1
Fork 0

Alterei introducao e trabalhos relacionados

This commit is contained in:
fc_botelho 2005-09-30 20:14:51 +00:00
parent a36080a274
commit ad495643bf
3 changed files with 52 additions and 1 deletions

View File

@ -1,6 +1,41 @@
\section{Introdu\c{c}\~ao} \section{Introdu\c{c}\~ao}
\label{sec:introduction} \label{sec:introduction}
Fun\c{c}\~oes hash s\~ao amplamente utilizadas em v\'arias \'areas da
Ci\^encia da Computa\c{c}\~ao.
Uma \textit{fun\c{c}\~ao hash} $h: U \to M$ mapeia chaves de um universo $U$, $|U|=u$,
para um dado intervalo de inteiros $M=[0,m-1]=\{0,1,\dots,m-1\}$.
Seja~$S\subseteq U$ um subconjunto de $n$ chaves do universo $U$.
Dado uma chave~$k\in S$, uma fun\c{c}\~ao hash $h$ computa um inteiro em
$M$ para armazenamento ou recupera\c{c}\~ao de $k$ em uma \textit{tabela hash}.
Neste artigo consideramos que as chaves s\~ao strings de bits de comprimento
m\'aximo $L$. Portanto $u = 2^L$.
M\'etodos de hashing para {\em conjuntos n\~ao est\'aticos} de chaves podem ser usados para
construir estruturas de dados para armazenar $S$ e suportar consultas do tipo
``$k \in S$?'' em tempo esperado $O(1)$.
No entanto, eles envolvem um certo desperd\'{\i}cio de espa\c{c}o e tempo devido
a localiza\c{c}\~oes inutilizadas na tabela e tempo para resolver colis\~oes quando duas
chaves s\~ao mapeadas para a mesma localiza\c{c}\~ao na tabela.
For {\em static sets} of keys it is possible to compute a function
to find any key in a table in one probe; such hash functions are called
\textit{perfect}.
Given a set of keys~$S$, we shall say that a hash function~$h:U\to M$ is a
\textit{perfect hash function} for~$S$ if~$h$ is an injection on~$S$,
that is, there are no \textit{collisions} among the keys in~$S$: if~$x$
and~$y$ are in~$S$ and~$x\neq y$, then~$h(x)\neq h(y)$.
Figure~\ref{fig:minimalperfecthash-ph-mph}(a) illustrates a perfect hash
function.
Since no collisions occur, each key can be retrieved from the table
with a single probe.
If~$m=n$, that is, the table has the same size as~$S$,
then~$h$ is a \textit{minimal perfect hash function} for~$S$.
Figure~\ref{fig:minimalperfecthash-ph-mph}(b) illustrates
a~minimal perfect hash function.
Minimal perfect hash functions totally avoid the problem of wasted
space and time.
% For two-column wide figures use % For two-column wide figures use
\begin{figure} \begin{figure}
% Use the relevant command to insert your figure file. % Use the relevant command to insert your figure file.

View File

@ -18,6 +18,19 @@
year = {2000} year = {2000}
} }
@article{gss01,
author = {N. Galli and B. Seybold and K. Simon},
title = {Tetris-Hashing or optimal table compression},
journal = {Discrete Applied Mathematics},
volume = {110},
number = {1},
pages = {41--58},
month = {june},
publisher = {Elsevier Science},
year = {2001}
}
@InProceedings{ss89, @InProceedings{ss89,
author = {P. Schmidt and A. Siegel}, author = {P. Schmidt and A. Siegel},
title = {On aspects of universality and performance for closed hashing}, title = {On aspects of universality and performance for closed hashing},

View File

@ -30,4 +30,7 @@ FHPs e FHPMs e n\~ao geram as fun\c{c}\~oes com complexidade linear.
Al\'em disso, o universo $U$ das chaves \'e restrito a n\'umeros inteiros, o que pode Al\'em disso, o universo $U$ das chaves \'e restrito a n\'umeros inteiros, o que pode
limitar a utiliza\c{c}\~ao na pr\'atica. limitar a utiliza\c{c}\~ao na pr\'atica.
/* Descrever compressao de tabelas */
\cite{gss01}
\cite{bkz05} \cite{bkz05}