIGN="middle" SRC="figs/brz/img55.png" BORDER="0" ALT=""> is partitioned among
|
||||
the <IMG ALIGN="middle" SRC="figs/brz/img23.png" BORDER="0" ALT=""> buckets.
|
||||
We use a local array of <IMG ALIGN="middle" SRC="figs/brz/img23.png" BORDER="0" ALT=""> counters to store a
|
||||
count of how many keys from <IMG ALIGN="middle" SRC="figs/brz/img55.png" BORDER="0" ALT=""> belong to each bucket.
|
||||
The pointers to the keys in each bucket <I>i</I>, <IMG ALIGN="middle" SRC="figs/brz/img47.png" BORDER="0" ALT="">,
|
||||
are stored in contiguous positions in an array.
|
||||
For this we first reserve the required number of entries
|
||||
in this array of pointers using the information from the array of counters.
|
||||
Next, we place the pointers to the keys in each bucket into the respective
|
||||
reserved areas in the array (i.e., we place the pointers to the keys in bucket 0,
|
||||
followed by the pointers to the keys in bucket 1, and so on).
|
||||
</P>
|
||||
<P>
|
||||
To find the bucket address of a given key
|
||||
we use the universal hash function <IMG ALIGN="middle" SRC="figs/brz/img44.png" BORDER="0" ALT=""><A HREF="#papers">[5</A>].
|
||||
Key <I>k</I> goes into bucket <I>i</I>, where
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/brz/img57.png" BORDER="0" ALT=""> (1)</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
Figure 3(a) shows a <I>logical</I> view of the <IMG ALIGN="middle" SRC="figs/brz/img23.png" BORDER="0" ALT=""> buckets
|
||||
generated in the partitioning step.
|
||||
In reality, the keys belonging to each bucket are distributed among many files,
|
||||
as depicted in Figure 3(b).
|
||||
In the example of Figure 3(b), the keys in bucket 0
|
||||
appear in files 1 and <I>N</I>, the keys in bucket 1 appear in files 1, 2
|
||||
and <I>N</I>, and so on.
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/brz/brz-partitioning.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><B>Figure 3:</B> Situation of the buckets at the end of the partitioning step: (a) Logical view (b) Physical view.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
This scattering of the keys in the buckets could generate a performance
|
||||
problem because of the potential number of seeks
|
||||
needed to read the keys in each bucket from the <I>N</I> files in disk
|
||||
during the searching step.
|
||||
But, as we show in <A HREF="#papers">[2</A>], the number of seeks
|
||||
can be kept small using buffering techniques.
|
||||
Considering that only the vector <I>size</I>, which has <IMG ALIGN="middle" SRC="figs/brz/img23.png" BORDER="0" ALT=""> one-byte
|
||||
entries (remember that each bucket has at most 256 keys),
|
||||
must be maintained in main memory during the searching step,
|
||||
almost all main memory is available to be used as disk I/O buffer.
|
||||
</P>
|
||||
<P>
|
||||
The last step is to compute the <I>offset</I> vector and dump it to the disk.
|
||||
We use the vector <I>size</I> to compute the
|
||||
<I>offset</I> displacement vector.
|
||||
The <I>offset[i]</I> entry contains the number of keys
|
||||
in the buckets <I>0, 1, ..., i-1</I>.
|
||||
As <I>size[i]</I> stores the number of keys
|
||||
in bucket <I>i</I>, where <IMG ALIGN="middle" SRC="figs/brz/img47.png" BORDER="0" ALT="">, we have
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/brz/img63.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H3>Searching step</H3>
|
||||
|
||||
<P>
|
||||
The searching step is responsible for generating a MPHF for each
|
||||
bucket. Figure 4 presents the searching step algorithm.
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/brz/img64.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><B>Figure 4:</B> Searching step.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
Statement 1 of Figure 4 inserts one key from each file
|
||||
in a minimum heap <I>H</I> of size <I>N</I>.
|
||||
The order relation in <I>H</I> is given by the bucket address <I>i</I> given by
|
||||
Eq. (1).
|
||||
</P>
|
||||
<P>
|
||||
Statement 2 has two important steps.
|
||||
In statement 2.1, a bucket is read from disk,
|
||||
as described below.
|
||||
In statement 2.2, a MPHF is generated for each bucket <I>i</I>, as described
|
||||
in the following.
|
||||
The description of MPHF<IMG ALIGN="middle" SRC="figs/brz/img46.png" BORDER="0" ALT=""> is a vector <IMG ALIGN="middle" SRC="figs/brz/img66.png" BORDER="0" ALT=""> of 8-bit integers.
|
||||
Finally, statement 2.3 writes the description <IMG ALIGN="middle" SRC="figs/brz/img66.png" BORDER="0" ALT=""> of MPHF<IMG ALIGN="middle" SRC="figs/brz/img46.png" BORDER="0" ALT=""> to disk.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H4>Reading a bucket from disk</H4>
|
||||
|
||||
<P>
|
||||
In this section we present the refinement of statement 2.1 of
|
||||
Figure 4.
|
||||
The algorithm to read bucket <I>i</I> from disk is presented
|
||||
in Figure 5.
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/brz/img67.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><B>Figure 5:</B> Reading a bucket.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
Bucket <I>i</I> is distributed among many files and the heap <I>H</I> is used to drive a
|
||||
multiway merge operation.
|
||||
In Figure 5, statement 1.1 extracts and removes triple
|
||||
<I>(i, j, k)</I> from <I>H</I>, where <I>i</I> is a minimum value in <I>H</I>.
|
||||
Statement 1.2 inserts key <I>k</I> in bucket <I>i</I>.
|
||||
Notice that the <I>k</I> in the triple <I>(i, j, k)</I> is in fact a pointer to
|
||||
the first byte of the key that is kept in contiguous positions of an array of characters
|
||||
(this array containing the keys is initialized during the heap construction
|
||||
in statement 1 of Figure 4).
|
||||
Statement 1.3 performs a seek operation in File <I>j</I> on disk for the first
|
||||
read operation and reads sequentially all keys <I>k</I> that have the same <I>i</I>
|
||||
and inserts them all in bucket <I>i</I>.
|
||||
Finally, statement 1.4 inserts in <I>H</I> the triple <I>(i, j, x)</I>,
|
||||
where <I>x</I> is the first key read from File <I>j</I> (in statement 1.3)
|
||||
that does not have the same bucket address as the previous keys.
|
||||
</P>
|
||||
<P>
|
||||
The number of seek operations on disk performed in statement 1.3 is discussed
|
||||
in <A HREF="#papers">[2, Section 5.1</A>],
|
||||
where we present a buffering technique that brings down
|
||||
the time spent with seeks.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H4>Generating a MPHF for each bucket</H4>
|
||||
|
||||
<P>
|
||||
To the best of our knowledge the <A HREF="bmz.html">BMZ algorithm</A> we have designed in
|
||||
our previous works <A HREF="#papers">[1,3</A>] is the fastest published algorithm for
|
||||
constructing MPHFs.
|
||||
That is why we are using that algorithm as a building block for the
|
||||
algorithm presented here. In reality, we are using
|
||||
an optimized version of BMZ (BMZ8) for small set of keys (at most 256 keys).
|
||||
<A HREF="bmz.html">Click here to see details about BMZ algorithm</A>.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Analysis of the Algorithm</H2>
|
||||
|
||||
<P>
|
||||
Analytical results and the complete analysis of the external memory based algorithm
|
||||
can be found in <A HREF="#papers">[2</A>].
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Experimental Results</H2>
|
||||
|
||||
<P>
|
||||
In this section we present the experimental results.
|
||||
We start presenting the experimental setup.
|
||||
We then present experimental results for
|
||||
the internal memory based algorithm (<A HREF="bmz.html">the BMZ algorithm</A>)
|
||||
and for our external memory based algorithm.
|
||||
Finally, we discuss how the amount of internal memory available
|
||||
affects the runtime of the external memory based algorithm.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H3>The data and the experimental setup</H3>
|
||||
|
||||
<P>
|
||||
All experiments were carried out on
|
||||
a computer running the Linux operating system, version 2.6,
|
||||
with a 2.4 gigahertz processor and
|
||||
1 gigabyte of main memory.
|
||||
In the experiments related to the new
|
||||
algorithm we limited the main memory in 500 megabytes.
|
||||
</P>
|
||||
<P>
|
||||
Our data consists of a collection of 1 billion
|
||||
URLs collected from the Web, each URL 64 characters long on average.
|
||||
The collection is stored on disk in 60.5 gigabytes.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H3>Performance of the BMZ Algorithm</H3>
|
||||
|
||||
<P>
|
||||
<A HREF="bmz.html">The BMZ algorithm</A> is used for constructing a MPHF for each bucket.
|
||||
It is a randomized algorithm because it needs to generate a simple random graph
|
||||
in its first step.
|
||||
Once the graph is obtained the other two steps are deterministic.
|
||||
</P>
|
||||
<P>
|
||||
Thus, we can consider the runtime of the algorithm to have
|
||||
the form <IMG ALIGN="middle" SRC="figs/brz/img159.png" BORDER="0" ALT=""> for an input of <I>n</I> keys,
|
||||
where <IMG ALIGN="middle" SRC="figs/brz/img160.png" BORDER="0" ALT=""> is some machine dependent
|
||||
constant that further depends on the length of the keys and <I>Z</I> is a random
|
||||
variable with geometric distribution with mean <IMG ALIGN="middle" SRC="figs/brz/img162.png" BORDER="0" ALT="">. All results
|
||||
in our experiments were obtained taking <I>c=1</I>; the value of <I>c</I>, with <I>c</I> in <I>[0.93,1.15]</I>,
|
||||
in fact has little influence in the runtime, as shown in <A HREF="#papers">[3</A>].
|
||||
</P>
|
||||
<P>
|
||||
The values chosen for <I>n</I> were 1, 2, 4, 8, 16 and 32 million.
|
||||
Although we have a dataset with 1 billion URLs, on a PC with
|
||||
1 gigabyte of main memory, the algorithm is able
|
||||
to handle an input with at most 32 million keys.
|
||||
This is mainly because of the graph we need to keep in main memory.
|
||||
The algorithm requires <I>25n + O(1)</I> bytes for constructing
|
||||
a MPHF (<A HREF="bmz.html">click here to get details about the data structures used by the BMZ algorithm</A>).
|
||||
</P>
|
||||
<P>
|
||||
In order to estimate the number of trials for each value of <I>n</I> we use
|
||||
a statistical method for determining a suitable sample size (see, e.g., <A HREF="#papers">[6, Chapter 13</A>]).
|
||||
As we obtained different values for each <I>n</I>,
|
||||
we used the maximal value obtained, namely, 300 trials in order to have
|
||||
a confidence level of 95 %.
|
||||
</P>
|
||||
<P>
|
||||
Table 1 presents the runtime average for each <I>n</I>,
|
||||
the respective standard deviations, and
|
||||
the respective confidence intervals given by
|
||||
the average time <IMG ALIGN="middle" SRC="figs/brz/img167.png" BORDER="0" ALT=""> the distance from average time
|
||||
considering a confidence level of 95 %.
|
||||
Observing the runtime averages one sees that
|
||||
the algorithm runs in expected linear time,
|
||||
as shown in <A HREF="#papers">[3</A>].
|
||||
</P>
|
||||
<TABLE CELLPADDING=3 BORDER="1" ALIGN="CENTER">
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img5.png"
|
||||
ALT="$n$"></SPAN> (millions) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 1 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 2 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 4 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 8 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 16 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 32 </SMALL></TD>
|
||||
<TD></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE">
|
||||
|
||||
Average time (s)</SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="64" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img168.png"
|
||||
ALT="$6.1 \pm 0.3$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img169.png"
|
||||
ALT="$12.2 \pm 0.6$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img170.png"
|
||||
ALT="$25.4 \pm 1.1$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img171.png"
|
||||
ALT="$51.4 \pm 2.0$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="80" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img172.png"
|
||||
ALT="$117.3 \pm 4.4$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="80" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img173.png"
|
||||
ALT="$262.2 \pm 8.7$"></SPAN></SMALL></TD>
|
||||
<TD></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE">
|
||||
SD (s) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img174.png"
|
||||
ALT="$2.6$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img175.png"
|
||||
ALT="$5.4$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img176.png"
|
||||
ALT="$9.8$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img177.png"
|
||||
ALT="$17.6$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img178.png"
|
||||
ALT="$37.3$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img179.png"
|
||||
ALT="$76.3$"></SPAN> </SMALL></TD>
|
||||
<TD></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><B>Table 1:</B> Internal memory based algorithm: average time in seconds for constructing a MPHF, the standard deviation (SD), and the confidence intervals considering a confidence level of 95 %.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
Figure 6 presents the runtime for each trial. In addition,
|
||||
the solid line corresponds to a linear regression model
|
||||
obtained from the experimental measurements.
|
||||
As we can see, the runtime for a given <I>n</I> has a considerable
|
||||
fluctuation. However, the fluctuation also grows linearly with <I>n</I>.
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/brz/bmz_temporegressao.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><B>Figure 6:</B> Time versus number of keys in <I>S</I> for the internal memory based algorithm. The solid line corresponds to a linear regression model.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
The observed fluctuation in the runtimes is as expected; recall that this
|
||||
runtime has the form <IMG ALIGN="middle" SRC="figs/brz/img159.png" BORDER="0" ALT=""> with <I>Z</I> a geometric random variable with
|
||||
mean <I>1/p=e</I>. Thus, the runtime has mean <IMG ALIGN="middle" SRC="figs/brz/img181.png" BORDER="0" ALT=""> and standard
|
||||
deviation <IMG ALIGN="middle" SRC="figs/brz/img182.png" BORDER="0" ALT="">.
|
||||
Therefore, the standard deviation also grows
|
||||
linearly with <I>n</I>, as experimentally verified
|
||||
in Table 1 and in Figure 6.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H3>Performance of the External Memory Based Algorithm</H3>
|
||||
|
||||
<P>
|
||||
The runtime of the external memory based algorithm is also a random variable,
|
||||
but now it follows a (highly concentrated) normal distribution, as we discuss at the end of this
|
||||
section. Again, we are interested in verifying the linearity claim made in
|
||||
<A HREF="#papers">[2, Section 5.1</A>]. Therefore, we ran the algorithm for
|
||||
several numbers <I>n</I> of keys in <I>S</I>.
|
||||
</P>
|
||||
<P>
|
||||
The values chosen for <I>n</I> were 1, 2, 4, 8, 16, 32, 64, 128, 512 and 1000
|
||||
million.
|
||||
We limited the main memory in 500 megabytes for the experiments.
|
||||
The size <IMG ALIGN="middle" SRC="figs/brz/img8.png" BORDER="0" ALT=""> of the a priori reserved internal memory area
|
||||
was set to 250 megabytes, the parameter <I>b</I> was set to <I>175</I> and
|
||||
the building block algorithm parameter <I>c</I> was again set to <I>1</I>.
|
||||
We show later on how <IMG ALIGN="middle" SRC="figs/brz/img8.png" BORDER="0" ALT=""> affects the runtime of the algorithm. The other two parameters
|
||||
have insignificant influence on the runtime.
|
||||
</P>
|
||||
<P>
|
||||
We again use a statistical method for determining a suitable sample size
|
||||
to estimate the number of trials to be run for each value of <I>n</I>. We got that
|
||||
just one trial for each <I>n</I> would be enough with a confidence level of 95 %.
|
||||
However, we made 10 trials. This number of trials seems rather small, but, as
|
||||
shown below, the behavior of our algorithm is very stable and its runtime is
|
||||
almost deterministic (i.e., the standard deviation is very small).
|
||||
</P>
|
||||
<P>
|
||||
Table 2 presents the runtime average for each <I>n</I>,
|
||||
the respective standard deviations, and
|
||||
the respective confidence intervals given by
|
||||
the average time <IMG ALIGN="middle" SRC="figs/brz/img167.png" BORDER="0" ALT=""> the distance from average time
|
||||
considering a confidence level of 95 %.
|
||||
Observing the runtime averages we noticed that
|
||||
the algorithm runs in expected linear time,
|
||||
as shown in <A HREF="#papers">[2, Section 5.1</A>]. Better still,
|
||||
it is only approximately 60 % slower than the BMZ algorithm.
|
||||
To get that value we used the linear regression model obtained for the runtime of
|
||||
the internal memory based algorithm to estimate how much time it would require
|
||||
for constructing a MPHF for a set of 1 billion keys.
|
||||
We got 2.3 hours for the internal memory based algorithm and we measured
|
||||
3.67 hours on average for the external memory based algorithm.
|
||||
Increasing the size of the internal memory area
|
||||
from 250 to 600 megabytes,
|
||||
we have brought the time to 3.09 hours. In this case, the external memory based algorithm is
|
||||
just 34 % slower in this setup.
|
||||
</P>
|
||||
<TABLE CELLPADDING=3 BORDER="1" ALIGN="CENTER">
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img5.png"
|
||||
ALT="$n$"></SPAN> (millions) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 1 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 2 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 4 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 8 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 16 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
Average time (s) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="64" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img187.png"
|
||||
ALT="$6.9 \pm 0.3$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img188.png"
|
||||
ALT="$13.8 \pm 0.2$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img189.png"
|
||||
ALT="$31.9 \pm 0.7$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img190.png"
|
||||
ALT="$69.9 \pm 1.1$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="80" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img191.png"
|
||||
ALT="$140.6 \pm 2.5$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
SD </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img192.png"
|
||||
ALT="$0.4$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img193.png"
|
||||
ALT="$0.2$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img194.png"
|
||||
ALT="$0.9$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img195.png"
|
||||
ALT="$1.5$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img196.png"
|
||||
ALT="$3.5$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img5.png"
|
||||
ALT="$n$"></SPAN> (millions) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 32 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 64 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 128 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 512 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 1000 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
Average time (s) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="80" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img197.png"
|
||||
ALT="$284.3 \pm 1.1$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="80" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img198.png"
|
||||
ALT="$587.9 \pm 3.9$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <!-- MATH
|
||||
$1223.6 \pm 4.9$
|
||||
-->
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="88" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img199.png"
|
||||
ALT="$1223.6 \pm 4.9$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <!-- MATH
|
||||
$5966.4 \pm 9.5$
|
||||
-->
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="88" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img200.png"
|
||||
ALT="$5966.4 \pm 9.5$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <!-- MATH
|
||||
$13229.5 \pm 12.7$
|
||||
-->
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="104" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img201.png"
|
||||
ALT="$13229.5 \pm 12.7$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
SD </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img202.png"
|
||||
ALT="$1.6$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img203.png"
|
||||
ALT="$5.5$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img204.png"
|
||||
ALT="$6.8$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img205.png"
|
||||
ALT="$13.2$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img206.png"
|
||||
ALT="$18.6$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD></TD>
|
||||
<TD></TD>
|
||||
<TD></TD>
|
||||
<TD></TD>
|
||||
<TD></TD>
|
||||
<TD></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><B>Table 2:</B>The external memory based algorithm: average time in seconds for constructing a MPHF, the standard deviation (SD), and the confidence intervals considering a confidence level of 95 %.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
Figure 7 presents the runtime for each trial. In addition,
|
||||
the solid line corresponds to a linear regression model
|
||||
obtained from the experimental measurements.
|
||||
As we were expecting the runtime for a given <I>n</I> has almost no
|
||||
variation.
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><IMG ALIGN="middle" SRC="figs/brz/brz_temporegressao.png" BORDER="0" ALT=""></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><B>Figure 7:</B> Time versus number of keys in <I>S</I> for our algorithm. The solid line corresponds to a linear regression model.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
An intriguing observation is that the runtime of the algorithm is almost
|
||||
deterministic, in spite of the fact that it uses as building block an
|
||||
algorithm with a considerable fluctuation in its runtime. A given bucket
|
||||
<I>i</I>, <IMG ALIGN="middle" SRC="figs/brz/img47.png" BORDER="0" ALT="">, is a small set of keys (at most 256 keys) and,
|
||||
as argued in last Section, the runtime of the
|
||||
building block algorithm is a random variable <IMG ALIGN="middle" SRC="figs/brz/img207.png" BORDER="0" ALT=""> with high fluctuation.
|
||||
However, the runtime <I>Y</I> of the searching step of the external memory based algorithm is given
|
||||
by <IMG ALIGN="middle" SRC="figs/brz/img209.png" BORDER="0" ALT="">. Under the hypothesis that
|
||||
the <IMG ALIGN="middle" SRC="figs/brz/img207.png" BORDER="0" ALT=""> are independent and bounded, the {\it law of large numbers} (see,
|
||||
e.g., <A HREF="#papers">[6</A>]) implies that the random variable <IMG ALIGN="middle" SRC="figs/brz/img210.png" BORDER="0" ALT=""> converges
|
||||
to a constant as <IMG ALIGN="middle" SRC="figs/brz/img83.png" BORDER="0" ALT="">. This explains why the runtime of our
|
||||
algorithm is almost deterministic.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H3>Controlling disk accesses</H3>
|
||||
|
||||
<P>
|
||||
In order to bring down the number of seek operations on disk
|
||||
we benefit from the fact that our algorithm leaves almost all main
|
||||
memory available to be used as disk I/O buffer.
|
||||
In this section we evaluate how much the parameter <IMG ALIGN="middle" SRC="figs/brz/img8.png" BORDER="0" ALT=""> affects the runtime of our algorithm.
|
||||
For that we fixed <I>n</I> in 1 billion of URLs,
|
||||
set the main memory of the machine used for the experiments
|
||||
to 1 gigabyte and used <IMG ALIGN="middle" SRC="figs/brz/img8.png" BORDER="0" ALT=""> equal to 100, 200, 300, 400, 500 and 600
|
||||
megabytes.
|
||||
</P>
|
||||
<P>
|
||||
Table 3 presents the number of files <I>N</I>,
|
||||
the buffer size used for all files, the number of seeks in the worst case considering
|
||||
the pessimistic assumption mentioned in <A HREF="#papers">[2, Section 5.1</A>], and
|
||||
the time to generate a MPHF for 1 billion of keys as a function of the amount of internal
|
||||
memory available. Observing Table 3 we noticed that the time spent in the construction
|
||||
decreases as the value of <IMG ALIGN="middle" SRC="figs/brz/img8.png" BORDER="0" ALT=""> increases. However, for <IMG ALIGN="middle" SRC="figs/brz/img213.png" BORDER="0" ALT="">, the variation
|
||||
on the time is not as significant as for <IMG ALIGN="middle" SRC="figs/brz/img214.png" BORDER="0" ALT="">.
|
||||
This can be explained by the fact that the kernel 2.6 I/O scheduler of Linux
|
||||
has smart policies for avoiding seeks and diminishing the average seek time
|
||||
(see <A HREF="http://www.linuxjournal.com/article/6931">http://www.linuxjournal.com/article/6931</A>).
|
||||
</P>
|
||||
<TABLE CELLPADDING=3 BORDER="1" ALIGN="center">
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img8.png"
|
||||
ALT="$\mu $"></SPAN> (MB) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img215.png"
|
||||
ALT="$100$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img216.png"
|
||||
ALT="$200$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img217.png"
|
||||
ALT="$300$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img218.png"
|
||||
ALT="$400$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img219.png"
|
||||
ALT="$500$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img212.png"
|
||||
ALT="$600$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="19" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img58.png"
|
||||
ALT="$N$"></SPAN> (files) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img220.png"
|
||||
ALT="$619$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img221.png"
|
||||
ALT="$310$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img222.png"
|
||||
ALT="$207$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img223.png"
|
||||
ALT="$155$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img224.png"
|
||||
ALT="$124$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img225.png"
|
||||
ALT="$104$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
(buffer size in KB) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img226.png"
|
||||
ALT="$165$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="28" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img227.png"
|
||||
ALT="$661$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="43" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img228.png"
|
||||
ALT="$1,484$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="43" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img229.png"
|
||||
ALT="$2,643$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="43" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img230.png"
|
||||
ALT="$4,129$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="43" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img231.png"
|
||||
ALT="$5,908$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img135.png"
|
||||
ALT="$\beta$"></SPAN>/ (# of seeks in the worst case) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="59" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img232.png"
|
||||
ALT="$384,478$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="51" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img233.png"
|
||||
ALT="$95,974$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="51" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img234.png"
|
||||
ALT="$42,749$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="51" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img235.png"
|
||||
ALT="$24,003$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="51" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img236.png"
|
||||
ALT="$15,365$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="51" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/brz/img237.png"
|
||||
ALT="$10,738$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="LEFT"><SMALL CLASS="SCRIPTSIZE">
|
||||
Time (hours) </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img238.png"
|
||||
ALT="$4.04$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img239.png"
|
||||
ALT="$3.64$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img240.png"
|
||||
ALT="$3.34$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img241.png"
|
||||
ALT="$3.20$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img242.png"
|
||||
ALT="$3.13$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/brz/img243.png"
|
||||
ALT="$3.09$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><B>Table 3:</B>Influence of the internal memory area size (<IMG ALIGN="middle" SRC="figs/brz/img8.png" BORDER="0" ALT="">) in the external memory based algorithm runtime.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<A NAME="papers"></A>
|
||||
<H2>Papers</H2>
|
||||
|
||||
<OL>
|
||||
<LI><A HREF="http://www.dcc.ufmg.br/~fbotelho">F. C. Botelho</A>, D. Menoti, <A HREF="http://www.dcc.ufmg.br/~nivio">N. Ziviani</A>. <A HREF="papers/bmz_tr004_04.ps">A New algorithm for constructing minimal perfect hash functions</A>, Technical Report TR004/04, Department of Computer Science, Federal University of Minas Gerais, 2004.
|
||||
<P></P>
|
||||
<LI><A HREF="http://www.dcc.ufmg.br/~fbotelho">F. C. Botelho</A>, Y. Kohayakawa, <A HREF="http://www.dcc.ufmg.br/~nivio">N. Ziviani</A>. <A HREF="papers/tr06.pdf">An Approach for Minimal Perfect Hash Functions for Very Large Databases</A>, Technical Report TR003/06, Department of Computer Science, Federal University of Minas Gerais, 2004.
|
||||
<P></P>
|
||||
<LI><A HREF="http://www.dcc.ufmg.br/~fbotelho">F. C. Botelho</A>, Y. Kohayakawa, and <A HREF="http://www.dcc.ufmg.br/~nivio">N. Ziviani</A>. <A HREF="papers/wea05.pdf">A Practical Minimal Perfect Hashing Method</A>. <I>4th International Workshop on efficient and Experimental Algorithms (WEA05),</I> Springer-Verlag Lecture Notes in Computer Science, vol. 3505, Santorini Island, Greece, May 2005, 488-500.
|
||||
<P></P>
|
||||
<LI><A HREF="http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=299">M. Seltzer. Beyond relational databases. ACM Queue, 3(3), April 2005.</A>
|
||||
<P></P>
|
||||
<LI><A HREF="http://burtleburtle.net/bob/hash/doobs.html">Bob Jenkins. Algorithm alley: Hash functions. Dr. Dobb's Journal of Software Tools, 22(9), september 1997.</A>
|
||||
<P></P>
|
||||
<LI>R. Jain. The art of computer systems performance analysis: techniques for experimental design, measurement, simulation, and modeling. John Wiley, first edition, 1991.
|
||||
</OL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><A HREF="index.html">Home</A></TD>
|
||||
<TD><A HREF="chd.html">CHD</A></TD>
|
||||
<TD><A HREF="bdz.html">BDZ</A></TD>
|
||||
<TD><A HREF="bmz.html">BMZ</A></TD>
|
||||
<TD><A HREF="chm.html">CHM</A></TD>
|
||||
<TD><A HREF="brz.html">BRZ</A></TD>
|
||||
<TD><A HREF="fch.html">FCH</A></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<P>
|
||||
Enjoy!
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:davi@users.sourceforge.net">Davi de Castro Reis</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:db8192@users.sourceforge.net">Djamel Belazzougui</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:fc_botelho@users.sourceforge.net">Fabiano Cupertino Botelho</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:nivio@dcc.ufmg.br">Nivio Ziviani</A>
|
||||
</P>
|
||||
<script type="text/javascript">
|
||||
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
|
||||
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
|
||||
</script>
|
||||
<script type="text/javascript">
|
||||
try {
|
||||
var pageTracker = _gat._getTracker("UA-7698683-2");
|
||||
pageTracker._trackPageview();
|
||||
} catch(err) {}</script>
|
||||
|
||||
<!-- html code generated by txt2tags 2.6 (http://txt2tags.org) -->
|
||||
<!-- cmdline: txt2tags -t html -i BRZ.t2t -o docs/brz.html -->
|
||||
</BODY></HTML>
|
97
deps/cmph/docs/chd.html
vendored
Normal file
97
deps/cmph/docs/chd.html
vendored
Normal file
@ -0,0 +1,97 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
|
||||
<HTML>
|
||||
<HEAD>
|
||||
<META NAME="generator" CONTENT="http://txt2tags.org">
|
||||
<LINK REL="stylesheet" TYPE="text/css" HREF="DOC.css">
|
||||
<TITLE>Compress, Hash and Displace: CHD Algorithm</TITLE>
|
||||
</HEAD><BODY BGCOLOR="white" TEXT="black">
|
||||
<CENTER>
|
||||
<H1>Compress, Hash and Displace: CHD Algorithm</H1>
|
||||
</CENTER>
|
||||
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Introduction</H2>
|
||||
|
||||
<P>
|
||||
The important performance parameters of a PHF are representation size, evaluation time and construction time. The representation size plays an important role when the whole function fits in a faster memory and the actual data is stored in a slower memory. For instace, compact PHFs can be entirely fit in a CPU cache and this makes their computation really fast by avoiding cache misses. The CHD algorithm plays an important role in this context. It was designed by Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger in <A HREF="#papers">[2</A>].
|
||||
</P>
|
||||
<P>
|
||||
The CHD algorithm permits to obtain PHFs with representation size very close to optimal while retaining <I>O(n)</I> construction time and <I>O(1)</I> evaluation time. For example, in the case <I>m=2n</I> we obtain a PHF that uses space <I>0.67</I> bits per key, and for <I>m=1.23n</I> we obtain space <I>1.4</I> bits per key, which was not achievable with previously known methods. The CHD algorithm is inspired by several known algorithms; the main new feature is that it combines a modification of Pagh's ``hash-and-displace'' approach with data compression on a sequence of hash function indices. That combination makes it possible to significantly reduce space usage while retaining linear construction time and constant query time. The CHD algorithm can also be used for <I>k</I>-perfect hashing, where at most <I>k</I> keys may be mapped to the same value. For the analysis we assume that fully random hash functions are given for free; such assumptions can be justified and were made in previous papers.
|
||||
</P>
|
||||
<P>
|
||||
The compact PHFs generated by the CHD algorithm can be used in many applications in which we want to assign a unique identifier to each key without storing any information on the key. One of the most obvious applications of those functions (or <I>k</I>-perfect hash functions) is when we have a small fast memory in which we can store the perfect hash function while the keys and associated satellite data are stored in slower but larger memory. The size of a block or a transfer unit may be chosen so that <I>k</I> data items can be retrieved in one read access. In this case we can ensure that data associated with a key can be retrieved in a single probe to slower memory. This has been used for example in hardware routers <A HREF="#papers">[4</A>].
|
||||
</P>
|
||||
<P>
|
||||
The CHD algorithm generates the most compact PHFs and MPHFs we know of in <I>O(n)</I> time. The time required to evaluate the generated functions is constant (in practice less than <I>1.4</I> microseconds). The storage space of the resulting PHFs and MPHFs are distant from the information theoretic lower bound by a factor of <I>1.43</I>. The closest competitor is the algorithm by Martin and Pagh <A HREF="#papers">[3</A>] but their algorithm do not work in linear time. Furthermore, the CHD algorithm can be tuned to run faster than the BPZ algorithm <A HREF="#papers">[1</A>] (the fastest algorithm available in the literature so far) and to obtain more compact functions. The most impressive characteristic is that it has the ability, in principle, to approximate the information theoretic lower bound while being practical. A detailed description of the CHD algorithm can be found in <A HREF="#papers">[2</A>].
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Experimental Results</H2>
|
||||
|
||||
<P>
|
||||
Experimental results comparing the CHD algorithm with <A HREF="bdz.html">the BDZ algorithm</A>
|
||||
and others available in the CMPH library are presented in <A HREF="#papers">[2</A>].
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<A NAME="papers"></A>
|
||||
<H2>Papers</H2>
|
||||
|
||||
<OL>
|
||||
<LI><A HREF="http://www.dcc.ufmg.br/~fbotelho">F. C. Botelho</A>, <A HREF="http://www.itu.dk/~pagh/">R. Pagh</A>, <A HREF="http://www.dcc.ufmg.br/~nivio">N. Ziviani</A>. <A HREF="papers/wads07.pdf">Simple and space-efficient minimal perfect hash functions</A>. <I>In Proceedings of the 10th International Workshop on Algorithms and Data Structures (WADs'07),</I> Springer-Verlag Lecture Notes in Computer Science, vol. 4619, Halifax, Canada, August 2007, 139-150.
|
||||
<P></P>
|
||||
<LI><A HREF="http://www.dcc.ufmg.br/~fbotelho">F. C. Botelho</A>, D. Belazzougui and M. Dietzfelbinger. <A HREF="papers/esa09.pdf">Compress, hash and displace</A>. <I>In Proceedings of the 17th European Symposium on Algorithms (ESA’09)</I>. Springer LNCS, 2009.
|
||||
<P></P>
|
||||
<LI>M. Dietzfelbinger and <A HREF="http://www.itu.dk/~pagh/">R. Pagh</A>. Succinct data structures for retrieval and approximate membership. <I>In Proceedings of the 35th international colloquium on Automata, Languages and Programming (ICALP’08)</I>, pages 385–396, Berlin, Heidelberg, 2008. Springer-Verlag.
|
||||
<P></P>
|
||||
<LI>B. Prabhakar and F. Bonomi. Perfect hashing for network applications. <I>In Proceedings of the IEEE International Symposium on Information Theory</I>. IEEE Press, 2006.
|
||||
</OL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><A HREF="index.html">Home</A></TD>
|
||||
<TD><A HREF="chd.html">CHD</A></TD>
|
||||
<TD><A HREF="bdz.html">BDZ</A></TD>
|
||||
<TD><A HREF="bmz.html">BMZ</A></TD>
|
||||
<TD><A HREF="chm.html">CHM</A></TD>
|
||||
<TD><A HREF="brz.html">BRZ</A></TD>
|
||||
<TD><A HREF="fch.html">FCH</A></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<P>
|
||||
Enjoy!
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:davi@users.sourceforge.net">Davi de Castro Reis</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:db8192@users.sourceforge.net">Djamel Belazzougui</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:fc_botelho@users.sourceforge.net">Fabiano Cupertino Botelho</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:nivio@dcc.ufmg.br">Nivio Ziviani</A>
|
||||
</P>
|
||||
<script type="text/javascript">
|
||||
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
|
||||
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
|
||||
</script>
|
||||
<script type="text/javascript">
|
||||
try {
|
||||
var pageTracker = _gat._getTracker("UA-7698683-2");
|
||||
pageTracker._trackPageview();
|
||||
} catch(err) {}</script>
|
||||
|
||||
<!-- html code generated by txt2tags 2.6 (http://txt2tags.org) -->
|
||||
<!-- cmdline: txt2tags -t html -i CHD.t2t -o docs/chd.html -->
|
||||
</BODY></HTML>
|
180
deps/cmph/docs/chm.html
vendored
Normal file
180
deps/cmph/docs/chm.html
vendored
Normal file
@ -0,0 +1,180 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
|
||||
<HTML>
|
||||
<HEAD>
|
||||
<META NAME="generator" CONTENT="http://txt2tags.org">
|
||||
<LINK REL="stylesheet" TYPE="text/css" HREF="DOC.css">
|
||||
<TITLE>CHM Algorithm</TITLE>
|
||||
</HEAD><BODY BGCOLOR="white" TEXT="black">
|
||||
<CENTER>
|
||||
<H1>CHM Algorithm</H1>
|
||||
</CENTER>
|
||||
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>The Algorithm</H2>
|
||||
|
||||
<P>
|
||||
The algorithm is presented in <A HREF="#papers">[1,2,3</A>].
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Memory Consumption</H2>
|
||||
|
||||
<P>
|
||||
Now we detail the memory consumption to generate and to store minimal perfect hash functions
|
||||
using the CHM algorithm. The structures responsible for memory consumption are in the
|
||||
following:
|
||||
</P>
|
||||
|
||||
<UL>
|
||||
<LI>Graph:
|
||||
<OL>
|
||||
<LI><B>first</B>: is a vector that stores <I>cn</I> integer numbers, each one representing
|
||||
the first edge (index in the vector edges) in the list of
|
||||
edges of each vertex.
|
||||
The integer numbers are 4 bytes long. Therefore,
|
||||
the vector first is stored in <I>4cn</I> bytes.
|
||||
<P></P>
|
||||
<LI><B>edges</B>: is a vector to represent the edges of the graph. As each edge
|
||||
is compounded by a pair of vertices, each entry stores two integer numbers
|
||||
of 4 bytes that represent the vertices. As there are <I>n</I> edges, the
|
||||
vector edges is stored in <I>8n</I> bytes.
|
||||
<P></P>
|
||||
<LI><B>next</B>: given a vertex <IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT="">, we can discover the edges that
|
||||
contain <IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT=""> following its list of edges, which starts on
|
||||
first[<IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT="">] and the next
|
||||
edges are given by next[...first[<IMG ALIGN="bottom" SRC="figs/img139.png" BORDER="0" ALT="">]...]. Therefore,
|
||||
the vectors first and next represent
|
||||
the linked lists of edges of each vertex. As there are two vertices for each edge,
|
||||
when an edge is iserted in the graph, it must be inserted in the two linked lists
|
||||
of the vertices in its composition. Therefore, there are <I>2n</I> entries of integer
|
||||
numbers in the vector next, so it is stored in <I>4*2n = 8n</I> bytes.
|
||||
<P></P>
|
||||
</OL>
|
||||
<LI>Other auxiliary structures
|
||||
<OL>
|
||||
<LI><B>visited</B>: is a vector of <I>cn</I> bits, where each bit indicates if the g value of
|
||||
a given vertex was already defined. Therefore, the vector visited is stored
|
||||
in <I>cn/8</I> bytes.
|
||||
<P></P>
|
||||
<LI><B>function <I>g</I></B>: is represented by a vector of <I>cn</I> integer numbers.
|
||||
As each integer number is 4 bytes long, the function <I>g</I> is stored in
|
||||
<I>4cn</I> bytes.
|
||||
</OL>
|
||||
</UL>
|
||||
|
||||
<P>
|
||||
Thus, the total memory consumption of CHM algorithm for generating a minimal
|
||||
perfect hash function (MPHF) is: <I>(8.125c + 16)n + O(1)</I> bytes.
|
||||
As the value of constant <I>c</I> must be at least 2.09 we have:
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" BORDER="1" CELLPADDING="4">
|
||||
<TR>
|
||||
<TH><I>c</I></TH>
|
||||
<TH>Memory consumption to generate a MPHF</TH>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD>2.09</TD>
|
||||
<TD ALIGN="center"><I>33.00n + O(1)</I></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><B>Table 1:</B> Memory consumption to generate a MPHF using the CHM algorithm.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
Now we present the memory consumption to store the resulting function.
|
||||
We only need to store the <I>g</I> function. Thus, we need <I>4cn</I> bytes.
|
||||
Again we have:
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" BORDER="1" CELLPADDING="4">
|
||||
<TR>
|
||||
<TH><I>c</I></TH>
|
||||
<TH>Memory consumption to store a MPHF</TH>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD>2.09</TD>
|
||||
<TD ALIGN="center"><I>8.36n</I></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><B>Table 2:</B> Memory consumption to store a MPHF generated by the CHM algorithm.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Experimental Results</H2>
|
||||
|
||||
<P>
|
||||
<A HREF="comparison.html">CHM x BMZ</A>
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<A NAME="papers"></A>
|
||||
<H2>Papers</H2>
|
||||
|
||||
<OL>
|
||||
<LI>Z.J. Czech, G. Havas, and B.S. Majewski. <A HREF="papers/chm92.pdf">An optimal algorithm for generating minimal perfect hash functions.</A>, Information Processing Letters, 43(5):257-264, 1992.
|
||||
<P></P>
|
||||
<LI>Z.J. Czech, G. Havas, and B.S. Majewski. Fundamental study perfect hashing.
|
||||
Theoretical Computer Science, 182:1-143, 1997.
|
||||
<P></P>
|
||||
<LI>B.S. Majewski, N.C. Wormald, G. Havas, and Z.J. Czech. A family of perfect hashing methods.
|
||||
The Computer Journal, 39(6):547--554, 1996.
|
||||
</OL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><A HREF="index.html">Home</A></TD>
|
||||
<TD><A HREF="chd.html">CHD</A></TD>
|
||||
<TD><A HREF="bdz.html">BDZ</A></TD>
|
||||
<TD><A HREF="bmz.html">BMZ</A></TD>
|
||||
<TD><A HREF="chm.html">CHM</A></TD>
|
||||
<TD><A HREF="brz.html">BRZ</A></TD>
|
||||
<TD><A HREF="fch.html">FCH</A></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<P>
|
||||
Enjoy!
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:davi@users.sourceforge.net">Davi de Castro Reis</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:db8192@users.sourceforge.net">Djamel Belazzougui</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:fc_botelho@users.sourceforge.net">Fabiano Cupertino Botelho</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:nivio@dcc.ufmg.br">Nivio Ziviani</A>
|
||||
</P>
|
||||
<script type="text/javascript">
|
||||
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
|
||||
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
|
||||
</script>
|
||||
<script type="text/javascript">
|
||||
try {
|
||||
var pageTracker = _gat._getTracker("UA-7698683-2");
|
||||
pageTracker._trackPageview();
|
||||
} catch(err) {}</script>
|
||||
|
||||
<!-- html code generated by txt2tags 2.6 (http://txt2tags.org) -->
|
||||
<!-- cmdline: txt2tags -t html -i CHM.t2t -o docs/chm.html -->
|
||||
</BODY></HTML>
|
457
deps/cmph/docs/comparison.html
vendored
Normal file
457
deps/cmph/docs/comparison.html
vendored
Normal file
@ -0,0 +1,457 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
|
||||
<HTML>
|
||||
<HEAD>
|
||||
<META NAME="generator" CONTENT="http://txt2tags.org">
|
||||
<LINK REL="stylesheet" TYPE="text/css" HREF="DOC.css">
|
||||
<TITLE>Comparison Between BMZ And CHM Algorithms</TITLE>
|
||||
</HEAD><BODY BGCOLOR="white" TEXT="black">
|
||||
<CENTER>
|
||||
<H1>Comparison Between BMZ And CHM Algorithms</H1>
|
||||
</CENTER>
|
||||
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Characteristics</H2>
|
||||
|
||||
<P>
|
||||
Table 1 presents the main characteristics of the two algorithms.
|
||||
The number of edges in the graph <IMG ALIGN="middle" SRC="figs/img27.png" BORDER="0" ALT=""> is <IMG ALIGN="middle" SRC="figs/img236.png" BORDER="0" ALT="">,
|
||||
the number of keys in the input set <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">.
|
||||
The number of vertices of <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> is equal
|
||||
to <IMG ALIGN="bottom" SRC="figs/img12.png" BORDER="0" ALT=""> and <IMG ALIGN="bottom" SRC="figs/img237.png" BORDER="0" ALT=""> for BMZ algorithm and the CHM algorithm, respectively.
|
||||
This measure is related to the amount of space to store the array <IMG ALIGN="middle" SRC="figs/img37.png" BORDER="0" ALT="">.
|
||||
This improves the space required to store a function in BMZ algorithm to <IMG ALIGN="middle" SRC="figs/img238.png" BORDER="0" ALT=""> of the space required by the CHM algorithm.
|
||||
The number of critical edges is <IMG ALIGN="middle" SRC="figs/img76.png" BORDER="0" ALT=""> and 0, for BMZ algorithm and the CHM algorithm,
|
||||
respectively.
|
||||
BMZ algorithm generates random graphs that necessarily contains cycles and the
|
||||
CHM algorithm
|
||||
generates
|
||||
acyclic random graphs.
|
||||
Finally, the CHM algorithm generates <A HREF="concepts.html">order preserving functions</A>
|
||||
while BMZ algorithm does not preserve order.
|
||||
</P>
|
||||
<TABLE CELLPADDING=3 BORDER="1" ALIGN="center">
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
Characteristics </SMALL></TD>
|
||||
<TD ALIGN="CENTER" COLSPAN=2><SMALL CLASS="FOOTNOTESIZE"> <SPAN>Algorithms</SPAN></SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
|
||||
</SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> BMZ </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> CHM </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="11" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img1.png"
|
||||
ALT="$c$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 1.15 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.09 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="50" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img239.png"
|
||||
ALT="$\vert E(G)\vert$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img8.png"
|
||||
ALT="$n$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img8.png"
|
||||
ALT="$n$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="89" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img240.png"
|
||||
ALT="$\vert V(G)\vert=\vert g\vert$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="20" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img241.png"
|
||||
ALT="$cn$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="20" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img241.png"
|
||||
ALT="$cn$"></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
<!-- MATH
|
||||
$|E(G_{\rm crit})|$
|
||||
-->
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="70" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img111.png"
|
||||
ALT="$\vert E(G_{\rm crit})\vert$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="71" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img242.png"
|
||||
ALT="$0.5\vert E(G)\vert$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 0</SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img32.png"
|
||||
ALT="$G$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> cyclic </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> acyclic </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
Order preserving </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> no </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> yes </SMALL></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><B>Table 1:</B> Main characteristics of the algorithms.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Memory Consumption</H2>
|
||||
|
||||
<UL>
|
||||
<LI>Memory consumption to generate the minimal perfect hash function (MPHF):
|
||||
</UL>
|
||||
|
||||
<TABLE ALIGN="center" BORDER="1" CELLPADDING="4">
|
||||
<TR>
|
||||
<TH>Algorithm</TH>
|
||||
<TH><I>c</I></TH>
|
||||
<TH>Memory consumption to generate a MPHF</TH>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD ALIGN="center">BMZ</TD>
|
||||
<TD>0.93</TD>
|
||||
<TD ALIGN="center"><I>24.80n + O(1)</I></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD ALIGN="center">BMZ</TD>
|
||||
<TD>1.15</TD>
|
||||
<TD ALIGN="center"><I>26.42n + O(1)</I></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD ALIGN="center">CHM</TD>
|
||||
<TD>2.09</TD>
|
||||
<TD ALIGN="center"><I>33.00n + O(1)</I></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><B>Table 2:</B> Memory consumption to generate a MPHF using the algorithms BMZ and CHM.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<UL>
|
||||
<LI>Memory consumption to store the resulting minimal perfect hash function (MPHF):
|
||||
</UL>
|
||||
|
||||
<TABLE ALIGN="center" BORDER="1" CELLPADDING="4">
|
||||
<TR>
|
||||
<TH>Algorithm</TH>
|
||||
<TH><I>c</I></TH>
|
||||
<TH>Memory consumption to store a MPHF</TH>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD ALIGN="center">BMZ</TD>
|
||||
<TD>0.93</TD>
|
||||
<TD ALIGN="center"><I>3.72n</I></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD ALIGN="center">BMZ</TD>
|
||||
<TD>1.15</TD>
|
||||
<TD ALIGN="center"><I>4.60n</I></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD ALIGN="center">CHM</TD>
|
||||
<TD>2.09</TD>
|
||||
<TD ALIGN="center"><I>8.36n</I></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><B>Table 3:</B> Memory consumption to store a MPHF generated by the algorithms BMZ and CHM.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Run times</H2>
|
||||
|
||||
<P>
|
||||
We now present some experimental results to compare the BMZ and CHM algorithms.
|
||||
The data consists of a collection of 100 million universe resource locations
|
||||
(URLs) collected from the Web.
|
||||
The average length of a URL in the collection is 63 bytes.
|
||||
All experiments were carried on
|
||||
a computer running the Linux operating system, version 2.6.7,
|
||||
with a 2.4 gigahertz processor and
|
||||
4 gigabytes of main memory.
|
||||
</P>
|
||||
<P>
|
||||
Table 4 presents time measurements.
|
||||
All times are in seconds.
|
||||
The table entries represent averages over 50 trials.
|
||||
The column labelled as <IMG ALIGN="middle" SRC="figs/img243.png" BORDER="0" ALT=""> represents
|
||||
the number of iterations to generate the random graph <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> in the
|
||||
mapping step of the algorithms.
|
||||
The next columns represent the run times
|
||||
for the mapping plus ordering steps together and the searching
|
||||
step for each algorithm.
|
||||
The last column represents the percent gain of our algorithm
|
||||
over the CHM algorithm.
|
||||
</P>
|
||||
<TABLE CELLPADDING=3 BORDER="1" ALIGN="center">
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img8.png"
|
||||
ALT="$n$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER" COLSPAN=4><SMALL CLASS="FOOTNOTESIZE"> <SPAN> BMZ </SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER" COLSPAN=4><SMALL CLASS="FOOTNOTESIZE">
|
||||
<SPAN>CHM algorithm</SPAN></SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> Gain</SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
</SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img243.png"
|
||||
ALT="$N_i$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Map+Ord </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
Search </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Total </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img243.png"
|
||||
ALT="$N_i$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Map+Ord </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Search </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
Total </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> (%)</SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 1,562,500 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.28 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 8.54 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.37 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 10.91 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.70 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 14.56 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 1.57 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 16.13 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 48 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 3,125,000 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.16 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 15.92 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 4.88 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 20.80 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.85 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 30.36 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 3.20 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 33.56 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 61 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 6,250,000 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.20 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 33.09 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 10.48 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 43.57 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.90 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 62.26 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 6.76 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 69.02 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 58 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 12,500,000 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.00 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 63.26 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 23.04 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 86.30 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.60 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 117.99 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 14.94 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 132.92 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 54 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 25,000,000 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.00 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 130.79 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 51.55 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 182.34 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.80 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 262.05 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 33.68 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 295.73 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 62 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 50,000,000 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.07 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 273.75 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 114.12 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 387.87 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.90 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 577.59 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 73.97 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 651.56 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 68 </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 100,000,000 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.07 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 567.47 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 243.13 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 810.60 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.80 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 1,131.06 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 157.23 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 1,288.29 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 59 </SMALL></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><B>Table 4:</B> Time measurements for BMZ and the CHM algorithm.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
The mapping step of the BMZ algorithm is faster because
|
||||
the expected number of iterations in the mapping step to generate <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> are
|
||||
2.13 and 2.92 for BMZ algorithm and the CHM algorithm, respectively
|
||||
(see <A HREF="bmz.html#papers">[2</A>] for details).
|
||||
The graph <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> generated by BMZ algorithm
|
||||
has <IMG ALIGN="bottom" SRC="figs/img12.png" BORDER="0" ALT=""> vertices, against <IMG ALIGN="bottom" SRC="figs/img237.png" BORDER="0" ALT=""> for the CHM algorithm.
|
||||
These two facts make BMZ algorithm faster in the mapping step.
|
||||
The ordering step of BMZ algorithm is approximately equal to
|
||||
the time to check if <IMG ALIGN="bottom" SRC="figs/img32.png" BORDER="0" ALT=""> is acyclic for the CHM algorithm.
|
||||
The searching step of the CHM algorithm is faster, but the total
|
||||
time of BMZ algorithm is, on average, approximately 59 % faster
|
||||
than the CHM algorithm.
|
||||
It is important to notice the times for the searching step:
|
||||
for both algorithms they are not the dominant times,
|
||||
and the experimental results clearly show
|
||||
a linear behavior for the searching step.
|
||||
</P>
|
||||
<P>
|
||||
We now present run times for BMZ algorithm using a <A HREF="bmz.html#heuristic">heuristic</A> that
|
||||
reduces the space requirement
|
||||
to any given value between <IMG ALIGN="bottom" SRC="figs/img12.png" BORDER="0" ALT=""> words and <IMG ALIGN="bottom" SRC="figs/img13.png" BORDER="0" ALT=""> words.
|
||||
For example, for <IMG ALIGN="bottom" SRC="figs/img244.png" BORDER="0" ALT=""> and <IMG ALIGN="bottom" SRC="figs/img6.png" BORDER="0" ALT="">, the analytical expected number
|
||||
of iterations are <IMG ALIGN="bottom" SRC="figs/img245.png" BORDER="0" ALT=""> and <IMG ALIGN="bottom" SRC="figs/img246.png" BORDER="0" ALT="">, respectively
|
||||
(for <IMG ALIGN="middle" SRC="figs/img247.png" BORDER="0" ALT="">, the number of iterations are 2.78 for <IMG ALIGN="bottom" SRC="figs/img244.png" BORDER="0" ALT=""> and 3.04
|
||||
for <IMG ALIGN="bottom" SRC="figs/img6.png" BORDER="0" ALT="">).
|
||||
Table 5 presents the total times to construct a
|
||||
function for <IMG ALIGN="middle" SRC="figs/img247.png" BORDER="0" ALT="">, with an increase from <IMG ALIGN="bottom" SRC="figs/img237.png" BORDER="0" ALT=""> seconds
|
||||
for <IMG ALIGN="bottom" SRC="figs/img128.png" BORDER="0" ALT=""> (see Table 4) to <IMG ALIGN="bottom" SRC="figs/img249.png" BORDER="0" ALT=""> seconds for <IMG ALIGN="bottom" SRC="figs/img244.png" BORDER="0" ALT=""> and
|
||||
to <IMG ALIGN="bottom" SRC="figs/img250.png" BORDER="0" ALT=""> seconds for <IMG ALIGN="bottom" SRC="figs/img6.png" BORDER="0" ALT="">.
|
||||
</P>
|
||||
<TABLE CELLPADDING=3 BORDER="1" ALIGN="center">
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img8.png"
|
||||
ALT="$n$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER" COLSPAN=4><SMALL CLASS="FOOTNOTESIZE"> <SPAN> BMZ <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="60" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img5.png"
|
||||
ALT="$c=1.00$"></SPAN></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER" COLSPAN=4><SMALL CLASS="FOOTNOTESIZE">
|
||||
<SPAN> BMZ <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="60" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
|
||||
SRC="figs/img6.png"
|
||||
ALT="$c=0.93$"></SPAN></SPAN> </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
</SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> <SPAN CLASS="MATH"><IMG
|
||||
WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img243.png"
|
||||
ALT="$N_i$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Map+Ord </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
Search </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Total </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
<SPAN CLASS="MATH"><IMG
|
||||
WIDTH="22" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
|
||||
SRC="figs/img243.png"
|
||||
ALT="$N_i$"></SPAN> </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Map+Ord </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">Search </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE">
|
||||
Total </SMALL></TD>
|
||||
</TR>
|
||||
<TR><TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 12,500,000 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 2.78 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 76.68 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 25.06 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 101.74 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 3.04 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 76.39 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 25.80 </SMALL></TD>
|
||||
<TD ALIGN="CENTER"><SMALL CLASS="FOOTNOTESIZE"> 102.19 </SMALL></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><B>Table 5:</B> Time measurements for BMZ tuned algorithm with <IMG ALIGN="bottom" SRC="figs/img5.png" BORDER="0" ALT=""> and <IMG ALIGN="bottom" SRC="figs/img6.png" BORDER="0" ALT="">.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><A HREF="index.html">Home</A></TD>
|
||||
<TD><A HREF="chd.html">CHD</A></TD>
|
||||
<TD><A HREF="bdz.html">BDZ</A></TD>
|
||||
<TD><A HREF="bmz.html">BMZ</A></TD>
|
||||
<TD><A HREF="chm.html">CHM</A></TD>
|
||||
<TD><A HREF="brz.html">BRZ</A></TD>
|
||||
<TD><A HREF="fch.html">FCH</A></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<P>
|
||||
Enjoy!
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:davi@users.sourceforge.net">Davi de Castro Reis</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:db8192@users.sourceforge.net">Djamel Belazzougui</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:fc_botelho@users.sourceforge.net">Fabiano Cupertino Botelho</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:nivio@dcc.ufmg.br">Nivio Ziviani</A>
|
||||
</P>
|
||||
<script type="text/javascript">
|
||||
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
|
||||
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
|
||||
</script>
|
||||
<script type="text/javascript">
|
||||
try {
|
||||
var pageTracker = _gat._getTracker("UA-7698683-2");
|
||||
pageTracker._trackPageview();
|
||||
} catch(err) {}</script>
|
||||
|
||||
<!-- html code generated by txt2tags 2.6 (http://txt2tags.org) -->
|
||||
<!-- cmdline: txt2tags -t html -i COMPARISON.t2t -o docs/comparison.html -->
|
||||
</BODY></HTML>
|
114
deps/cmph/docs/concepts.html
vendored
Normal file
114
deps/cmph/docs/concepts.html
vendored
Normal file
@ -0,0 +1,114 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
|
||||
<HTML>
|
||||
<HEAD>
|
||||
<META NAME="generator" CONTENT="http://txt2tags.org">
|
||||
<LINK REL="stylesheet" TYPE="text/css" HREF="DOC.css">
|
||||
<TITLE>Minimal Perfect Hash Functions - Introduction</TITLE>
|
||||
</HEAD><BODY BGCOLOR="white" TEXT="black">
|
||||
<CENTER>
|
||||
<H1>Minimal Perfect Hash Functions - Introduction</H1>
|
||||
</CENTER>
|
||||
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Basic Concepts</H2>
|
||||
|
||||
<P>
|
||||
Suppose <IMG ALIGN="bottom" SRC="figs/img14.png" BORDER="0" ALT=""> is a universe of <I>keys</I>.
|
||||
Let <IMG ALIGN="bottom" SRC="figs/img15.png" BORDER="0" ALT=""> be a <I>hash function</I> that maps the keys from <IMG ALIGN="bottom" SRC="figs/img14.png" BORDER="0" ALT=""> to a given interval of integers <IMG ALIGN="middle" SRC="figs/img16.png" BORDER="0" ALT="">.
|
||||
Let <IMG ALIGN="middle" SRC="figs/img17.png" BORDER="0" ALT=""> be a set of <IMG ALIGN="bottom" SRC="figs/img8.png" BORDER="0" ALT=""> keys from <IMG ALIGN="bottom" SRC="figs/img14.png" BORDER="0" ALT="">.
|
||||
Given a key <IMG ALIGN="middle" SRC="figs/img18.png" BORDER="0" ALT="">, the hash function <IMG ALIGN="bottom" SRC="figs/img7.png" BORDER="0" ALT=""> computes an
|
||||
integer in <IMG ALIGN="middle" SRC="figs/img19.png" BORDER="0" ALT=""> for the storage or retrieval of <IMG ALIGN="bottom" SRC="figs/img11.png" BORDER="0" ALT=""> in
|
||||
a <I>hash table</I>.
|
||||
Hashing methods for <I>non-static sets</I> of keys can be used to construct
|
||||
data structures storing <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT=""> and supporting membership queries
|
||||
"<IMG ALIGN="middle" SRC="figs/img18.png" BORDER="0" ALT="">?" in expected time <IMG ALIGN="middle" SRC="figs/img21.png" BORDER="0" ALT="">.
|
||||
However, they involve a certain amount of wasted space owing to unused
|
||||
locations in the table and waisted time to resolve collisions when
|
||||
two keys are hashed to the same table location.
|
||||
</P>
|
||||
<P>
|
||||
For <I>static sets</I> of keys it is possible to compute a function
|
||||
to find any key in a table in one probe; such hash functions are called
|
||||
<I>perfect</I>.
|
||||
More precisely, given a set of keys <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">, we shall say that a
|
||||
hash function <IMG ALIGN="bottom" SRC="figs/img15.png" BORDER="0" ALT=""> is a <I>perfect hash function</I>
|
||||
for <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT=""> if <IMG ALIGN="bottom" SRC="figs/img7.png" BORDER="0" ALT=""> is an injection on <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">,
|
||||
that is, there are no <I>collisions</I> among the keys in <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">:
|
||||
if <IMG ALIGN="bottom" SRC="figs/img11.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img22.png" BORDER="0" ALT=""> are in <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT=""> and <IMG ALIGN="middle" SRC="figs/img23.png" BORDER="0" ALT="">,
|
||||
then <IMG ALIGN="middle" SRC="figs/img24.png" BORDER="0" ALT="">.
|
||||
Figure 1(a) illustrates a perfect hash function.
|
||||
Since no collisions occur, each key can be retrieved from the table
|
||||
with a single probe.
|
||||
If <IMG ALIGN="bottom" SRC="figs/img25.png" BORDER="0" ALT="">, that is, the table has the same size as <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">,
|
||||
then we say that <IMG ALIGN="bottom" SRC="figs/img7.png" BORDER="0" ALT=""> is a <I>minimal perfect hash function</I>
|
||||
for <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT="">.
|
||||
Figure 1(b) illustrates a minimal perfect hash function.
|
||||
Minimal perfect hash functions totally avoid the problem of wasted
|
||||
space and time. A perfect hash function <IMG ALIGN="bottom" SRC="figs/img7.png" BORDER="0" ALT=""> is <I>order preserving</I>
|
||||
if the keys in <IMG ALIGN="bottom" SRC="figs/img20.png" BORDER="0" ALT=""> are arranged in some given order
|
||||
and <IMG ALIGN="bottom" SRC="figs/img7.png" BORDER="0" ALT=""> preserves this order in the hash table.
|
||||
</P>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD ALIGN="right"><center><IMG ALIGN="middle" SRC="figs/img26.png" BORDER="0" ALT=""></center></TD>
|
||||
</TR>
|
||||
<TR>
|
||||
<TD><B>Figure 1:</B> (a) Perfect hash function. (b) Minimal perfect hash function.</TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<P>
|
||||
Minimal perfect hash functions are widely used for memory efficient
|
||||
storage and fast retrieval of items from static sets, such as words in natural
|
||||
languages, reserved words in programming languages or interactive systems,
|
||||
universal resource locations (URLs) in Web search engines, or item sets in
|
||||
data mining techniques.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><A HREF="index.html">Home</A></TD>
|
||||
<TD><A HREF="chd.html">CHD</A></TD>
|
||||
<TD><A HREF="bdz.html">BDZ</A></TD>
|
||||
<TD><A HREF="bmz.html">BMZ</A></TD>
|
||||
<TD><A HREF="chm.html">CHM</A></TD>
|
||||
<TD><A HREF="brz.html">BRZ</A></TD>
|
||||
<TD><A HREF="fch.html">FCH</A></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<P>
|
||||
Enjoy!
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:davi@users.sourceforge.net">Davi de Castro Reis</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:db8192@users.sourceforge.net">Djamel Belazzougui</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:fc_botelho@users.sourceforge.net">Fabiano Cupertino Botelho</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:nivio@dcc.ufmg.br">Nivio Ziviani</A>
|
||||
</P>
|
||||
<script type="text/javascript">
|
||||
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
|
||||
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
|
||||
</script>
|
||||
<script type="text/javascript">
|
||||
try {
|
||||
var pageTracker = _gat._getTracker("UA-7698683-2");
|
||||
pageTracker._trackPageview();
|
||||
} catch(err) {}</script>
|
||||
|
||||
<!-- html code generated by txt2tags 2.6 (http://txt2tags.org) -->
|
||||
<!-- cmdline: txt2tags -t html -i CONCEPTS.t2t -o docs/concepts.html -->
|
||||
</BODY></HTML>
|
210
deps/cmph/docs/examples.html
vendored
Normal file
210
deps/cmph/docs/examples.html
vendored
Normal file
@ -0,0 +1,210 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
|
||||
<HTML>
|
||||
<HEAD>
|
||||
<META NAME="generator" CONTENT="http://txt2tags.org">
|
||||
<LINK REL="stylesheet" TYPE="text/css" HREF="DOC.css">
|
||||
<TITLE>CMPH - Examples</TITLE>
|
||||
</HEAD><BODY BGCOLOR="white" TEXT="black">
|
||||
<CENTER>
|
||||
<H1>CMPH - Examples</H1>
|
||||
</CENTER>
|
||||
|
||||
<P>
|
||||
Using cmph is quite simple. Take a look in the following examples.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<PRE>
|
||||
#include <cmph.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-memory vector
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
|
||||
// Creating a filled vector
|
||||
unsigned int i = 0;
|
||||
const char *vector[] = {"aaaaaaaaaa", "bbbbbbbbbb", "cccccccccc", "dddddddddd", "eeeeeeeeee",
|
||||
"ffffffffff", "gggggggggg", "hhhhhhhhhh", "iiiiiiiiii", "jjjjjjjjjj"};
|
||||
unsigned int nkeys = 10;
|
||||
FILE* mphf_fd = fopen("temp.mph", "w");
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_vector_adapter((char **)vector, nkeys);
|
||||
|
||||
//Create minimal perfect hash function using the brz algorithm.
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BRZ);
|
||||
cmph_config_set_mphf_fd(config, mphf_fd);
|
||||
cmph_t *hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
cmph_dump(hash, mphf_fd);
|
||||
cmph_destroy(hash);
|
||||
fclose(mphf_fd);
|
||||
|
||||
//Find key
|
||||
mphf_fd = fopen("temp.mph", "r");
|
||||
hash = cmph_load(mphf_fd);
|
||||
while (i < nkeys) {
|
||||
const char *key = vector[i];
|
||||
unsigned int id = cmph_search(hash, key, (cmph_uint32)strlen(key));
|
||||
fprintf(stderr, "key:%s -- hash:%u\n", key, id);
|
||||
i++;
|
||||
}
|
||||
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_vector_adapter_destroy(source);
|
||||
fclose(mphf_fd);
|
||||
return 0;
|
||||
}
|
||||
</PRE>
|
||||
|
||||
<P>
|
||||
Download <A HREF="examples/vector_adapter_ex1.c">vector_adapter_ex1.c</A>. This example does not work in versions below 0.6.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<PRE>
|
||||
#include <cmph.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-memory vector
|
||||
|
||||
#pragma pack(1)
|
||||
typedef struct {
|
||||
cmph_uint32 id;
|
||||
char key[11];
|
||||
cmph_uint32 year;
|
||||
} rec_t;
|
||||
#pragma pack(0)
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
// Creating a filled vector
|
||||
unsigned int i = 0;
|
||||
rec_t vector[10] = {{1, "aaaaaaaaaa", 1999}, {2, "bbbbbbbbbb", 2000}, {3, "cccccccccc", 2001},
|
||||
{4, "dddddddddd", 2002}, {5, "eeeeeeeeee", 2003}, {6, "ffffffffff", 2004},
|
||||
{7, "gggggggggg", 2005}, {8, "hhhhhhhhhh", 2006}, {9, "iiiiiiiiii", 2007},
|
||||
{10,"jjjjjjjjjj", 2008}};
|
||||
unsigned int nkeys = 10;
|
||||
FILE* mphf_fd = fopen("temp_struct_vector.mph", "w");
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_struct_vector_adapter(vector, (cmph_uint32)sizeof(rec_t), (cmph_uint32)sizeof(cmph_uint32), 11, nkeys);
|
||||
|
||||
//Create minimal perfect hash function using the BDZ algorithm.
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BDZ);
|
||||
cmph_config_set_mphf_fd(config, mphf_fd);
|
||||
cmph_t *hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
cmph_dump(hash, mphf_fd);
|
||||
cmph_destroy(hash);
|
||||
fclose(mphf_fd);
|
||||
|
||||
//Find key
|
||||
mphf_fd = fopen("temp_struct_vector.mph", "r");
|
||||
hash = cmph_load(mphf_fd);
|
||||
while (i < nkeys) {
|
||||
const char *key = vector[i].key;
|
||||
unsigned int id = cmph_search(hash, key, 11);
|
||||
fprintf(stderr, "key:%s -- hash:%u\n", key, id);
|
||||
i++;
|
||||
}
|
||||
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_vector_adapter_destroy(source);
|
||||
fclose(mphf_fd);
|
||||
return 0;
|
||||
}
|
||||
</PRE>
|
||||
|
||||
<P>
|
||||
Download <A HREF="examples/struct_vector_adapter_ex3.c">struct_vector_adapter_ex3.c</A>. This example does not work in versions below 0.8.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<PRE>
|
||||
#include <cmph.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-disk keys using BDZ algorithm
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//Open file with newline separated list of keys
|
||||
FILE * keys_fd = fopen("keys.txt", "r");
|
||||
cmph_t *hash = NULL;
|
||||
if (keys_fd == NULL)
|
||||
{
|
||||
fprintf(stderr, "File \"keys.txt\" not found\n");
|
||||
exit(1);
|
||||
}
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_nlfile_adapter(keys_fd);
|
||||
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BDZ);
|
||||
hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
|
||||
//Find key
|
||||
const char *key = "jjjjjjjjjj";
|
||||
unsigned int id = cmph_search(hash, key, (cmph_uint32)strlen(key));
|
||||
fprintf(stderr, "Id:%u\n", id);
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_nlfile_adapter_destroy(source);
|
||||
fclose(keys_fd);
|
||||
return 0;
|
||||
}
|
||||
</PRE>
|
||||
|
||||
<P>
|
||||
Download <A HREF="examples/file_adapter_ex2.c">file_adapter_ex2.c</A> and <A HREF="examples/keys.txt">keys.txt</A>. This example does not work in versions below 0.8.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><A HREF="index.html">Home</A></TD>
|
||||
<TD><A HREF="chd.html">CHD</A></TD>
|
||||
<TD><A HREF="bdz.html">BDZ</A></TD>
|
||||
<TD><A HREF="bmz.html">BMZ</A></TD>
|
||||
<TD><A HREF="chm.html">CHM</A></TD>
|
||||
<TD><A HREF="brz.html">BRZ</A></TD>
|
||||
<TD><A HREF="fch.html">FCH</A></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<P>
|
||||
Enjoy!
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:davi@users.sourceforge.net">Davi de Castro Reis</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:db8192@users.sourceforge.net">Djamel Belazzougui</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:fc_botelho@users.sourceforge.net">Fabiano Cupertino Botelho</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:nivio@dcc.ufmg.br">Nivio Ziviani</A>
|
||||
</P>
|
||||
<script type="text/javascript">
|
||||
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
|
||||
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
|
||||
</script>
|
||||
<script type="text/javascript">
|
||||
try {
|
||||
var pageTracker = _gat._getTracker("UA-7698683-2");
|
||||
pageTracker._trackPageview();
|
||||
} catch(err) {}</script>
|
||||
|
||||
<!-- html code generated by txt2tags 2.6 (http://txt2tags.org) -->
|
||||
<!-- cmdline: txt2tags -t html -i EXAMPLES.t2t -o docs/examples.html -->
|
||||
</BODY></HTML>
|
111
deps/cmph/docs/faq.html
vendored
Normal file
111
deps/cmph/docs/faq.html
vendored
Normal file
@ -0,0 +1,111 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
|
||||
<HTML>
|
||||
<HEAD>
|
||||
<META NAME="generator" CONTENT="http://txt2tags.org">
|
||||
<LINK REL="stylesheet" TYPE="text/css" HREF="DOC.css">
|
||||
<TITLE>CMPH FAQ</TITLE>
|
||||
</HEAD><BODY BGCOLOR="white" TEXT="black">
|
||||
<CENTER>
|
||||
<H1>CMPH FAQ</H1>
|
||||
</CENTER>
|
||||
|
||||
|
||||
<UL>
|
||||
<LI>How do I define the ids of the keys?
|
||||
</UL>
|
||||
|
||||
<BLOCKQUOTE>
|
||||
- You don't. The ids will be assigned by the algorithm creating the minimal
|
||||
perfect hash function. If the algorithm creates an <B>ordered</B> minimal
|
||||
perfect hash function, the ids will be the indices of the keys in the
|
||||
input. Otherwise, you have no guarantee of the distribution of the ids.
|
||||
</BLOCKQUOTE>
|
||||
|
||||
<UL>
|
||||
<LI>Why do I always get the error "Unable to create minimum perfect hashing function"?
|
||||
</UL>
|
||||
|
||||
<BLOCKQUOTE>
|
||||
- The algorithms do not guarantee that a minimal perfect hash function can
|
||||
be created. In practice, it will always work if your input
|
||||
is big enough (>100 keys).
|
||||
The error is probably because you have duplicated
|
||||
keys in the input. You must guarantee that the keys are unique in the
|
||||
input. If you are using a UN*X based OS, try doing
|
||||
</BLOCKQUOTE>
|
||||
|
||||
<PRE>
|
||||
#sort input.txt | uniq > input_uniq.txt
|
||||
</PRE>
|
||||
|
||||
<BLOCKQUOTE>
|
||||
and run cmph with input_uniq.txt
|
||||
</BLOCKQUOTE>
|
||||
|
||||
<UL>
|
||||
<LI>Why do I change the hash function using cmph_config_set_hashfuncs function and the default (jenkins)
|
||||
one is executed?
|
||||
</UL>
|
||||
|
||||
<BLOCKQUOTE>
|
||||
- Probably you are you using the cmph_config_set_algo function after
|
||||
the cmph_config_set_hashfuncs. Therefore, the default hash function
|
||||
is reset when you call the cmph_config_set_algo function.
|
||||
</BLOCKQUOTE>
|
||||
|
||||
<UL>
|
||||
<LI>What do I do when the following error is got?
|
||||
</UL>
|
||||
|
||||
<BLOCKQUOTE>
|
||||
- Error: <B>error while loading shared libraries: libcmph.so.0: cannot open shared object file: No such file ordirectory</B>
|
||||
</BLOCKQUOTE>
|
||||
<BLOCKQUOTE>
|
||||
- Solution: type <B>export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib/</B> at the shell or put that shell command
|
||||
in your .profile file or in the /etc/profile file.
|
||||
</BLOCKQUOTE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><A HREF="index.html">Home</A></TD>
|
||||
<TD><A HREF="chd.html">CHD</A></TD>
|
||||
<TD><A HREF="bdz.html">BDZ</A></TD>
|
||||
<TD><A HREF="bmz.html">BMZ</A></TD>
|
||||
<TD><A HREF="chm.html">CHM</A></TD>
|
||||
<TD><A HREF="brz.html">BRZ</A></TD>
|
||||
<TD><A HREF="fch.html">FCH</A></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<P>
|
||||
Enjoy!
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:davi@users.sourceforge.net">Davi de Castro Reis</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:db8192@users.sourceforge.net">Djamel Belazzougui</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:fc_botelho@users.sourceforge.net">Fabiano Cupertino Botelho</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:nivio@dcc.ufmg.br">Nivio Ziviani</A>
|
||||
</P>
|
||||
<script type="text/javascript">
|
||||
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
|
||||
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
|
||||
</script>
|
||||
<script type="text/javascript">
|
||||
try {
|
||||
var pageTracker = _gat._getTracker("UA-7698683-2");
|
||||
pageTracker._trackPageview();
|
||||
} catch(err) {}</script>
|
||||
|
||||
<!-- html code generated by txt2tags 2.6 (http://txt2tags.org) -->
|
||||
<!-- cmdline: txt2tags -t html -i FAQ.t2t -o docs/faq.html -->
|
||||
</BODY></HTML>
|
110
deps/cmph/docs/fch.html
vendored
Normal file
110
deps/cmph/docs/fch.html
vendored
Normal file
@ -0,0 +1,110 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
|
||||
<HTML>
|
||||
<HEAD>
|
||||
<META NAME="generator" CONTENT="http://txt2tags.org">
|
||||
<LINK REL="stylesheet" TYPE="text/css" HREF="DOC.css">
|
||||
<TITLE>FCH Algorithm</TITLE>
|
||||
</HEAD><BODY BGCOLOR="white" TEXT="black">
|
||||
<CENTER>
|
||||
<H1>FCH Algorithm</H1>
|
||||
</CENTER>
|
||||
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>The Algorithm</H2>
|
||||
|
||||
<P>
|
||||
The algorithm is presented in <A HREF="#papers">[1</A>].
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Memory Consumption</H2>
|
||||
|
||||
<P>
|
||||
Now we detail the memory consumption to generate and to store minimal perfect hash functions
|
||||
using the FCH algorithm. The structures responsible for memory consumption are in the
|
||||
following:
|
||||
</P>
|
||||
|
||||
<UL>
|
||||
<LI>A vector containing all the <I>n</I> keys.
|
||||
<LI>Data structure to speed up the searching step:
|
||||
<OL>
|
||||
<LI><B>random_table</B>: is a vector used to remember currently empty slots in the hash table. It stores <I>n</I> 4 byte long integer numbers. This vector initially contains a random permutation of the <I>n</I> hash addresses. A pointer called filled_count is used to keep the invariant that any slots to the right side of filled_count (inclusive) are empty and any ones to the left are filled.
|
||||
<LI><B>hash_table</B>: Table used to check whether all the collisions were resolved. It has <I>n</I> entries of one byte.
|
||||
<LI><B>map_table</B>: For any unfilled slot <I>x</I> in hash_table, the map_table vector contains <I>n</I> 4 byte long pointers pointing at random_table such that random_table[map_table[x]] = x. Thus, given an empty slot x in the hash_table, we can locate its position in the random_table vector through map_table.
|
||||
<P></P>
|
||||
</OL>
|
||||
<LI>Other auxiliary structures
|
||||
<OL>
|
||||
<LI><B>sorted_indexes</B>: is a vector of <I>cn/(log(n) + 1)</I> 4 byte long pointers to indirectly keep the buckets sorted by decreasing order of their sizes.
|
||||
<P></P>
|
||||
<LI><B>function <I>g</I></B>: is represented by a vector of <I>cn/(log(n) + 1)</I> 4 byte long integer numbers, one for each bucket. It is used to spread all the keys in a given bucket into the hash table without collisions.
|
||||
</OL>
|
||||
</UL>
|
||||
|
||||
<P>
|
||||
Thus, the total memory consumption of FCH algorithm for generating a minimal
|
||||
perfect hash function (MPHF) is: <I>O(n) + 9n + 8cn/(log(n) + 1)</I> bytes.
|
||||
The value of parameter <I>c</I> must be greater than or equal to 2.6.
|
||||
</P>
|
||||
<P>
|
||||
Now we present the memory consumption to store the resulting function.
|
||||
We only need to store the <I>g</I> function and a constant number of bytes for the seed of the hash functions used in the resulting MPHF. Thus, we need <I>cn/(log(n) + 1) + O(1)</I> bytes.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<A NAME="papers"></A>
|
||||
<H2>Papers</H2>
|
||||
|
||||
<OL>
|
||||
<LI>E.A. Fox, Q.F. Chen, and L.S. Heath. <A HREF="papers/fch92.pdf">A faster algorithm for constructing minimal perfect hash functions.</A> In Proc. 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 266-273, 1992.
|
||||
</OL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><A HREF="index.html">Home</A></TD>
|
||||
<TD><A HREF="chd.html">CHD</A></TD>
|
||||
<TD><A HREF="bdz.html">BDZ</A></TD>
|
||||
<TD><A HREF="bmz.html">BMZ</A></TD>
|
||||
<TD><A HREF="chm.html">CHM</A></TD>
|
||||
<TD><A HREF="brz.html">BRZ</A></TD>
|
||||
<TD><A HREF="fch.html">FCH</A></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<P>
|
||||
Enjoy!
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:davi@users.sourceforge.net">Davi de Castro Reis</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:db8192@users.sourceforge.net">Djamel Belazzougui</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:fc_botelho@users.sourceforge.net">Fabiano Cupertino Botelho</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:nivio@dcc.ufmg.br">Nivio Ziviani</A>
|
||||
</P>
|
||||
<script type="text/javascript">
|
||||
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
|
||||
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
|
||||
</script>
|
||||
<script type="text/javascript">
|
||||
try {
|
||||
var pageTracker = _gat._getTracker("UA-7698683-2");
|
||||
pageTracker._trackPageview();
|
||||
} catch(err) {}</script>
|
||||
|
||||
<!-- html code generated by txt2tags 2.6 (http://txt2tags.org) -->
|
||||
<!-- cmdline: txt2tags -t html -i FCH.t2t -o docs/fch.html -->
|
||||
</BODY></HTML>
|
99
deps/cmph/docs/gperf.html
vendored
Normal file
99
deps/cmph/docs/gperf.html
vendored
Normal file
@ -0,0 +1,99 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
|
||||
<HTML>
|
||||
<HEAD>
|
||||
<META NAME="generator" CONTENT="http://txt2tags.org">
|
||||
<LINK REL="stylesheet" TYPE="text/css" HREF="DOC.css">
|
||||
<TITLE>GPERF versus CMPH</TITLE>
|
||||
</HEAD><BODY BGCOLOR="white" TEXT="black">
|
||||
<CENTER>
|
||||
<H1>GPERF versus CMPH</H1>
|
||||
</CENTER>
|
||||
|
||||
<P>
|
||||
You might ask why cmph if <A HREF="http://www.gnu.org/software/gperf/gperf.html">gperf</A>
|
||||
already works perfectly. Actually, gperf and cmph have different goals.
|
||||
Basically, these are the requirements for each of them:
|
||||
</P>
|
||||
|
||||
<UL>
|
||||
<LI>GPERF
|
||||
<P></P>
|
||||
</UL>
|
||||
|
||||
<BLOCKQUOTE>
|
||||
- Create very fast hash functions for <B>small</B> sets
|
||||
</BLOCKQUOTE>
|
||||
<BLOCKQUOTE>
|
||||
- Create <B>perfect</B> hash functions
|
||||
</BLOCKQUOTE>
|
||||
|
||||
<UL>
|
||||
<LI>CMPH
|
||||
<P></P>
|
||||
</UL>
|
||||
|
||||
<BLOCKQUOTE>
|
||||
- Create very fast hash function for <B>very large</B> sets
|
||||
</BLOCKQUOTE>
|
||||
<BLOCKQUOTE>
|
||||
- Create <B>minimal perfect</B> hash functions
|
||||
</BLOCKQUOTE>
|
||||
<P>
|
||||
As result, cmph can be used to create hash functions where gperf would run
|
||||
forever without finding a perfect hash function, because of the running
|
||||
time of the algorithm and the large memory usage.
|
||||
On the other side, functions created by cmph are about 2x slower than those
|
||||
created by gperf.
|
||||
</P>
|
||||
<P>
|
||||
So, if you have large sets, or memory usage is a key restriction for you, stick
|
||||
to cmph. If you have small sets, and do not care about memory usage, go with
|
||||
gperf. The first problem is common in the information retrieval field (e.g.
|
||||
assigning ids to millions of documents), while the former is usually found in
|
||||
the compiler programming area (detect reserved keywords).
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><A HREF="index.html">Home</A></TD>
|
||||
<TD><A HREF="chd.html">CHD</A></TD>
|
||||
<TD><A HREF="bdz.html">BDZ</A></TD>
|
||||
<TD><A HREF="bmz.html">BMZ</A></TD>
|
||||
<TD><A HREF="chm.html">CHM</A></TD>
|
||||
<TD><A HREF="brz.html">BRZ</A></TD>
|
||||
<TD><A HREF="fch.html">FCH</A></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<P>
|
||||
Enjoy!
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:davi@users.sourceforge.net">Davi de Castro Reis</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:db8192@users.sourceforge.net">Djamel Belazzougui</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:fc_botelho@users.sourceforge.net">Fabiano Cupertino Botelho</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:nivio@dcc.ufmg.br">Nivio Ziviani</A>
|
||||
</P>
|
||||
<script type="text/javascript">
|
||||
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
|
||||
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
|
||||
</script>
|
||||
<script type="text/javascript">
|
||||
try {
|
||||
var pageTracker = _gat._getTracker("UA-7698683-2");
|
||||
pageTracker._trackPageview();
|
||||
} catch(err) {}</script>
|
||||
|
||||
<!-- html code generated by txt2tags 2.6 (http://txt2tags.org) -->
|
||||
<!-- cmdline: txt2tags -t html -i GPERF.t2t -o docs/gperf.html -->
|
||||
</BODY></HTML>
|
392
deps/cmph/docs/index.html
vendored
Normal file
392
deps/cmph/docs/index.html
vendored
Normal file
@ -0,0 +1,392 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
|
||||
<HTML>
|
||||
<HEAD>
|
||||
<META NAME="generator" CONTENT="http://txt2tags.org">
|
||||
<LINK REL="stylesheet" TYPE="text/css" HREF="DOC.css">
|
||||
<TITLE>CMPH - C Minimal Perfect Hashing Library</TITLE>
|
||||
</HEAD><BODY BGCOLOR="white" TEXT="black">
|
||||
<CENTER>
|
||||
<H1>CMPH - C Minimal Perfect Hashing Library</H1>
|
||||
</CENTER>
|
||||
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Motivation</H2>
|
||||
|
||||
<P>
|
||||
A perfect hash function maps a static set of n keys into a set of m integer numbers without collisions, where m is greater than or equal to n. If m is equal to n, the function is called minimal.
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="concepts.html">Minimal perfect hash functions</A> are widely used for memory efficient storage and fast retrieval of items from static sets, such as words in natural languages, reserved words in programming languages or interactive systems, universal resource locations (URLs) in Web search engines, or item sets in data mining techniques. Therefore, there are applications for minimal perfect hash functions in information retrieval systems, database systems, language translation systems, electronic commerce systems, compilers, operating systems, among others.
|
||||
</P>
|
||||
<P>
|
||||
The use of minimal perfect hash functions is, until now, restricted to scenarios where the set of keys being hashed is small, because of the limitations of current algorithms. But in many cases, to deal with huge set of keys is crucial. So, this project gives to the free software community an API that will work with sets in the order of billion of keys.
|
||||
</P>
|
||||
<P>
|
||||
Probably, the most interesting application for minimal perfect hash functions is its use as an indexing structure for databases. The most popular data structure used as an indexing structure in databases is the B+ tree. In fact, the B+ tree is very used for dynamic applications with frequent insertions and deletions of records. However, for applications with sporadic modifications and a huge number of queries the B+ tree is not the best option, because practical deployments of this structure are extremely complex, and perform poorly with very large sets of keys such as those required for the new frontiers <A HREF="http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=299">database applications</A>.
|
||||
</P>
|
||||
<P>
|
||||
For example, in the information retrieval field, the work with huge collections is a daily task. The simple assignment of ids to web pages of a collection can be a challenging task. While traditional databases simply cannot handle more traffic once the working set of web page urls does not fit in main memory anymore, minimal perfect hash functions can easily scale to hundred of millions of entries, using stock hardware.
|
||||
</P>
|
||||
<P>
|
||||
As there are lots of applications for minimal perfect hash functions, it is important to implement memory and time efficient algorithms for constructing such functions. The lack of similar libraries in the free software world has been the main motivation to create the C Minimal Perfect Hashing Library (<A HREF="gperf.html">gperf is a bit different</A>, since it was conceived to create very fast perfect hash functions for small sets of keys and CMPH Library was conceived to create minimal perfect hash functions for very large sets of keys). C Minimal Perfect Hashing Library is a portable LGPLed library to generate and to work with very efficient minimal perfect hash functions.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Description</H2>
|
||||
|
||||
<P>
|
||||
The CMPH Library encapsulates the newest and more efficient algorithms in an easy-to-use, production-quality, fast API. The library was designed to work with big entries that cannot fit in the main memory. It has been used successfully for constructing minimal perfect hash functions for sets with more than 100 million of keys, and we intend to expand this number to the order of billion of keys. Although there is a lack of similar libraries, we can point out some of the distinguishable features of the CMPH Library:
|
||||
</P>
|
||||
|
||||
<UL>
|
||||
<LI>Fast.
|
||||
<LI>Space-efficient with main memory usage carefully documented.
|
||||
<LI>The best modern algorithms are available (or at least scheduled for implementation :-)).
|
||||
<LI>Works with in-disk key sets through of using the adapter pattern.
|
||||
<LI>Serialization of hash functions.
|
||||
<LI>Portable C code (currently works on GNU/Linux and WIN32 and is reported to work in OpenBSD and Solaris).
|
||||
<LI>Object oriented implementation.
|
||||
<LI>Easily extensible.
|
||||
<LI>Well encapsulated API aiming binary compatibility through releases.
|
||||
<LI>Free Software.
|
||||
</UL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Supported Algorithms</H2>
|
||||
|
||||
<UL>
|
||||
<LI><A HREF="chd.html">CHD Algorithm</A>:
|
||||
<UL>
|
||||
<LI>It is the fastest algorithm to build PHFs and MPHFs in linear time.
|
||||
<LI>It generates the most compact PHFs and MPHFs we know of.
|
||||
<LI>It can generate PHFs with a load factor up to <I>99 %</I>.
|
||||
<LI>It can be used to generate <I>t</I>-perfect hash functions. A <I>t</I>-perfect hash function allows at most <I>t</I> collisions in a given bin. It is a well-known fact that modern memories are organized as blocks which constitute transfer unit. Example of such blocks are cache lines for internal memory or sectors for hard disks. Thus, it can be very useful for devices that carry out I/O operations in blocks.
|
||||
<LI>It is a two level scheme. It uses a first level hash function to split the key set in buckets of average size determined by a parameter <I>b</I> in the range <I>[1,32]</I>. In the second level it uses displacement values to resolve the collisions that have given rise to the buckets.
|
||||
<LI>It can generate MPHFs that can be stored in approximately <I>2.07</I> bits per key.
|
||||
<LI>For a load factor equal to the maximum one that is achieved by the BDZ algorithm (<I>81 %</I>), the resulting PHFs are stored in approximately <I>1.40</I> bits per key.
|
||||
</UL>
|
||||
<LI><A HREF="bdz.html">BDZ Algorithm</A>:
|
||||
<UL>
|
||||
<LI>It is very simple and efficient. It outperforms all the ones below.
|
||||
<LI>It constructs both PHFs and MPHFs in linear time.
|
||||
<LI>The maximum load factor one can achieve for a PHF is <I>1/1.23</I>.
|
||||
<LI>It is based on acyclic random 3-graphs. A 3-graph is a generalization of a graph where each edge connects 3 vertices instead of only 2.
|
||||
<LI>The resulting MPHFs are not order preserving.
|
||||
<LI>The resulting MPHFs can be stored in only <I>(2 + x)cn</I> bits, where <I>c</I> should be larger than or equal to <I>1.23</I> and <I>x</I> is a constant larger than <I>0</I> (actually, x = 1/b and b is a parameter that should be larger than 2). For <I>c = 1.23</I> and <I>b = 8</I>, the resulting functions are stored in approximately 2.6 bits per key.
|
||||
<LI>For its maximum load factor (<I>81 %</I>), the resulting PHFs are stored in approximately <I>1.95</I> bits per key.
|
||||
</UL>
|
||||
<LI><A HREF="bmz.html">BMZ Algorithm</A>:
|
||||
<UL>
|
||||
<LI>Construct MPHFs in linear time.
|
||||
<LI>It is based on cyclic random graphs. This makes it faster than the CHM algorithm.
|
||||
<LI>The resulting MPHFs are not order preserving.
|
||||
<LI>The resulting MPHFs are more compact than the ones generated by the CHM algorithm and can be stored in <I>4cn</I> bytes, where <I>c</I> is in the range <I>[0.93,1.15]</I>.
|
||||
</UL>
|
||||
<LI><A HREF="brz.html">BRZ Algorithm</A>:
|
||||
<UL>
|
||||
<LI>A very fast external memory based algorithm for constructing minimal perfect hash functions for sets in the order of billions of keys.
|
||||
<LI>It works in linear time.
|
||||
<LI>The resulting MPHFs are not order preserving.
|
||||
<LI>The resulting MPHFs can be stored using less than <I>8.0</I> bits per key.
|
||||
</UL>
|
||||
<LI><A HREF="chm.html">CHM Algorithm</A>:
|
||||
<UL>
|
||||
<LI>Construct minimal MPHFs in linear time.
|
||||
<LI>It is based on acyclic random graphs
|
||||
<LI>The resulting MPHFs are order preserving.
|
||||
<LI>The resulting MPHFs are stored in <I>4cn</I> bytes, where <I>c</I> is greater than 2.
|
||||
</UL>
|
||||
<LI><A HREF="fch.html">FCH Algorithm</A>:
|
||||
<UL>
|
||||
<LI>Construct minimal perfect hash functions that require less than 4 bits per key to be stored.
|
||||
<LI>The resulting MPHFs are very compact and very efficient at evaluation time
|
||||
<LI>The algorithm is only efficient for small sets.
|
||||
<LI>It is used as internal algorithm in the BRZ algorithm to efficiently solve larger problems and even so to generate MPHFs that require approximately 4.1 bits per key to be stored. For that, you just need to set the parameters -a to brz and -c to a value larger than or equal to 2.6.
|
||||
</UL>
|
||||
</UL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>News for version 2.0</H2>
|
||||
|
||||
<P>
|
||||
Cleaned up most warnings for the c code.
|
||||
</P>
|
||||
<P>
|
||||
Experimental C++ interface (--enable-cxxmph) implementing the BDZ algorithm in
|
||||
a convenient interface, which serves as the basis
|
||||
for drop-in replacements for std::unordered_map, sparsehash::sparse_hash_map
|
||||
and sparsehash::dense_hash_map. Potentially faster lookup time at the expense
|
||||
of insertion time. See cxxmpph/mph_map.h and cxxmph/mph_index.h for details.
|
||||
</P>
|
||||
|
||||
<H2>News for version 1.1</H2>
|
||||
|
||||
<P>
|
||||
Fixed a bug in the chd_pc algorithm and reorganized tests.
|
||||
</P>
|
||||
|
||||
<H2>News for version 1.0</H2>
|
||||
|
||||
<P>
|
||||
This is a bugfix only version, after which a revamp of the cmph code and
|
||||
algorithms will be done.
|
||||
</P>
|
||||
|
||||
<H2>News for version 0.9</H2>
|
||||
|
||||
<UL>
|
||||
<LI><A HREF="chd.html">The CHD algorithm</A>, which is an algorithm that can be tuned to generate MPHFs that require approximately 2.07 bits per key to be stored. The algorithm outperforms <A HREF="bdz.html">the BDZ algorithm</A> and therefore is the fastest one available in the literature for sets that can be treated in internal memory.
|
||||
<LI><A HREF="chd.html">The CHD_PH algorithm</A>, which is an algorithm to generate PHFs with load factor up to <I>99 %</I>. It is actually the CHD algorithm without the ranking step. If we set the load factor to <I>81 %</I>, which is the maximum that can be obtained with <A HREF="bdz.html">the BDZ algorithm</A>, the resulting functions can be stored in <I>1.40</I> bits per key. The space requirement increases with the load factor.
|
||||
<LI>All reported bugs and suggestions have been corrected and included as well.
|
||||
</UL>
|
||||
|
||||
<H2>News for version 0.8</H2>
|
||||
|
||||
<UL>
|
||||
<LI><A HREF="bdz.html">An algorithm to generate MPHFs that require around 2.6 bits per key to be stored</A>, which is referred to as BDZ algorithm. The algorithm is the fastest one available in the literature for sets that can be treated in internal memory.
|
||||
<LI><A HREF="bdz.html">An algorithm to generate PHFs with range m = cn, for c > 1.22</A>, which is referred to as BDZ_PH algorithm. It is actually the BDZ algorithm without the ranking step. The resulting functions can be stored in 1.95 bits per key for <I>c = 1.23</I> and are considerably faster than the MPHFs generated by the BDZ algorithm.
|
||||
<LI>An adapter to support a vector of struct as the source of keys has been added.
|
||||
<LI>An API to support the ability of packing a perfect hash function into a preallocated contiguous memory space. The computation of a packed function is still faster and can be easily mmapped.
|
||||
<LI>The hash functions djb2, fnv and sdbm were removed because they do not use random seeds and therefore are not useful for MPHFs algorithms.
|
||||
<LI>All reported bugs and suggestions have been corrected and included as well.
|
||||
</UL>
|
||||
|
||||
<P>
|
||||
<A HREF="newslog.html">News log</A>
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>Examples</H2>
|
||||
|
||||
<P>
|
||||
Using cmph is quite simple. Take a look.
|
||||
</P>
|
||||
|
||||
<PRE>
|
||||
#include <cmph.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-memory vector
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
|
||||
// Creating a filled vector
|
||||
unsigned int i = 0;
|
||||
const char *vector[] = {"aaaaaaaaaa", "bbbbbbbbbb", "cccccccccc", "dddddddddd", "eeeeeeeeee",
|
||||
"ffffffffff", "gggggggggg", "hhhhhhhhhh", "iiiiiiiiii", "jjjjjjjjjj"};
|
||||
unsigned int nkeys = 10;
|
||||
FILE* mphf_fd = fopen("temp.mph", "w");
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_vector_adapter((char **)vector, nkeys);
|
||||
|
||||
//Create minimal perfect hash function using the brz algorithm.
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BRZ);
|
||||
cmph_config_set_mphf_fd(config, mphf_fd);
|
||||
cmph_t *hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
cmph_dump(hash, mphf_fd);
|
||||
cmph_destroy(hash);
|
||||
fclose(mphf_fd);
|
||||
|
||||
//Find key
|
||||
mphf_fd = fopen("temp.mph", "r");
|
||||
hash = cmph_load(mphf_fd);
|
||||
while (i < nkeys) {
|
||||
const char *key = vector[i];
|
||||
unsigned int id = cmph_search(hash, key, (cmph_uint32)strlen(key));
|
||||
fprintf(stderr, "key:%s -- hash:%u\n", key, id);
|
||||
i++;
|
||||
}
|
||||
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_vector_adapter_destroy(source);
|
||||
fclose(mphf_fd);
|
||||
return 0;
|
||||
}
|
||||
</PRE>
|
||||
|
||||
<P>
|
||||
Download <A HREF="examples/vector_adapter_ex1.c">vector_adapter_ex1.c</A>. This example does not work in versions below 0.6. You need to update the sources from GIT to make it work.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<PRE>
|
||||
#include <cmph.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-disk keys using BDZ algorithm
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//Open file with newline separated list of keys
|
||||
FILE * keys_fd = fopen("keys.txt", "r");
|
||||
cmph_t *hash = NULL;
|
||||
if (keys_fd == NULL)
|
||||
{
|
||||
fprintf(stderr, "File \"keys.txt\" not found\n");
|
||||
exit(1);
|
||||
}
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_nlfile_adapter(keys_fd);
|
||||
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BDZ);
|
||||
hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
|
||||
//Find key
|
||||
const char *key = "jjjjjjjjjj";
|
||||
unsigned int id = cmph_search(hash, key, (cmph_uint32)strlen(key));
|
||||
fprintf(stderr, "Id:%u\n", id);
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_nlfile_adapter_destroy(source);
|
||||
fclose(keys_fd);
|
||||
return 0;
|
||||
}
|
||||
</PRE>
|
||||
|
||||
<P>
|
||||
Download <A HREF="examples/file_adapter_ex2.c">file_adapter_ex2.c</A> and <A HREF="examples/keys.txt">keys.txt</A>. This example does not work in versions below 0.8. You need to update the sources from GIT to make it work.
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="examples.html">Click here to see more examples</A>
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>The cmph application</H2>
|
||||
|
||||
<P>
|
||||
cmph is the name of both the library and the utility
|
||||
application that comes with this package. You can use the cmph
|
||||
application for constructing minimal perfect hash functions from the command line.
|
||||
The cmph utility
|
||||
comes with a number of flags, but it is very simple to create and to query
|
||||
minimal perfect hash functions:
|
||||
</P>
|
||||
|
||||
<PRE>
|
||||
$ # Using the chm algorithm (default one) for constructing a mphf for keys in file keys_file
|
||||
$ ./cmph -g keys_file
|
||||
$ # Query id of keys in the file keys_query
|
||||
$ ./cmph -m keys_file.mph keys_query
|
||||
</PRE>
|
||||
|
||||
<P>
|
||||
The additional options let you set most of the parameters you have
|
||||
available through the C API. Below you can see the full help message for the
|
||||
utility.
|
||||
</P>
|
||||
|
||||
<PRE>
|
||||
usage: cmph [-v] [-h] [-V] [-k nkeys] [-f hash_function] [-g [-c algorithm_dependent_value][-s seed] ]
|
||||
[-a algorithm] [-M memory_in_MB] [-b algorithm_dependent_value] [-t keys_per_bin] [-d tmp_dir]
|
||||
[-m file.mph] keysfile
|
||||
Minimum perfect hashing tool
|
||||
|
||||
-h print this help message
|
||||
-c c value determines:
|
||||
* the number of vertices in the graph for the algorithms BMZ and CHM
|
||||
* the number of bits per key required in the FCH algorithm
|
||||
* the load factor in the CHD_PH algorithm
|
||||
-a algorithm - valid values are
|
||||
* bmz
|
||||
* bmz8
|
||||
* chm
|
||||
* brz
|
||||
* fch
|
||||
* bdz
|
||||
* bdz_ph
|
||||
* chd_ph
|
||||
* chd
|
||||
-f hash function (may be used multiple times) - valid values are
|
||||
* jenkins
|
||||
-V print version number and exit
|
||||
-v increase verbosity (may be used multiple times)
|
||||
-k number of keys
|
||||
-g generation mode
|
||||
-s random seed
|
||||
-m minimum perfect hash function file
|
||||
-M main memory availability (in MB) used in BRZ algorithm
|
||||
-d temporary directory used in BRZ algorithm
|
||||
-b the meaning of this parameter depends on the algorithm selected in the -a option:
|
||||
* For BRZ it is used to make the maximal number of keys in a bucket lower than 256.
|
||||
In this case its value should be an integer in the range [64,175]. Default is 128.
|
||||
|
||||
* For BDZ it is used to determine the size of some precomputed rank
|
||||
information and its value should be an integer in the range [3,10]. Default
|
||||
is 7. The larger is this value, the more compact are the resulting functions
|
||||
and the slower are them at evaluation time.
|
||||
|
||||
* For CHD and CHD_PH it is used to set the average number of keys per bucket
|
||||
and its value should be an integer in the range [1,32]. Default is 4. The
|
||||
larger is this value, the slower is the construction of the functions.
|
||||
This parameter has no effect for other algorithms.
|
||||
|
||||
-t set the number of keys per bin for a t-perfect hashing function. A t-perfect
|
||||
hash function allows at most t collisions in a given bin. This parameter applies
|
||||
only to the CHD and CHD_PH algorithms. Its value should be an integer in the
|
||||
range [1,128]. Defaul is 1
|
||||
keysfile line separated file with keys
|
||||
</PRE>
|
||||
|
||||
<H2>Additional Documentation</H2>
|
||||
|
||||
<P>
|
||||
<A HREF="faq.html">FAQ</A>
|
||||
</P>
|
||||
|
||||
<H2>Downloads</H2>
|
||||
|
||||
<P>
|
||||
Use the github releases page at: <A HREF="https://github.com/bonitao/cmph/releases">https://github.com/bonitao/cmph/releases</A>
|
||||
</P>
|
||||
|
||||
<H2>License Stuff</H2>
|
||||
|
||||
<P>
|
||||
Code is under the LGPL and the MPL 1.1.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<P>
|
||||
Enjoy!
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:davi@users.sourceforge.net">Davi de Castro Reis</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:db8192@users.sourceforge.net">Djamel Belazzougui</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:fc_botelho@users.sourceforge.net">Fabiano Cupertino Botelho</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:nivio@dcc.ufmg.br">Nivio Ziviani</A>
|
||||
</P>
|
||||
<a href="http://sourceforge.net"><img src="http://sourceforge.net/sflogo.php?group_id=96251&type=1" width="88" height="31" border="0" alt="SourceForge.net Logo" /> </a>
|
||||
<P>
|
||||
Last Updated: Fri Dec 28 23:50:29 2018
|
||||
</P>
|
||||
<script type="text/javascript">
|
||||
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
|
||||
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
|
||||
</script>
|
||||
<script type="text/javascript">
|
||||
try {
|
||||
var pageTracker = _gat._getTracker("UA-7698683-2");
|
||||
pageTracker._trackPageview();
|
||||
} catch(err) {}</script>
|
||||
|
||||
<!-- html code generated by txt2tags 2.6 (http://txt2tags.org) -->
|
||||
<!-- cmdline: txt2tags -t html -\-mask-email -i README.t2t -o docs/index.html -->
|
||||
</BODY></HTML>
|
142
deps/cmph/docs/newslog.html
vendored
Normal file
142
deps/cmph/docs/newslog.html
vendored
Normal file
@ -0,0 +1,142 @@
|
||||
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
|
||||
<HTML>
|
||||
<HEAD>
|
||||
<META NAME="generator" CONTENT="http://txt2tags.org">
|
||||
<LINK REL="stylesheet" TYPE="text/css" HREF="DOC.css">
|
||||
<TITLE>News Log</TITLE>
|
||||
</HEAD><BODY BGCOLOR="white" TEXT="black">
|
||||
<CENTER>
|
||||
<H1>News Log</H1>
|
||||
</CENTER>
|
||||
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>News for version 1.1</H2>
|
||||
|
||||
<P>
|
||||
Fixed a bug in the chd_pc algorithm and reorganized tests.
|
||||
</P>
|
||||
|
||||
<H2>News for version 1.0</H2>
|
||||
|
||||
<P>
|
||||
This is a bugfix only version, after which a revamp of the cmph code and
|
||||
algorithms will be done.
|
||||
</P>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>News for version 0.9</H2>
|
||||
|
||||
<UL>
|
||||
<LI><A HREF="chd.html">The CHD algorithm</A>, which is an algorithm that can be tuned to generate MPHFs that require approximately 2.07 bits per key to be stored. The algorithm outperforms <A HREF="bdz.html">the BDZ algorithm</A> and therefore is the fastest one available in the literature for sets that can be treated in internal memory.
|
||||
<LI><A HREF="chd.html">The CHD_PH algorithm</A>, which is an algorithm to generate PHFs with load factor up to <I>99 %</I>. It is actually the CHD algorithm without the ranking step. If we set the load factor to <I>81 %</I>, which is the maximum that can be obtained with <A HREF="bdz.html">the BDZ algorithm</A>, the resulting functions can be stored in <I>1.40</I> bits per key. The space requirement increases with the load factor.
|
||||
<LI>All reported bugs and suggestions have been corrected and included as well.
|
||||
</UL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>News for version 0.8</H2>
|
||||
|
||||
<UL>
|
||||
<LI><A HREF="bdz.html">An algorithm to generate MPHFs that require around 2.6 bits per key to be stored</A>, which is referred to as BDZ algorithm. The algorithm is the fastest one available in the literature for sets that can be treated in internal memory.
|
||||
<LI><A HREF="bdz.html">An algorithm to generate PHFs with range m = cn, for c > 1.22</A>, which is referred to as BDZ_PH algorithm. It is actually the BDZ algorithm without the ranking step. The resulting functions can be stored in 1.95 bits per key for <I>c = 1.23</I> and are considerably faster than the MPHFs generated by the BDZ algorithm.
|
||||
<LI>An adapter to support a vector of struct as the source of keys has been added.
|
||||
<LI>An API to support the ability of packing a perfect hash function into a preallocated contiguous memory space. The computation of a packed function is still faster and can be easily mmapped.
|
||||
<LI>The hash functions djb2, fnv and sdbm were removed because they do not use random seeds and therefore are not useful for MPHFs algorithms.
|
||||
<LI>All reported bugs and suggestions have been corrected and included as well.
|
||||
</UL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>News for version 0.7</H2>
|
||||
|
||||
<UL>
|
||||
<LI>Added man pages and a pkgconfig file.
|
||||
</UL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>News for version 0.6</H2>
|
||||
|
||||
<UL>
|
||||
<LI><A HREF="fch.html">An algorithm to generate MPHFs that require less than 4 bits per key to be stored</A>, which is referred to as FCH algorithm. The algorithm is only efficient for small sets.
|
||||
<LI>The FCH algorithm is integrated with <A HREF="brz.html">BRZ algorithm</A> so that you will be able to efficiently generate space-efficient MPHFs for sets in the order of billion keys.
|
||||
<LI>All reported bugs and suggestions have been corrected and included as well.
|
||||
</UL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>News for version 0.5</H2>
|
||||
|
||||
<UL>
|
||||
<LI>A thread safe vector adapter has been added.
|
||||
<LI><A HREF="brz.html">A new algorithm for sets in the order of billion of keys that requires approximately 8.1 bits per key to store the resulting MPHFs.</A>
|
||||
<LI>All reported bugs and suggestions have been corrected and included as well.
|
||||
</UL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>News for version 0.4</H2>
|
||||
|
||||
<UL>
|
||||
<LI>Vector Adapter has been added.
|
||||
<LI>An optimized version of bmz (bmz8) for small set of keys (at most 256 keys) has been added.
|
||||
<LI>All reported bugs and suggestions have been corrected and included as well.
|
||||
</UL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<H2>News for version 0.3</H2>
|
||||
|
||||
<UL>
|
||||
<LI>New heuristic added to the bmz algorithm permits to generate a mphf with only
|
||||
<I>24.80n + O(1)</I> bytes. The resulting function can be stored in <I>3.72n</I> bytes.
|
||||
<A HREF="bmz.html#heuristic">click here</A> for details.
|
||||
</UL>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<TABLE ALIGN="center" CELLPADDING="4">
|
||||
<TR>
|
||||
<TD><A HREF="index.html">Home</A></TD>
|
||||
<TD><A HREF="chd.html">CHD</A></TD>
|
||||
<TD><A HREF="bdz.html">BDZ</A></TD>
|
||||
<TD><A HREF="bmz.html">BMZ</A></TD>
|
||||
<TD><A HREF="chm.html">CHM</A></TD>
|
||||
<TD><A HREF="brz.html">BRZ</A></TD>
|
||||
<TD><A HREF="fch.html">FCH</A></TD>
|
||||
</TR>
|
||||
</TABLE>
|
||||
|
||||
<HR NOSHADE SIZE=1>
|
||||
|
||||
<P>
|
||||
Enjoy!
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:davi@users.sourceforge.net">Davi de Castro Reis</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:db8192@users.sourceforge.net">Djamel Belazzougui</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:fc_botelho@users.sourceforge.net">Fabiano Cupertino Botelho</A>
|
||||
</P>
|
||||
<P>
|
||||
<A HREF="mailto:nivio@dcc.ufmg.br">Nivio Ziviani</A>
|
||||
</P>
|
||||
<script type="text/javascript">
|
||||
var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www.");
|
||||
document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E"));
|
||||
</script>
|
||||
<script type="text/javascript">
|
||||
try {
|
||||
var pageTracker = _gat._getTracker("UA-7698683-2");
|
||||
pageTracker._trackPageview();
|
||||
} catch(err) {}</script>
|
||||
|
||||
<!-- html code generated by txt2tags 2.6 (http://txt2tags.org) -->
|
||||
<!-- cmdline: txt2tags -t html -i NEWSLOG.t2t -o docs/newslog.html -->
|
||||
</BODY></HTML>
|
15
deps/cmph/examples/Makefile.am
vendored
Executable file
15
deps/cmph/examples/Makefile.am
vendored
Executable file
@ -0,0 +1,15 @@
|
||||
noinst_PROGRAMS = vector_adapter_ex1 file_adapter_ex2 struct_vector_adapter_ex3 small_set_ex4
|
||||
|
||||
AM_CPPFLAGS = -I../src/
|
||||
|
||||
vector_adapter_ex1_LDADD = ../src/libcmph.la
|
||||
vector_adapter_ex1_SOURCES = vector_adapter_ex1.c
|
||||
|
||||
file_adapter_ex2_LDADD = ../src/libcmph.la
|
||||
file_adapter_ex2_SOURCES = file_adapter_ex2.c
|
||||
|
||||
struct_vector_adapter_ex3_LDADD = ../src/libcmph.la
|
||||
struct_vector_adapter_ex3_SOURCES = struct_vector_adapter_ex3.c
|
||||
|
||||
small_set_ex4_LDADD = ../src/libcmph.la
|
||||
small_set_ex4_SOURCES = small_set_ex4.c
|
32
deps/cmph/examples/file_adapter_ex2.c
vendored
Normal file
32
deps/cmph/examples/file_adapter_ex2.c
vendored
Normal file
@ -0,0 +1,32 @@
|
||||
#include <cmph.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-disk keys using BDZ algorithm
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
//Open file with newline separated list of keys
|
||||
FILE * keys_fd = fopen("keys.txt", "r");
|
||||
cmph_t *hash = NULL;
|
||||
if (keys_fd == NULL)
|
||||
{
|
||||
fprintf(stderr, "File \"keys.txt\" not found\n");
|
||||
exit(1);
|
||||
}
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_nlfile_adapter(keys_fd);
|
||||
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BDZ);
|
||||
hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
|
||||
//Find key
|
||||
const char *key = "jjjjjjjjjj";
|
||||
unsigned int id = cmph_search(hash, key, (cmph_uint32)strlen(key));
|
||||
fprintf(stderr, "Id:%u\n", id);
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_nlfile_adapter_destroy(source);
|
||||
fclose(keys_fd);
|
||||
return 0;
|
||||
}
|
10
deps/cmph/examples/keys.txt
vendored
Normal file
10
deps/cmph/examples/keys.txt
vendored
Normal file
@ -0,0 +1,10 @@
|
||||
aaaaaaaaaa
|
||||
bbbbbbbbbb
|
||||
cccccccccc
|
||||
dddddddddd
|
||||
eeeeeeeeee
|
||||
ffffffffff
|
||||
gggggggggg
|
||||
hhhhhhhhhh
|
||||
iiiiiiiiii
|
||||
jjjjjjjjjj
|
105
deps/cmph/examples/small_set_ex4.c
vendored
Normal file
105
deps/cmph/examples/small_set_ex4.c
vendored
Normal file
@ -0,0 +1,105 @@
|
||||
#include <cmph.h>
|
||||
|
||||
int test(cmph_uint32* items_to_hash, cmph_uint32 items_len, CMPH_ALGO alg_n)
|
||||
{
|
||||
cmph_t *hash;
|
||||
cmph_config_t *config;
|
||||
cmph_io_adapter_t *source;
|
||||
cmph_uint32 i;
|
||||
char filename[256];
|
||||
FILE* mphf_fd = NULL;
|
||||
|
||||
printf("%s (%u)\n", cmph_names[alg_n], alg_n);
|
||||
|
||||
source = cmph_io_struct_vector_adapter(items_to_hash,
|
||||
(cmph_uint32)sizeof(cmph_uint32),
|
||||
0,
|
||||
(cmph_uint32)sizeof(cmph_uint32),
|
||||
items_len);
|
||||
config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, alg_n);
|
||||
if (alg_n == CMPH_BRZ) {
|
||||
sprintf(filename, "%s_%u.mph", cmph_names[alg_n], items_len);
|
||||
mphf_fd = fopen(filename, "w");
|
||||
cmph_config_set_mphf_fd(config, mphf_fd);
|
||||
}
|
||||
hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
|
||||
if (alg_n == CMPH_BRZ) {
|
||||
cmph_dump(hash, mphf_fd);
|
||||
cmph_destroy(hash);
|
||||
fclose(mphf_fd);
|
||||
mphf_fd = fopen(filename, "r");
|
||||
hash = cmph_load(mphf_fd);
|
||||
}
|
||||
printf("packed_size %u\n",cmph_packed_size(hash));
|
||||
|
||||
for (i=0; i<items_len; ++i)
|
||||
printf("%d -> %u\n",
|
||||
items_to_hash[i],
|
||||
cmph_search(hash,
|
||||
(char*)(items_to_hash+i),
|
||||
(cmph_uint32)sizeof(cmph_uint32)));
|
||||
printf("\n");
|
||||
|
||||
cmph_io_vector_adapter_destroy(source);
|
||||
cmph_destroy(hash);
|
||||
|
||||
if (alg_n == CMPH_BRZ) {
|
||||
fclose(mphf_fd);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int main (void)
|
||||
{
|
||||
cmph_uint32 vec1[] = {1,2,3,4,5};
|
||||
cmph_uint32 vec1_len = 5;
|
||||
|
||||
cmph_uint32 vec2[] = {7576423, 7554496}; //CMPH_FCH, CMPH_BDZ, CMPH_BDZ_PH (4,5,6)
|
||||
cmph_uint32 vec2_len = 2;
|
||||
cmph_uint32 vec3[] = {2184764, 1882984, 1170551}; // CMPH_CHD_PH, CMPH_CHD (7,8)
|
||||
cmph_uint32 vec3_len = 3;
|
||||
cmph_uint32 vec4[] = {2184764}; // CMPH_CHD_PH, CMPH_CHD (7,8)
|
||||
cmph_uint32 vec4_len = 1;
|
||||
cmph_uint32 i;
|
||||
|
||||
// Testing with vec1
|
||||
cmph_uint32* values = (cmph_uint32*)vec1;
|
||||
cmph_uint32 length = vec1_len;
|
||||
printf("TESTING VECTOR WITH %u INTEGERS\n", length);
|
||||
for (i = 0; i < CMPH_COUNT; i++)
|
||||
{
|
||||
test(values, length, i);
|
||||
}
|
||||
|
||||
// Testing with vec2
|
||||
values = (cmph_uint32*)vec2;
|
||||
length = vec2_len;
|
||||
printf("TESTING VECTOR WITH %u INTEGERS\n", length);
|
||||
for (i = 0; i < CMPH_COUNT; i++)
|
||||
{
|
||||
test(values, length, i);
|
||||
}
|
||||
|
||||
// Testing with vec3
|
||||
values = (cmph_uint32*)vec3;
|
||||
length = vec3_len;
|
||||
printf("TESTING VECTOR WITH %u INTEGERS\n", length);
|
||||
for (i = 0; i < CMPH_COUNT; i++)
|
||||
{
|
||||
test(values, length, i);
|
||||
}
|
||||
|
||||
// Testing with vec4
|
||||
values = (cmph_uint32*)vec4;
|
||||
length = vec4_len;
|
||||
printf("TESTING VECTOR WITH %u INTEGERS\n", length);
|
||||
for (i = 0; i < CMPH_COUNT; i++)
|
||||
{
|
||||
test(values, length, i);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
51
deps/cmph/examples/struct_vector_adapter_ex3.c
vendored
Normal file
51
deps/cmph/examples/struct_vector_adapter_ex3.c
vendored
Normal file
@ -0,0 +1,51 @@
|
||||
#include <cmph.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-memory vector
|
||||
|
||||
#pragma pack(1)
|
||||
typedef struct {
|
||||
cmph_uint32 id;
|
||||
char key[11];
|
||||
cmph_uint32 year;
|
||||
} rec_t;
|
||||
#pragma pack(0)
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
// Creating a filled vector
|
||||
unsigned int i = 0;
|
||||
rec_t vector[10] = {{1, "aaaaaaaaaa", 1999}, {2, "bbbbbbbbbb", 2000}, {3, "cccccccccc", 2001},
|
||||
{4, "dddddddddd", 2002}, {5, "eeeeeeeeee", 2003}, {6, "ffffffffff", 2004},
|
||||
{7, "gggggggggg", 2005}, {8, "hhhhhhhhhh", 2006}, {9, "iiiiiiiiii", 2007},
|
||||
{10,"jjjjjjjjjj", 2008}};
|
||||
unsigned int nkeys = 10;
|
||||
FILE* mphf_fd = fopen("temp_struct_vector.mph", "wb");
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_struct_vector_adapter(vector, (cmph_uint32)sizeof(rec_t), (cmph_uint32)sizeof(cmph_uint32), 11, nkeys);
|
||||
|
||||
//Create minimal perfect hash function using the BDZ algorithm.
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BDZ);
|
||||
cmph_config_set_mphf_fd(config, mphf_fd);
|
||||
cmph_t *hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
cmph_dump(hash, mphf_fd);
|
||||
cmph_destroy(hash);
|
||||
fclose(mphf_fd);
|
||||
|
||||
//Find key
|
||||
mphf_fd = fopen("temp_struct_vector.mph", "rb");
|
||||
hash = cmph_load(mphf_fd);
|
||||
while (i < nkeys) {
|
||||
const char *key = vector[i].key;
|
||||
unsigned int id = cmph_search(hash, key, 11);
|
||||
fprintf(stderr, "key:%s -- hash:%u\n", key, id);
|
||||
i++;
|
||||
}
|
||||
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_vector_adapter_destroy(source);
|
||||
fclose(mphf_fd);
|
||||
return 0;
|
||||
}
|
41
deps/cmph/examples/vector_adapter_ex1.c
vendored
Executable file
41
deps/cmph/examples/vector_adapter_ex1.c
vendored
Executable file
@ -0,0 +1,41 @@
|
||||
#include <cmph.h>
|
||||
#include <string.h>
|
||||
// Create minimal perfect hash function from in-memory vector
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
|
||||
// Creating a filled vector
|
||||
unsigned int i = 0;
|
||||
const char *vector[] = {"aaaaaaaaaa", "bbbbbbbbbb", "cccccccccc", "dddddddddd", "eeeeeeeeee",
|
||||
"ffffffffff", "gggggggggg", "hhhhhhhhhh", "iiiiiiiiii", "jjjjjjjjjj"};
|
||||
unsigned int nkeys = 10;
|
||||
FILE* mphf_fd = fopen("temp.mph", "wb");
|
||||
// Source of keys
|
||||
cmph_io_adapter_t *source = cmph_io_vector_adapter((char **)vector, nkeys);
|
||||
|
||||
//Create minimal perfect hash function using the brz algorithm.
|
||||
cmph_config_t *config = cmph_config_new(source);
|
||||
cmph_config_set_algo(config, CMPH_BRZ);
|
||||
cmph_config_set_mphf_fd(config, mphf_fd);
|
||||
cmph_t *hash = cmph_new(config);
|
||||
cmph_config_destroy(config);
|
||||
cmph_dump(hash, mphf_fd);
|
||||
cmph_destroy(hash);
|
||||
fclose(mphf_fd);
|
||||
|
||||
//Find key
|
||||
mphf_fd = fopen("temp.mph", "rb");
|
||||
hash = cmph_load(mphf_fd);
|
||||
while (i < nkeys) {
|
||||
const char *key = vector[i];
|
||||
unsigned int id = cmph_search(hash, key, (cmph_uint32)strlen(key));
|
||||
fprintf(stderr, "key:%s -- hash:%u\n", key, id);
|
||||
i++;
|
||||
}
|
||||
|
||||
//Destroy hash
|
||||
cmph_destroy(hash);
|
||||
cmph_io_vector_adapter_destroy(source);
|
||||
fclose(mphf_fd);
|
||||
return 0;
|
||||
}
|
BIN
deps/cmph/figs/bdz/img1.png
vendored
Normal file
BIN
deps/cmph/figs/bdz/img1.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 234 B |
BIN
deps/cmph/figs/bdz/img10.png
vendored
Normal file
BIN
deps/cmph/figs/bdz/img10.png
vendored
Normal file
Binary file not shown.
After Width: | Height: | Size: 235 B |
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user