stable version

This commit is contained in:
fc_botelho 2005-01-17 17:58:43 +00:00
parent 2e002e78ec
commit eea53e77f0
5 changed files with 212 additions and 78 deletions

245
src/bmz.c
View File

@ -22,8 +22,9 @@ static const char bitmask[8] = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 <<
#define UNSETBIT(array, i) (array[(i) / 8] &= (~(bitmask[(i) % 8]))) #define UNSETBIT(array, i) (array[(i) / 8] &= (~(bitmask[(i) % 8])))
static int bmz_gen_edges(mph_t *mph); static int bmz_gen_edges(mph_t *mph);
static void bmz_traverse_critical_nodes(bmz_mph_data_t *bmz, uint32 v, uint32 * biggest_g_value, uint32 * biggest_edge_value, uint8 * used_edges); static uint8 bmz_traverse_critical_nodes(bmz_mph_data_t *bmz, uint32 v, uint32 * biggest_g_value, uint32 * biggest_edge_value, uint8 * used_edges, uint8 * visited);
static void bmz_traverse_non_critical_nodes(bmz_mph_data_t *bmz, uint8 * used_edges); static uint8 bmz_traverse_critical_nodes_heuristic(bmz_mph_data_t *bmz, uint32 v, uint32 * biggest_g_value, uint32 * biggest_edge_value, uint8 * used_edges, uint8 * visited);
static void bmz_traverse_non_critical_nodes(bmz_mph_data_t *bmz, uint8 * used_edges, uint8 * visited);
mph_t *bmz_mph_new(key_source_t *key_source) mph_t *bmz_mph_new(key_source_t *key_source)
@ -72,12 +73,13 @@ mphf_t *bmz_mph_create(mph_t *mph, float bmz_c)
{ {
mphf_t *mphf = NULL; mphf_t *mphf = NULL;
bmz_mphf_data_t *bmzf = NULL; bmz_mphf_data_t *bmzf = NULL;
uint32 i; uint32 i;
uint32 iterations = 10; uint32 iterations;
uint32 iterations_map = 20;
uint8 *used_edges = NULL; uint8 *used_edges = NULL;
uint32 biggest_g_value = 0; uint8 restart_mapping = 0;
uint32 biggest_edge_value = 1; uint8 * visited = NULL;
DEBUGP("bmz_c: %f\n", bmz_c); DEBUGP("bmz_c: %f\n", bmz_c);
bmz_mph_data_t *bmz = (bmz_mph_data_t *)mph->data; bmz_mph_data_t *bmz = (bmz_mph_data_t *)mph->data;
bmz->m = mph->key_source->nkeys; bmz->m = mph->key_source->nkeys;
@ -89,13 +91,18 @@ mphf_t *bmz_mph_create(mph_t *mph, float bmz_c)
bmz->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*3); bmz->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*3);
for(i = 0; i < 3; ++i) bmz->hashes[i] = NULL; for(i = 0; i < 3; ++i) bmz->hashes[i] = NULL;
// Mapping step do
if (mph->verbosity)
{ {
// Mapping step
uint32 biggest_g_value = 0;
uint32 biggest_edge_value = 1;
iterations = 20;
if (mph->verbosity)
{
fprintf(stderr, "Entering mapping step for mph creation of %u keys with graph sized %u\n", bmz->m, bmz->n); fprintf(stderr, "Entering mapping step for mph creation of %u keys with graph sized %u\n", bmz->m, bmz->n);
} }
while(1) while(1)
{ {
int ok; int ok;
DEBUGP("hash function 1\n"); DEBUGP("hash function 1\n");
bmz->hashes[0] = hash_state_new(bmz->hashfuncs[0], bmz->n); bmz->hashes[0] = hash_state_new(bmz->hashfuncs[0], bmz->n);
@ -118,53 +125,63 @@ mphf_t *bmz_mph_create(mph_t *mph, float bmz_c)
if (iterations == 0) break; if (iterations == 0) break;
} }
else break; else break;
} }
if (iterations == 0) if (iterations == 0)
{ {
graph_destroy(bmz->graph); graph_destroy(bmz->graph);
return NULL; return NULL;
} }
// Ordering step // Ordering step
if (mph->verbosity) if (mph->verbosity)
{ {
fprintf(stderr, "Starting ordering step\n"); fprintf(stderr, "Starting ordering step\n");
} }
graph_obtain_critical_nodes(bmz->graph); graph_obtain_critical_nodes(bmz->graph);
// Searching step // Searching step
if (mph->verbosity) if (mph->verbosity)
{ {
fprintf(stderr, "Starting Searching step.\n"); fprintf(stderr, "Starting Searching step.\n");
fprintf(stderr, "\tTraversing critical vertices.\n"); fprintf(stderr, "\tTraversing critical vertices.\n");
} }
DEBUGP("Searching step\n"); DEBUGP("Searching step\n");
visited = (char *)malloc(bmz->n/8 + 1);
used_edges = (uint8 *)malloc((bmz->m*sizeof(uint8))/8 + 1); memset(visited, 0, bmz->n/8 + 1);
memset(used_edges, 0, bmz->m/8 + 1); used_edges = (uint8 *)malloc(bmz->m/8 + 1);
free(bmz->g); memset(used_edges, 0, bmz->m/8 + 1);
bmz->g = malloc(bmz->n * sizeof(uint32)); free(bmz->g);
assert(bmz->g); bmz->g = malloc(bmz->n * sizeof(uint32));
for (i = 0; i < bmz->n; ++i) bmz->g[i] = UNDEFINED; assert(bmz->g);
for (i = 0; i < bmz->n; ++i) // critical nodes
for (i = 0; i < bmz->n; ++i) // critical nodes {
{ if (graph_node_is_critical(bmz->graph, i) && (!GETBIT(visited,i)))
if (graph_node_is_critical(bmz->graph, i) && (bmz->g[i] == UNDEFINED))
{ {
bmz_traverse_critical_nodes(bmz, i, &biggest_g_value, &biggest_edge_value, used_edges); if(bmz_c > 1.14) restart_mapping = bmz_traverse_critical_nodes(bmz, i, &biggest_g_value, &biggest_edge_value, used_edges, visited);
else restart_mapping = bmz_traverse_critical_nodes_heuristic(bmz, i, &biggest_g_value, &biggest_edge_value, used_edges, visited);
if(restart_mapping) break;
} }
} }
if (mph->verbosity) if(!restart_mapping)
{ {
fprintf(stderr, "\tTraversing non critical vertices.\n"); if (mph->verbosity)
} {
fprintf(stderr, "\tTraversing non critical vertices.\n");
bmz_traverse_non_critical_nodes(bmz, used_edges); // non_critical_nodes }
bmz_traverse_non_critical_nodes(bmz, used_edges, visited); // non_critical_nodes
}
else
{
iterations_map--;
if (mph->verbosity) fprintf(stderr, "Restarting mapping step. %u iterations remaining.\n", iterations_map);
}
free(used_edges);
free(visited);
}while(restart_mapping && iterations_map > 0);
graph_destroy(bmz->graph); graph_destroy(bmz->graph);
free(used_edges);
bmz->graph = NULL; bmz->graph = NULL;
if (iterations_map == 0) return NULL;
mphf = (mphf_t *)malloc(sizeof(mphf_t)); mphf = (mphf_t *)malloc(sizeof(mphf_t));
mphf->algo = mph->algo; mphf->algo = mph->algo;
bmzf = (bmz_mphf_data_t *)malloc(sizeof(bmz_mph_data_t)); bmzf = (bmz_mphf_data_t *)malloc(sizeof(bmz_mph_data_t));
@ -184,19 +201,19 @@ mphf_t *bmz_mph_create(mph_t *mph, float bmz_c)
return mphf; return mphf;
} }
static void bmz_traverse_critical_nodes(bmz_mph_data_t *bmz, uint32 v, uint32 * biggest_g_value, uint32 * biggest_edge_value, uint8 * used_edges) static uint8 bmz_traverse_critical_nodes(bmz_mph_data_t *bmz, uint32 v, uint32 * biggest_g_value, uint32 * biggest_edge_value, uint8 * used_edges, uint8 * visited)
{ {
uint32 next_g; uint32 next_g;
uint32 u; /* Auxiliary vertex */ uint32 u; /* Auxiliary vertex */
uint32 lav; /* lookahead vertex */ uint32 lav; /* lookahead vertex */
uint8 collision; uint8 collision;
vqueue_t * q = vqueue_new((uint32)(0.5*graph_ncritical_nodes(bmz->graph))); vqueue_t * q = vqueue_new((uint32)(0.5*graph_ncritical_nodes(bmz->graph)) + 1);
graph_iterator_t it, it1; graph_iterator_t it, it1;
DEBUGP("Labelling critical vertices\n"); DEBUGP("Labelling critical vertices\n");
bmz->g[v] = (uint32)ceil ((double)(*biggest_edge_value)/2) - 1; bmz->g[v] = (uint32)ceil ((double)(*biggest_edge_value)/2) - 1;
SETBIT(visited, v);
next_g = (uint32)floor((double)(*biggest_edge_value/2)); /* next_g is incremented in the do..while statement*/ next_g = (uint32)floor((double)(*biggest_edge_value/2)); /* next_g is incremented in the do..while statement*/
*biggest_g_value = next_g;
vqueue_insert(q, v); vqueue_insert(q, v);
while(!vqueue_is_empty(q)) while(!vqueue_is_empty(q))
{ {
@ -204,7 +221,7 @@ static void bmz_traverse_critical_nodes(bmz_mph_data_t *bmz, uint32 v, uint32 *
it = graph_neighbors_it(bmz->graph, v); it = graph_neighbors_it(bmz->graph, v);
while ((u = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR) while ((u = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR)
{ {
if (graph_node_is_critical(bmz->graph, u) && (bmz->g[u] == UNDEFINED)) if (graph_node_is_critical(bmz->graph, u) && (!GETBIT(visited,u)))
{ {
collision = 1; collision = 1;
while(collision) // lookahead to resolve collisions while(collision) // lookahead to resolve collisions
@ -214,9 +231,13 @@ static void bmz_traverse_critical_nodes(bmz_mph_data_t *bmz, uint32 v, uint32 *
collision = 0; collision = 0;
while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR) while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
{ {
if (graph_node_is_critical(bmz->graph, lav) && (bmz->g[lav] != UNDEFINED)) if (graph_node_is_critical(bmz->graph, lav) && GETBIT(visited,lav))
{ {
assert(next_g + bmz->g[lav] < bmz->m); if(next_g + bmz->g[lav] >= bmz->m)
{
vqueue_destroy(q);
return 1; // restart mapping step.
}
if (GETBIT(used_edges, next_g + bmz->g[lav])) if (GETBIT(used_edges, next_g + bmz->g[lav]))
{ {
collision = 1; collision = 1;
@ -230,20 +251,115 @@ static void bmz_traverse_critical_nodes(bmz_mph_data_t *bmz, uint32 v, uint32 *
it1 = graph_neighbors_it(bmz->graph, u); it1 = graph_neighbors_it(bmz->graph, u);
while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR) while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
{ {
if (graph_node_is_critical(bmz->graph, lav) && (bmz->g[lav] != UNDEFINED)) if (graph_node_is_critical(bmz->graph, lav) && GETBIT(visited, lav))
{ {
SETBIT(used_edges,next_g + bmz->g[lav]); SETBIT(used_edges,next_g + bmz->g[lav]);
if(next_g + bmz->g[lav] > *biggest_edge_value) *biggest_edge_value = next_g + bmz->g[lav]; if(next_g + bmz->g[lav] > *biggest_edge_value) *biggest_edge_value = next_g + bmz->g[lav];
} }
} }
bmz->g[u] = next_g; // Labelling vertex u. bmz->g[u] = next_g; // Labelling vertex u.
SETBIT(visited,u);
vqueue_insert(q, u); vqueue_insert(q, u);
} }
} }
} }
vqueue_destroy(q); vqueue_destroy(q);
return 0;
}
static uint8 bmz_traverse_critical_nodes_heuristic(bmz_mph_data_t *bmz, uint32 v, uint32 * biggest_g_value, uint32 * biggest_edge_value, uint8 * used_edges, uint8 * visited)
{
uint32 next_g;
uint32 u; /* Auxiliary vertex */
uint32 lav; /* lookahead vertex */
uint8 collision;
uint32 * unused_g_values = NULL;
uint32 unused_g_values_capacity = 0;
uint32 nunused_g_values = 0;
vqueue_t * q = vqueue_new((uint32)(0.5*graph_ncritical_nodes(bmz->graph))+1);
graph_iterator_t it, it1;
DEBUGP("Labelling critical vertices\n");
bmz->g[v] = (uint32)ceil ((double)(*biggest_edge_value)/2) - 1;
SETBIT(visited, v);
next_g = (uint32)floor((double)(*biggest_edge_value/2)); /* next_g is incremented in the do..while statement*/
vqueue_insert(q, v);
while(!vqueue_is_empty(q))
{
v = vqueue_remove(q);
it = graph_neighbors_it(bmz->graph, v);
while ((u = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR)
{
if (graph_node_is_critical(bmz->graph, u) && (!GETBIT(visited,u)))
{
uint32 next_g_index = 0;
collision = 1;
while(collision) // lookahead to resolve collisions
{
if (next_g_index < nunused_g_values)
{
next_g = unused_g_values[next_g_index++];
}
else
{
next_g = *biggest_g_value + 1;
next_g_index = UINT_MAX;
}
it1 = graph_neighbors_it(bmz->graph, u);
collision = 0;
while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
{
if (graph_node_is_critical(bmz->graph, lav) && GETBIT(visited,lav))
{
if(next_g + bmz->g[lav] >= bmz->m)
{
vqueue_destroy(q);
free(unused_g_values);
return 1; // restart mapping step.
}
if (GETBIT(used_edges, next_g + bmz->g[lav]))
{
collision = 1;
break;
}
}
}
if(collision && (next_g > *biggest_g_value)) // saving the current g value stored in next_g.
{
if(nunused_g_values == unused_g_values_capacity)
{
unused_g_values = realloc(unused_g_values, (unused_g_values_capacity + BUFSIZ)*sizeof(uint32));
unused_g_values_capacity += BUFSIZ;
}
unused_g_values[nunused_g_values++] = next_g;
}
if (next_g > *biggest_g_value) *biggest_g_value = next_g;
}
next_g_index--;
if (next_g_index < nunused_g_values) unused_g_values[next_g_index] = unused_g_values[--nunused_g_values];
// Marking used edges...
it1 = graph_neighbors_it(bmz->graph, u);
while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
{
if (graph_node_is_critical(bmz->graph, lav) && GETBIT(visited, lav))
{
SETBIT(used_edges,next_g + bmz->g[lav]);
if(next_g + bmz->g[lav] > *biggest_edge_value) *biggest_edge_value = next_g + bmz->g[lav];
}
}
bmz->g[u] = next_g; // Labelling vertex u.
SETBIT(visited, u);
vqueue_insert(q, u);
}
}
}
vqueue_destroy(q);
free(unused_g_values);
return 0;
} }
static uint32 next_unused_edge(bmz_mph_data_t *bmz, uint8 * used_edges, uint32 unused_edge_index) static uint32 next_unused_edge(bmz_mph_data_t *bmz, uint8 * used_edges, uint32 unused_edge_index)
@ -257,23 +373,24 @@ static uint32 next_unused_edge(bmz_mph_data_t *bmz, uint8 * used_edges, uint32 u
return unused_edge_index; return unused_edge_index;
} }
static void bmz_traverse(bmz_mph_data_t *bmz, uint8 * used_edges, uint32 v, uint32 * unused_edge_index) static void bmz_traverse(bmz_mph_data_t *bmz, uint8 * used_edges, uint32 v, uint32 * unused_edge_index, uint8 * visited)
{ {
graph_iterator_t it = graph_neighbors_it(bmz->graph, v); graph_iterator_t it = graph_neighbors_it(bmz->graph, v);
uint32 neighbor = 0; uint32 neighbor = 0;
while((neighbor = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR) while((neighbor = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR)
{ {
if(GETBIT(visited,neighbor)) continue;
DEBUGP("Visiting neighbor %u\n", neighbor); DEBUGP("Visiting neighbor %u\n", neighbor);
if(bmz->g[neighbor] != UNDEFINED) continue;
*unused_edge_index = next_unused_edge(bmz, used_edges, *unused_edge_index); *unused_edge_index = next_unused_edge(bmz, used_edges, *unused_edge_index);
bmz->g[neighbor] = *unused_edge_index - bmz->g[v]; bmz->g[neighbor] = *unused_edge_index - bmz->g[v];
SETBIT(visited, neighbor);
(*unused_edge_index)++; (*unused_edge_index)++;
bmz_traverse(bmz, used_edges, neighbor, unused_edge_index); bmz_traverse(bmz, used_edges, neighbor, unused_edge_index, visited);
} }
} }
static void bmz_traverse_non_critical_nodes(bmz_mph_data_t *bmz, uint8 * used_edges) static void bmz_traverse_non_critical_nodes(bmz_mph_data_t *bmz, uint8 * used_edges, uint8 * visited)
{ {
uint32 i, v1, v2, unused_edge_index = 0; uint32 i, v1, v2, unused_edge_index = 0;
@ -282,17 +399,19 @@ static void bmz_traverse_non_critical_nodes(bmz_mph_data_t *bmz, uint8 * used_ed
{ {
v1 = graph_vertex_id(bmz->graph, i, 0); v1 = graph_vertex_id(bmz->graph, i, 0);
v2 = graph_vertex_id(bmz->graph, i, 1); v2 = graph_vertex_id(bmz->graph, i, 1);
if((bmz->g[v1] != UNDEFINED && bmz->g[v2] != UNDEFINED) || (bmz->g[v1] == UNDEFINED && bmz->g[v2] == UNDEFINED)) continue; if((GETBIT(visited,v1) && GETBIT(visited,v2)) || (!GETBIT(visited,v1) && !GETBIT(visited,v2))) continue;
if(bmz->g[v1] != UNDEFINED) bmz_traverse(bmz, used_edges, v1, &unused_edge_index); if(GETBIT(visited,v1)) bmz_traverse(bmz, used_edges, v1, &unused_edge_index, visited);
else bmz_traverse(bmz, used_edges, v2, &unused_edge_index); else bmz_traverse(bmz, used_edges, v2, &unused_edge_index, visited);
} }
for(i = 0; i < bmz->n; i++) for(i = 0; i < bmz->n; i++)
{ {
if(bmz->g[i] == UNDEFINED) if(!GETBIT(visited,i))
{ {
bmz->g[i] = 0; bmz->g[i] = 0;
bmz_traverse(bmz, used_edges, i, &unused_edge_index); SETBIT(visited, i);
bmz_traverse(bmz, used_edges, i, &unused_edge_index, visited);
} }
} }

View File

@ -69,18 +69,18 @@ void mph_set_hashfuncs(mph_t *mph, CMPH_HASH *hashfuncs)
return; return;
} }
mphf_t *mph_create(mph_t *mph) mphf_t *mph_create(mph_t *mph, float c)
{ {
mphf_t *mphf = NULL; mphf_t *mphf = NULL;
switch (mph->algo) switch (mph->algo)
{ {
case MPH_CZECH: case MPH_CZECH:
DEBUGP("Creating czech hash\n"); DEBUGP("Creating czech hash\n");
mphf = czech_mph_create(mph, 2.09); mphf = czech_mph_create(mph, c);
break; break;
case MPH_BMZ: /* included -- Fabiano */ case MPH_BMZ: /* included -- Fabiano */
DEBUGP("Creating bmz hash\n"); DEBUGP("Creating bmz hash\n");
mphf = bmz_mph_create(mph, 1.15); mphf = bmz_mph_create(mph, c);
break; break;
default: default:
assert(0); assert(0);

View File

@ -28,7 +28,7 @@ mph_t *mph_new(MPH_ALGO algo, key_source_t *key_source);
void mph_set_hashfuncs(mph_t *mph, CMPH_HASH *hashfuncs); void mph_set_hashfuncs(mph_t *mph, CMPH_HASH *hashfuncs);
void mph_set_verbosity(mph_t *mph, uint32 verbosity); void mph_set_verbosity(mph_t *mph, uint32 verbosity);
void mph_destroy(mph_t *mph); void mph_destroy(mph_t *mph);
mphf_t *mph_create(mph_t *mph); mphf_t *mph_create(mph_t *mph, float c);
/** Hash querying API **/ /** Hash querying API **/
mphf_t *mphf_load(FILE *f); mphf_t *mphf_load(FILE *f);

View File

@ -10,7 +10,7 @@
//#define DEBUG //#define DEBUG
#include "debug.h" #include "debug.h"
static const char bitmask[8] = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 }; static uint8 bitmask[8] = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 };
#define GETBIT(array, i) (array[(i) / 8] & bitmask[(i) % 8]) #define GETBIT(array, i) (array[(i) / 8] & bitmask[(i) % 8])
#define SETBIT(array, i) (array[(i) / 8] |= bitmask[(i) % 8]) #define SETBIT(array, i) (array[(i) / 8] |= bitmask[(i) % 8])
#define UNSETBIT(array, i) (array[(i) / 8] &= (~(bitmask[(i) % 8]))) #define UNSETBIT(array, i) (array[(i) / 8] &= (~(bitmask[(i) % 8])))
@ -52,7 +52,7 @@ graph_t *graph_new(uint32 nnodes, uint32 nedges)
void graph_destroy(graph_t *graph) void graph_destroy(graph_t *graph)
{ {
DEBUGP("Destroying graph\n"); DEBUGP("Destroying graph\n");
free(graph->edges); free(graph->edges);
free(graph->first); free(graph->first);
free(graph->next); free(graph->next);
@ -103,7 +103,7 @@ void graph_add_edge(graph_t *g, uint32 v1, uint32 v2)
static int check_edge(graph_t *g, uint32 e, uint32 v1, uint32 v2) static int check_edge(graph_t *g, uint32 e, uint32 v1, uint32 v2)
{ {
DEBUGP("Checking edge %u %u looking for %u %u\n", g->edges[abs_edge(e, 0)], g->edges[abs_edge(e, 1)], v1, v2); DEBUGP("Checking edge %u %u looking for %u %u\n", g->edges[abs_edge(e, 0)], g->edges[abs_edge(e, 1)], v1, v2);
if (g->edges[abs_edge(e, 0)] == v1 && g->edges[abs_edge(e, 1)] == v2) return 1; if (g->edges[abs_edge(e, 0)] == v1 && g->edges[abs_edge(e, 1)] == v2) return 1;
if (g->edges[abs_edge(e, 0)] == v2 && g->edges[abs_edge(e, 1)] == v1) return 1; if (g->edges[abs_edge(e, 0)] == v2 && g->edges[abs_edge(e, 1)] == v1) return 1;
return 0; return 0;
@ -207,7 +207,7 @@ static void cyclic_del_edge(graph_t *g, uint32 v, char *deleted)
if (!degree1) return; if (!degree1) return;
while(1) while(1)
{ {
DEBUGP("Deleting edge %u (%u->%u)\n", e, g->edges[abs_edge(e, 0)], g->edges[abs_edge(e, 1)]); DEBUGP("Deleting edge %u (%u->%u)\n", e, g->edges[abs_edge(e, 0)], g->edges[abs_edge(e, 1)]);
SETBIT(deleted, abs_edge(e, 0)); SETBIT(deleted, abs_edge(e, 0));
v2 = g->edges[abs_edge(e, 0)]; v2 = g->edges[abs_edge(e, 0)];
@ -217,7 +217,7 @@ static void cyclic_del_edge(graph_t *g, uint32 v, char *deleted)
degree1 = find_degree1_edge(g, v2, deleted, &e); degree1 = find_degree1_edge(g, v2, deleted, &e);
if (degree1) if (degree1)
{ {
DEBUGP("Inspecting vertex %u\n", v2); DEBUGP("Inspecting vertex %u\n", v2);
v1 = v2; v1 = v2;
} }
else break; else break;
@ -240,7 +240,7 @@ int graph_is_cyclic(graph_t *g)
{ {
if (!(GETBIT(deleted, i))) if (!(GETBIT(deleted, i)))
{ {
DEBUGP("Edge %u %u->%u was not deleted\n", i, g->edges[i], g->edges[i + g->nedges]); DEBUGP("Edge %u %u->%u was not deleted\n", i, g->edges[i], g->edges[i + g->nedges]);
free(deleted); free(deleted);
return 1; return 1;
} }
@ -260,8 +260,10 @@ void graph_obtain_critical_nodes(graph_t *g) /* included -- Fabiano*/
uint32 v; uint32 v;
char *deleted = (char *)malloc((g->nedges*sizeof(char))/8+1); char *deleted = (char *)malloc((g->nedges*sizeof(char))/8+1);
memset(deleted, 0, g->nedges/8 + 1); memset(deleted, 0, g->nedges/8 + 1);
free(g->critical_nodes);
g->critical_nodes = (uint8 *)malloc((g->nnodes*sizeof(uint8))/8 + 1); g->critical_nodes = (uint8 *)malloc((g->nnodes*sizeof(uint8))/8 + 1);
g->ncritical_nodes = 0; g->ncritical_nodes = 0;
memset(g->critical_nodes, 0, (g->nnodes*sizeof(uint8))/8 + 1);
DEBUGP("Looking for the 2-core in graph with %u vertices and %u edges\n", g->nnodes, g->nedges); DEBUGP("Looking for the 2-core in graph with %u vertices and %u edges\n", g->nnodes, g->nedges);
for (v = 0; v < g->nnodes; ++v) for (v = 0; v < g->nnodes; ++v)
{ {

View File

@ -12,7 +12,7 @@
void usage(const char *prg) void usage(const char *prg)
{ {
fprintf(stderr, "usage: %s [-v] [-h] [-V] [-k] [-g [-s seed] ] [-m file.mph] [-a algorithm] keysfile\n", prg); fprintf(stderr, "usage: %s [-v] [-h] [-V] [-k nkeys] [-g [-c value][-s seed] ] [-m file.mph] [-a algorithm] keysfile\n", prg);
} }
void usage_long(const char *prg) void usage_long(const char *prg)
{ {
@ -20,6 +20,7 @@ void usage_long(const char *prg)
fprintf(stderr, "usage: %s [-v] [-h] [-V] [-k] [-g [-s seed] ] [-m file.mph] [-a algorithm] keysfile\n", prg); fprintf(stderr, "usage: %s [-v] [-h] [-V] [-k] [-g [-s seed] ] [-m file.mph] [-a algorithm] keysfile\n", prg);
fprintf(stderr, "Minimum perfect hashing tool\n\n"); fprintf(stderr, "Minimum perfect hashing tool\n\n");
fprintf(stderr, " -h\t print this help message\n"); fprintf(stderr, " -h\t print this help message\n");
fprintf(stderr, " -c\t c value that determines the number of vertices in the graph\n");
fprintf(stderr, " -a\t algorithm - valid values are\n"); fprintf(stderr, " -a\t algorithm - valid values are\n");
for (i = 0; i < MPH_COUNT; ++i) fprintf(stderr, " \t * %s\n", mph_names[i]); for (i = 0; i < MPH_COUNT; ++i) fprintf(stderr, " \t * %s\n", mph_names[i]);
fprintf(stderr, " -f\t hash function (may be used multiple times) - valid values are\n"); fprintf(stderr, " -f\t hash function (may be used multiple times) - valid values are\n");
@ -98,6 +99,7 @@ int main(int argc, char **argv)
uint32 nhashes = 0; uint32 nhashes = 0;
uint32 i; uint32 i;
MPH_ALGO mph_algo = MPH_CZECH; MPH_ALGO mph_algo = MPH_CZECH;
float c = 2.09;
mph_t *mph = NULL; mph_t *mph = NULL;
mphf_t *mphf = NULL; mphf_t *mphf = NULL;
@ -105,9 +107,9 @@ int main(int argc, char **argv)
while (1) while (1)
{ {
char c = getopt(argc, argv, "hVvk:a:f:gm:s:"); char ch = getopt(argc, argv, "hVvgc:k:a:f:m:s:");
if (c == -1) break; if (ch == -1) break;
switch (c) switch (ch)
{ {
case 's': case 's':
{ {
@ -119,6 +121,16 @@ int main(int argc, char **argv)
} }
} }
break; break;
case 'c':
{
char *endptr;
c = strtod(optarg, &endptr);
if(*endptr != 0) {
fprintf(stderr, "Invalid c value %s\n", optarg);
exit(1);
}
}
break;
case 'g': case 'g':
generate = 1; generate = 1;
break; break;
@ -229,7 +241,8 @@ int main(int argc, char **argv)
mph = mph_new(mph_algo, &source); mph = mph_new(mph_algo, &source);
if (nhashes) mph_set_hashfuncs(mph, hashes); if (nhashes) mph_set_hashfuncs(mph, hashes);
mph_set_verbosity(mph, verbosity); mph_set_verbosity(mph, verbosity);
mphf = mph_create(mph); if(mph_algo == MPH_BMZ && c >= 2.0) c=1.15;
mphf = mph_create(mph, c);
if (mphf == NULL) if (mphf == NULL)
{ {