external memory based algorithm documentation added

This commit is contained in:
fc_botelho 2006-04-25 16:51:02 +00:00
parent baec893907
commit ef8eb85832
11 changed files with 417 additions and 20 deletions

6
ALGORITHMS.t2t Normal file
View File

@ -0,0 +1,6 @@
----------------------------------------
| [Home index.html] | [CHM chm.html] | [BMZ bmz.html] | [External Memory Based Algorithm brz.html]
----------------------------------------

View File

@ -395,11 +395,9 @@ Again we have:
+ [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], D. Menoti, [N. Ziviani http://www.dcc.ufmg.br/~nivio]. [A New algorithm for constructing minimal perfect hash functions papers/bmz_tr004_04.ps], Technical Report TR004/04, Department of Computer Science, Federal University of Minas Gerais, 2004. + [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], D. Menoti, [N. Ziviani http://www.dcc.ufmg.br/~nivio]. [A New algorithm for constructing minimal perfect hash functions papers/bmz_tr004_04.ps], Technical Report TR004/04, Department of Computer Science, Federal University of Minas Gerais, 2004.
+ [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], Y. Kohayakawa, and [N. Ziviani http://www.dcc.ufmg.br/~nivio]. [A Practical Minimal Perfect Hashing Method papers/bmz_wea2005.ps] (Submitted). + [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], Y. Kohayakawa, and [N. Ziviani http://www.dcc.ufmg.br/~nivio]. [A Practical Minimal Perfect Hashing Method papers/wea05.pdf]. //4th International Workshop on efficient and Experimental Algorithms (WEA05),// Springer-Verlag Lecture Notes in Computer Science, vol. 3505, Santorini Island, Greece, May 2005, 488-500.
---------------------------------------- %!include: ALGORITHMS.t2t
| [Home index.html] | [CHM chm.html] | [BMZ bmz.html]
----------------------------------------
%!include: FOOTER.t2t %!include: FOOTER.t2t

Before

Width:  |  Height:  |  Size: 21 KiB

After

Width:  |  Height:  |  Size: 21 KiB

323
BRZ.t2t Normal file
View File

@ -0,0 +1,323 @@
External Memory Based Algorithm
%!includeconf: CONFIG.t2t
----------------------------------------
==Introduction==
Until now, because of the limitations of current algorithms,
the use of MPHFs is restricted to scenarios where the set of keys being hashed is
relatively small.
However, in many cases it is crucial to deal in an efficient way with very large
sets of keys.
Due to the exponential growth of the Web, the work with huge collections is becoming
a daily task.
For instance, the simple assignment of number identifiers to web pages of a collection
can be a challenging task.
While traditional databases simply cannot handle more traffic once the working
set of URLs does not fit in main memory anymorei[[4 #papers]], the algorithm we propose here to
construct MPHFs can easily scale to billions of entries.
As there are many applications for MPHFs, it is
important to design and implement space and time efficient algorithms for
constructing such functions.
The attractiveness of using MPHFs depends on the following issues:
+ The amount of CPU time required by the algorithms for constructing MPHFs.
+ The space requirements of the algorithms for constructing MPHFs.
+ The amount of CPU time required by a MPHF for each retrieval.
+ The space requirements of the description of the resulting MPHFs to be used at retrieval time.
We present here a novel external memory based algorithm for constructing MPHFs that
are very efficient in the four requirements mentioned previously.
First, the algorithm is linear on the size of keys to construct a MPHF,
which is optimal.
For instance, for a collection of 1 billion URLs
collected from the web, each one 64 characters long on average, the time to construct a
MPHF using a 2.4 gigahertz PC with 500 megabytes of available main memory
is approximately 3 hours.
Second, the algorithm needs a small a priori defined vector of [figs/brz/img23.png] one
byte entries in main memory to construct a MPHF.
For the collection of 1 billion URLs and using [figs/brz/img4.png], the algorithm needs only
5.45 megabytes of internal memory.
Third, the evaluation of the MPHF for each retrieval requires three memory accesses and
the computation of three universal hash functions.
This is not optimal as any MPHF requires at least one memory access and the computation
of two universal hash functions.
Fourth, the description of a MPHF takes a constant number of bits for each key, which is optimal.
For the collection of 1 billion URLs, it needs 8.1 bits for each key,
while the theoretical lower bound is [figs/brz/img24.png] bits per key.
----------------------------------------
==The Algorithm==
The main idea supporting our algorithm is the classical divide and conquer technique.
The algorithm is a two-step external memory based algorithm
that generates a MPHF //h// for a set //S// of //n// keys.
Figure 1 illustrates the two steps of the
algorithm: the partitioning step and the searching step.
| [figs/brz/brz.png]
| **Figure 1:** Main steps of our algorithm.
The partitioning step takes a key set //S// and uses a universal hash
function [figs/brz/img42.png] proposed by Jenkins[[5 #papers]]
to transform each key [figs/brz/img43.png] into an integer [figs/brz/img44.png].
Reducing [figs/brz/img44.png] modulo [figs/brz/img23.png], we partition //S//
into [figs/brz/img23.png] buckets containing at most 256 keys in each bucket (with high
probability).
The searching step generates a MPHF[figs/brz/img46.png] for each bucket //i//, [figs/brz/img47.png].
The resulting MPHF //h(k)//, [figs/brz/img43.png], is given by
| [figs/brz/img49.png]
where [figs/brz/img50.png].
The //i//th entry //offset[i]// of the displacement vector
//offset//, [figs/brz/img47.png], contains the total number
of keys in the buckets from 0 to //i-1//, that is, it gives the interval of the
keys in the hash table addressed by the MPHF[figs/brz/img46.png]. In the following we explain
each step in detail.
----------------------------------------
=== Partitioning step ===
The set //S// of //n// keys is partitioned into [figs/brz/img23.png],
where //b// is a suitable parameter chosen to guarantee
that each bucket has at most 256 keys with high probability
(see [[2 #papers]] for details).
The partitioning step works as follows:
| [figs/brz/img54.png]
| **Figure 2:** Partitioning step.
Statement 1.1 of the **for** loop presented in Figure 2
reads sequentially all the keys of block [figs/brz/img55.png] from disk into an internal area
of size [figs/brz/img8.png].
Statement 1.2 performs an indirect bucket sort of the keys in block [figs/brz/img55.png] and
at the same time updates the entries in the vector //size//.
Let us briefly describe how [figs/brz/img55.png] is partitioned among
the [figs/brz/img23.png] buckets.
We use a local array of [figs/brz/img23.png] counters to store a
count of how many keys from [figs/brz/img55.png] belong to each bucket.
The pointers to the keys in each bucket //i//, [figs/brz/img47.png],
are stored in contiguous positions in an array.
For this we first reserve the required number of entries
in this array of pointers using the information from the array of counters.
Next, we place the pointers to the keys in each bucket into the respective
reserved areas in the array (i.e., we place the pointers to the keys in bucket 0,
followed by the pointers to the keys in bucket 1, and so on).
To find the bucket address of a given key
we use the universal hash function [figs/brz/img44.png][[5 #papers]].
Key //k// goes into bucket //i//, where
| [figs/brz/img57.png] (1)
Figure 3(a) shows a //logical// view of the [figs/brz/img23.png] buckets
generated in the partitioning step.
In reality, the keys belonging to each bucket are distributed among many files,
as depicted in Figure 3(b).
In the example of Figure 3(b), the keys in bucket 0
appear in files 1 and //N//, the keys in bucket 1 appear in files 1, 2
and //N//, and so on.
| [figs/brz/brz-partitioning.png]
| **Figure 3:** Situation of the buckets at the end of the partitioning step: (a) Logical view (b) Physical view.
This scattering of the keys in the buckets could generate a performance
problem because of the potential number of seeks
needed to read the keys in each bucket from the //N// files in disk
during the searching step.
But, as we show in [[2 #papers]], the number of seeks
can be kept small using buffering techniques.
Considering that only the vector //size//, which has [figs/brz/img23.png] one-byte
entries (remember that each bucket has at most 256 keys),
must be maintained in main memory during the searching step,
almost all main memory is available to be used as disk I/O buffer.
The last step is to compute the //offset// vector and dump it to the disk.
We use the vector //size// to compute the
//offset// displacement vector.
The //offset[i]// entry contains the number of keys
in the buckets //0, 1, ..., i-1//.
As //size[i]// stores the number of keys
in bucket //i//, where [figs/brz/img47.png], we have
| [figs/brz/img63.png]
----------------------------------------
=== Searching step ===
The searching step is responsible for generating a MPHF for each
bucket. Figure 4 presents the searching step algorithm.
| [figs/brz/img64.png]
| **Figure 4:** Searching step.
Statement 1 of Figure 4 inserts one key from each file
in a minimum heap //H// of size //N//.
The order relation in //H// is given by the bucket address //i// given by
Eq. (1).
Statement 2 has two important steps.
In statement 2.1, a bucket is read from disk,
as described below.
In statement 2.2, a MPHF is generated for each bucket //i//, as described
in the following.
The description of MPHF[figs/brz/img46.png] is a vector [figs/brz/img66.png] of 8-bit integers.
Finally, statement 2.3 writes the description [figs/brz/img66.png] of MPHF[figs/brz/img46.png] to disk.
----------------------------------------
==== Reading a bucket from disk ====
In this section we present the refinement of statement 2.1 of
Figure 4.
The algorithm to read bucket //i// from disk is presented
in Figure 5.
| [figs/brz/img67.png]
| **Figure 5:** Reading a bucket.
Bucket //i// is distributed among many files and the heap //H// is used to drive a
multiway merge operation.
In Figure 5, statement 1.1 extracts and removes triple
//(i, j, k)// from //H//, where //i// is a minimum value in //H//.
Statement 1.2 inserts key //k// in bucket //i//.
Notice that the //k// in the triple //(i, j, k)// is in fact a pointer to
the first byte of the key that is kept in contiguous positions of an array of characters
(this array containing the keys is initialized during the heap construction
in statement 1 of Figure 4).
Statement 1.3 performs a seek operation in File //j// on disk for the first
read operation and reads sequentially all keys //k// that have the same //i//
and inserts them all in bucket //i//.
Finally, statement 1.4 inserts in //H// the triple //(i, j, x)//,
where //x// is the first key read from File //j// (in statement 1.3)
that does not have the same bucket address as the previous keys.
The number of seek operations on disk performed in statement 1.3 is discussed
in [[2, Section 5.1 #papers]],
where we present a buffering technique that brings down
the time spent with seeks.
----------------------------------------
==== Generating a MPHF for each bucket ====
To the best of our knowledge the [BMZ algorithm bmz.html] we have designed in
our previous works [[1,3 #papers]] is the fastest published algorithm for
constructing MPHFs.
That is why we are using that algorithm as a building block for the
algorithm presented here. In reality, we are using
an optimized version of BMZ (BMZ8) for small set of keys (at most 256 keys).
[Click here to see details about BMZ algorithm bmz.html].
----------------------------------------
==Analysis of the Algorithm==
Analytical results and the complete analysis of the external memory based algorithm
can be found in [[2 #papers]].
----------------------------------------
==Experimental Results==
In this section we present the experimental results.
We start presenting the experimental setup.
We then present experimental results for
the internal memory based algorithm ([the BMZ algorithm bmz.html])
and for our external memory based algorithm.
Finally, we discuss how the amount of internal memory available
affects the runtime of the external memory based algorithm.
----------------------------------------
===The data and the experimental setup===
All experiments were carried out on
a computer running the Linux operating system, version 2.6,
with a 2.4 gigahertz processor and
1 gigabyte of main memory.
In the experiments related to the new
algorithm we limited the main memory in 500 megabytes.
Our data consists of a collection of 1 billion
URLs collected from the Web, each URL 64 characters long on average.
The collection is stored on disk in 60.5 gigabytes.
----------------------------------------
===Performance of the BMZ Algorithm===
[The BMZ algorithm bmz.html] is used for constructing a MPHF for each bucket.
It is a randomized algorithm because it needs to generate a simple random graph
in its first step.
Once the graph is obtained the other two steps are deterministic.
Thus, we can consider the runtime of the algorithm to have
the form [figs/brz/img159.png] for an input of //n// keys,
where [figs/brz/img160.png] is some machine dependent
constant that further depends on the length of the keys and //Z// is a random
variable with geometric distribution with mean [figs/brz/img162.png]. All results
in our experiments were obtained taking //c=1//; the value of //c//, with //c// in //[0.93,1.15]//,
in fact has little influence in the runtime, as shown in [[3 #papers]].
The values chosen for //n// were 1, 2, 4, 8, 16 and 32 million.
Although we have a dataset with 1 billion URLs, on a PC with
1 gigabyte of main memory, the algorithm is able
to handle an input with at most 32 million keys.
This is mainly because of the graph we need to keep in main memory.
The algorithm requires //25n + O(1)// bytes for constructing
a MPHF ([click here to get details about the data structures used by the BMZ algorithm bmz.html]).
In order to estimate the number of trials for each value of //n// we use
a statistical method for determining a suitable sample size (see, e.g., [[6, Chapter 13 #papers]]).
As we obtained different values for each //n//,
we used the maximal value obtained, namely, 300 trials in order to have
a confidence level of 95 %.
Table 1 presents the runtime average for each //n//,
the respective standard deviations, and
the respective confidence intervals given by
the average time [figs/brz/img167.png] the distance from average time
considering a confidence level of 95 %.
Observing the runtime averages one sees that
the algorithm runs in expected linear time,
as shown in [[3 #papers]].
%!include(html): ''TABLEBRZ1.t2t''
| **Table 1:** Internal memory based algorithm: average time in seconds for constructing a MPHF, the standard deviation (SD), and the confidence intervals considering a confidence level of 95 %.
----------------------------------------
==Papers==[papers]
+ [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], D. Menoti, [N. Ziviani http://www.dcc.ufmg.br/~nivio]. [A New algorithm for constructing minimal perfect hash functions papers/bmz_tr004_04.ps], Technical Report TR004/04, Department of Computer Science, Federal University of Minas Gerais, 2004.
+ [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], Y. Kohayakawa, [N. Ziviani http://www.dcc.ufmg.br/~nivio]. [An Approach for Minimal Perfect Hash Functions for Very Large Databases papers/tr06.pdf], Technical Report TR003/06, Department of Computer Science, Federal University of Minas Gerais, 2004.
+ [F. C. Botelho http://www.dcc.ufmg.br/~fbotelho], Y. Kohayakawa, and [N. Ziviani http://www.dcc.ufmg.br/~nivio]. [A Practical Minimal Perfect Hashing Method papers/wea05.pdf]. //4th International Workshop on efficient and Experimental Algorithms (WEA05),// Springer-Verlag Lecture Notes in Computer Science, vol. 3505, Santorini Island, Greece, May 2005, 488-500.
+ [M. Seltzer. Beyond relational databases. ACM Queue, 3(3), April 2005. http://acmqueue.com/modules.php?name=Content&pa=showpage&pid=299]
+ [Bob Jenkins. Algorithm alley: Hash functions. Dr. Dobb's Journal of Software Tools, 22(9), september 1997. http://burtleburtle.net/bob/hash/doobs.html]
+ R. Jain. The art of computer systems performance analysis: techniques for experimental design, measurement, simulation, and modeling. John Wiley, first edition, 1991.
%!include: ALGORITHMS.t2t
%!include: FOOTER.t2t

View File

@ -81,8 +81,6 @@ Again we have:
The Computer Journal, 39(6):547--554, 1996. The Computer Journal, 39(6):547--554, 1996.
---------------------------------------- %!include: ALGORITHMS.t2t
| [Home index.html] | [CHM chm.html] | [BMZ bmz.html]
----------------------------------------
%!include: FOOTER.t2t %!include: FOOTER.t2t

View File

@ -103,8 +103,7 @@ to [figs/img250.png] seconds for [figs/img6.png].
%!include(html): ''TABLE5.t2t'' %!include(html): ''TABLE5.t2t''
| **Table 5:** Time measurements for BMZ tuned algorithm with [figs/img5.png] and [figs/img6.png]. | **Table 5:** Time measurements for BMZ tuned algorithm with [figs/img5.png] and [figs/img6.png].
----------------------------------------
| [Home index.html] | [CHM chm.html] | [BMZ bmz.html] %!include: ALGORITHMS.t2t
----------------------------------------
%!include: FOOTER.t2t %!include: FOOTER.t2t

View File

@ -49,8 +49,6 @@ languages, reserved words in programming languages or interactive systems,
universal resource locations (URLs) in Web search engines, or item sets in universal resource locations (URLs) in Web search engines, or item sets in
data mining techniques. data mining techniques.
---------------------------------------- %!include: ALGORITHMS.t2t
| [Home index.html] | [CHM chm.html] | [BMZ bmz.html]
----------------------------------------
%!include: FOOTER.t2t %!include: FOOTER.t2t

View File

@ -26,8 +26,6 @@ one is executed?
is reset when you call the cmph_config_set_algo function. is reset when you call the cmph_config_set_algo function.
---------------------------------------- %!include: ALGORITHMS.t2t
| [Home index.html] | [CHM chm.html] | [BMZ bmz.html]
----------------------------------------
%!include: FOOTER.t2t %!include: FOOTER.t2t

View File

@ -32,8 +32,6 @@ gperf. The first problem is common in the information retrieval field (e.g.
assigning ids to millions of documents), while the former is usually found in assigning ids to millions of documents), while the former is usually found in
the compiler programming area (detect reserved keywords). the compiler programming area (detect reserved keywords).
---------------------------------------- %!include: ALGORITHMS.t2t
| [Home index.html] | [CHM chm.html] | [BMZ bmz.html]
----------------------------------------
%!include: FOOTER.t2t %!include: FOOTER.t2t

View File

@ -47,6 +47,11 @@ The CMPH Library encapsulates the newest and more efficient algorithms in an eas
A very fast algorithm based on cyclic random graphs to construct minimal A very fast algorithm based on cyclic random graphs to construct minimal
perfect hash functions in linear time. The resulting functions are not order preserving and perfect hash functions in linear time. The resulting functions are not order preserving and
can be stored in only //4cn// bytes, where //c// is between 0.93 and 1.15. can be stored in only //4cn// bytes, where //c// is between 0.93 and 1.15.
%html% - [External Memory Based Algorithm for sets in the order of billion of keys brz.html]
%txt% - BMZ Algorithm.
A very fast external memory based algorithm for constructing minimal perfect hash functions
for sets in the order of billion of keys in linear time. The resulting functions are not order preserving and
can be stored using just 8.1 bits per key. **This algorithm is available just in the CVS for while**.
%html% - [CHM Algorithm chm.html]. %html% - [CHM Algorithm chm.html].
%txt% - CHM Algorithm. %txt% - CHM Algorithm.
An algorithm based on acyclic random graphs to construct minimal An algorithm based on acyclic random graphs to construct minimal

72
TABLEBRZ1.t2t Normal file
View File

@ -0,0 +1,72 @@
<TABLE CELLPADDING=3 BORDER="1" ALIGN="CENTER">
<TR><TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE">
<SPAN CLASS="MATH"><IMG
WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="figs/brz/img5.png"
ALT="$n$"></SPAN> (millions) </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 1 </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 2 </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 4 </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 8 </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 16 </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> 32 </SMALL></TD>
<TD></TD>
</TR>
<TR><TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE">
Average time (s)</SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
WIDTH="64" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="figs/brz/img168.png"
ALT="$6.1 \pm 0.3$"></SPAN> </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="figs/brz/img169.png"
ALT="$12.2 \pm 0.6$"></SPAN> </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="figs/brz/img170.png"
ALT="$25.4 \pm 1.1$"></SPAN> </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
WIDTH="72" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="figs/brz/img171.png"
ALT="$51.4 \pm 2.0$"></SPAN> </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
WIDTH="80" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="figs/brz/img172.png"
ALT="$117.3 \pm 4.4$"></SPAN> </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
WIDTH="80" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="figs/brz/img173.png"
ALT="$262.2 \pm 8.7$"></SPAN></SMALL></TD>
<TD></TD>
</TR>
<TR><TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE">
SD (s) </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="figs/brz/img174.png"
ALT="$2.6$"></SPAN> </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="figs/brz/img175.png"
ALT="$5.4$"></SPAN> </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
WIDTH="24" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="figs/brz/img176.png"
ALT="$9.8$"></SPAN> </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="figs/brz/img177.png"
ALT="$17.6$"></SPAN> </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="figs/brz/img178.png"
ALT="$37.3$"></SPAN> </SMALL></TD>
<TD ALIGN="CENTER"><SMALL CLASS="SCRIPTSIZE"> <SPAN CLASS="MATH"><IMG
WIDTH="32" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="figs/brz/img179.png"
ALT="$76.3$"></SPAN> </SMALL></TD>
<TD></TD>
</TR>
</TABLE>

View File

@ -1,5 +1,6 @@
txt2tags -t html --mask-email -i README.t2t -o index.html txt2tags -t html --mask-email -i README.t2t -o index.html
txt2tags -t html -i BMZ.t2t -o bmz.html txt2tags -t html -i BMZ.t2t -o bmz.html
txt2tags -t html -i BRZ.t2t -o brz.html
txt2tags -t html -i CHM.t2t -o chm.html txt2tags -t html -i CHM.t2t -o chm.html
txt2tags -t html -i COMPARISON.t2t -o comparison.html txt2tags -t html -i COMPARISON.t2t -o comparison.html
txt2tags -t html -i GPERF.t2t -o gperf.html txt2tags -t html -i GPERF.t2t -o gperf.html
@ -8,6 +9,7 @@ txt2tags -t html -i CONCEPTS.t2t -o concepts.html
txt2tags -t txt --mask-email -i README.t2t -o README txt2tags -t txt --mask-email -i README.t2t -o README
txt2tags -t txt -i BMZ.t2t -o BMZ txt2tags -t txt -i BMZ.t2t -o BMZ
txt2tags -t txt -i BRZ.t2t -o BRZ
txt2tags -t txt -i CHM.t2t -o CHM txt2tags -t txt -i CHM.t2t -o CHM
txt2tags -t txt -i COMPARISON.t2t -o COMPARISON txt2tags -t txt -i COMPARISON.t2t -o COMPARISON
txt2tags -t txt -i GPERF.t2t -o GPERF txt2tags -t txt -i GPERF.t2t -o GPERF