#include "graph.h" #include "fch.h" #include "fch_structs.h" #include "bmz8.h" #include "bmz8_structs.h" #include "brz.h" #include "cmph_structs.h" #include "brz_structs.h" #include "buffer_manager.h" #include "cmph.h" #include "hash.h" #include "bitbool.h" #include #include #include #include #include #define MAX_BUCKET_SIZE 255 //#define DEBUG #include "debug.h" static int brz_gen_mphf(cmph_config_t *mph); static cmph_uint32 brz_min_index(cmph_uint32 * vector, cmph_uint32 n); static void brz_destroy_keys_vd(cmph_uint8 ** keys_vd, cmph_uint32 nkeys); static char * brz_copy_partial_fch_mphf(brz_config_data_t *brz, fch_data_t * fchf, cmph_uint32 index, cmph_uint32 *buflen); static char * brz_copy_partial_bmz8_mphf(brz_config_data_t *brz, bmz8_data_t * bmzf, cmph_uint32 index, cmph_uint32 *buflen); brz_config_data_t *brz_config_new() { brz_config_data_t *brz = NULL; brz = (brz_config_data_t *)malloc(sizeof(brz_config_data_t)); brz->algo = CMPH_FCH; brz->b = 128; brz->hashfuncs[0] = CMPH_HASH_JENKINS; brz->hashfuncs[1] = CMPH_HASH_JENKINS; brz->hashfuncs[2] = CMPH_HASH_JENKINS; brz->size = NULL; brz->offset = NULL; brz->g = NULL; brz->h1 = NULL; brz->h2 = NULL; brz->h0 = NULL; brz->memory_availability = 1024*1024; brz->tmp_dir = (cmph_uint8 *)calloc((size_t)10, sizeof(cmph_uint8)); brz->mphf_fd = NULL; strcpy((char *)(brz->tmp_dir), "/var/tmp/"); assert(brz); return brz; } void brz_config_destroy(cmph_config_t *mph) { brz_config_data_t *data = (brz_config_data_t *)mph->data; free(data->tmp_dir); DEBUGP("Destroying algorithm dependent data\n"); free(data); } void brz_config_set_hashfuncs(cmph_config_t *mph, CMPH_HASH *hashfuncs) { brz_config_data_t *brz = (brz_config_data_t *)mph->data; CMPH_HASH *hashptr = hashfuncs; cmph_uint32 i = 0; while(*hashptr != CMPH_HASH_COUNT) { if (i >= 3) break; //brz only uses three hash functions brz->hashfuncs[i] = *hashptr; ++i, ++hashptr; } } void brz_config_set_memory_availability(cmph_config_t *mph, cmph_uint32 memory_availability) { brz_config_data_t *brz = (brz_config_data_t *)mph->data; if(memory_availability > 0) brz->memory_availability = memory_availability*1024*1024; } void brz_config_set_tmp_dir(cmph_config_t *mph, cmph_uint8 *tmp_dir) { brz_config_data_t *brz = (brz_config_data_t *)mph->data; if(tmp_dir) { cmph_uint32 len = strlen((char *)tmp_dir); free(brz->tmp_dir); if(tmp_dir[len-1] != '/') { brz->tmp_dir = (cmph_uint8 *)calloc((size_t)len+2, sizeof(cmph_uint8)); sprintf((char *)(brz->tmp_dir), "%s/", (char *)tmp_dir); } else { brz->tmp_dir = (cmph_uint8 *)calloc((size_t)len+1, sizeof(cmph_uint8)); sprintf((char *)(brz->tmp_dir), "%s", (char *)tmp_dir); } } } void brz_config_set_mphf_fd(cmph_config_t *mph, FILE *mphf_fd) { brz_config_data_t *brz = (brz_config_data_t *)mph->data; brz->mphf_fd = mphf_fd; assert(brz->mphf_fd); } void brz_config_set_b(cmph_config_t *mph, cmph_uint32 b) { brz_config_data_t *brz = (brz_config_data_t *)mph->data; brz->b = b; } void brz_config_set_algo(cmph_config_t *mph, CMPH_ALGO algo) { if (algo == CMPH_BMZ8 || algo == CMPH_FCH) // supported algorithms { brz_config_data_t *brz = (brz_config_data_t *)mph->data; brz->algo = algo; } } cmph_t *brz_new(cmph_config_t *mph, double c) { cmph_t *mphf = NULL; brz_data_t *brzf = NULL; cmph_uint32 i; cmph_uint32 iterations = 20; DEBUGP("c: %f\n", c); brz_config_data_t *brz = (brz_config_data_t *)mph->data; switch(brz->algo) // validating restrictions over parameter c. { case CMPH_BMZ8: if (c == 0 || c >= 2.0) c = 1; break; case CMPH_FCH: if (c <= 2.0) c = 2.6; break; default: assert(0); } brz->c = c; brz->m = mph->key_source->nkeys; DEBUGP("m: %u\n", brz->m); brz->k = (cmph_uint32)ceil(brz->m/((double)brz->b)); DEBUGP("k: %u\n", brz->k); brz->size = (cmph_uint8 *) calloc((size_t)brz->k, sizeof(cmph_uint8)); // Clustering the keys by graph id. if (mph->verbosity) { fprintf(stderr, "Partioning the set of keys.\n"); } while(1) { int ok; DEBUGP("hash function 3\n"); brz->h0 = hash_state_new(brz->hashfuncs[2], brz->k); DEBUGP("Generating graphs\n"); ok = brz_gen_mphf(mph); if (!ok) { --iterations; hash_state_destroy(brz->h0); brz->h0 = NULL; DEBUGP("%u iterations remaining to create the graphs in a external file\n", iterations); if (mph->verbosity) { fprintf(stderr, "Failure: A graph with more than 255 keys was created - %u iterations remaining\n", iterations); } if (iterations == 0) break; } else break; } if (iterations == 0) { DEBUGP("Graphs with more than 255 keys were created in all 20 iterations\n"); free(brz->size); return NULL; } DEBUGP("Graphs generated\n"); brz->offset = (cmph_uint32 *)calloc((size_t)brz->k, sizeof(cmph_uint32)); for (i = 1; i < brz->k; ++i) { brz->offset[i] = brz->size[i-1] + brz->offset[i-1]; } // Generating a mphf mphf = (cmph_t *)malloc(sizeof(cmph_t)); mphf->algo = mph->algo; brzf = (brz_data_t *)malloc(sizeof(brz_data_t)); brzf->g = brz->g; brz->g = NULL; //transfer memory ownership brzf->h1 = brz->h1; brz->h1 = NULL; //transfer memory ownership brzf->h2 = brz->h2; brz->h2 = NULL; //transfer memory ownership brzf->h0 = brz->h0; brz->h0 = NULL; //transfer memory ownership brzf->size = brz->size; brz->size = NULL; //transfer memory ownership brzf->offset = brz->offset; brz->offset = NULL; //transfer memory ownership brzf->k = brz->k; brzf->c = brz->c; brzf->m = brz->m; brzf->algo = brz->algo; mphf->data = brzf; mphf->size = brz->m; DEBUGP("Successfully generated minimal perfect hash\n"); if (mph->verbosity) { fprintf(stderr, "Successfully generated minimal perfect hash function\n"); } return mphf; } static int brz_gen_mphf(cmph_config_t *mph) { cmph_uint32 i, e, error; brz_config_data_t *brz = (brz_config_data_t *)mph->data; cmph_uint32 memory_usage = 0; cmph_uint32 nkeys_in_buffer = 0; cmph_uint8 *buffer = (cmph_uint8 *)malloc((size_t)brz->memory_availability); cmph_uint32 *buckets_size = (cmph_uint32 *)calloc((size_t)brz->k, sizeof(cmph_uint32)); cmph_uint32 *keys_index = NULL; cmph_uint8 **buffer_merge = NULL; cmph_uint32 *buffer_h0 = NULL; cmph_uint32 nflushes = 0; cmph_uint32 h0; FILE * tmp_fd = NULL; buffer_manager_t * buff_manager = NULL; char *filename = NULL; char *key = NULL; cmph_uint32 keylen; cmph_uint32 cur_bucket = 0; cmph_uint8 nkeys_vd = 0; cmph_uint8 ** keys_vd = NULL; mph->key_source->rewind(mph->key_source->data); DEBUGP("Generating graphs from %u keys\n", brz->m); // Partitioning for (e = 0; e < brz->m; ++e) { mph->key_source->read(mph->key_source->data, &key, &keylen); /* Buffers management */ if (memory_usage + keylen + sizeof(keylen) > brz->memory_availability) // flush buffers { if(mph->verbosity) { fprintf(stderr, "Flushing %u\n", nkeys_in_buffer); } cmph_uint32 value = buckets_size[0]; cmph_uint32 sum = 0; cmph_uint32 keylen1 = 0; buckets_size[0] = 0; for(i = 1; i < brz->k; i++) { if(buckets_size[i] == 0) continue; sum += value; value = buckets_size[i]; buckets_size[i] = sum; } memory_usage = 0; keys_index = (cmph_uint32 *)calloc((size_t)nkeys_in_buffer, sizeof(cmph_uint32)); for(i = 0; i < nkeys_in_buffer; i++) { memcpy(&keylen1, buffer + memory_usage, sizeof(keylen1)); h0 = hash(brz->h0, (char *)(buffer + memory_usage + sizeof(keylen1)), keylen1) % brz->k; keys_index[buckets_size[h0]] = memory_usage; buckets_size[h0]++; memory_usage += keylen1 + sizeof(keylen1); } filename = (char *)calloc(strlen((char *)(brz->tmp_dir)) + 11, sizeof(char)); sprintf(filename, "%s%u.cmph",brz->tmp_dir, nflushes); tmp_fd = fopen(filename, "wb"); free(filename); filename = NULL; for(i = 0; i < nkeys_in_buffer; i++) { memcpy(&keylen1, buffer + keys_index[i], sizeof(keylen1)); fwrite(buffer + keys_index[i], (size_t)1, keylen1 + sizeof(keylen1), tmp_fd); } nkeys_in_buffer = 0; memory_usage = 0; memset((void *)buckets_size, 0, brz->k*sizeof(cmph_uint32)); nflushes++; free(keys_index); fclose(tmp_fd); } memcpy(buffer + memory_usage, &keylen, sizeof(keylen)); memcpy(buffer + memory_usage + sizeof(keylen), key, (size_t)keylen); memory_usage += keylen + sizeof(keylen); h0 = hash(brz->h0, key, keylen) % brz->k; if ((brz->size[h0] == MAX_BUCKET_SIZE) || (brz->algo == CMPH_BMZ8 && ((brz->c >= 1.0) && (cmph_uint8)(brz->c * brz->size[h0]) < brz->size[h0]))) { free(buffer); free(buckets_size); return 0; } brz->size[h0] = brz->size[h0] + 1; buckets_size[h0] ++; nkeys_in_buffer++; mph->key_source->dispose(mph->key_source->data, key, keylen); } if (memory_usage != 0) // flush buffers { if(mph->verbosity) { fprintf(stderr, "Flushing %u\n", nkeys_in_buffer); } cmph_uint32 value = buckets_size[0]; cmph_uint32 sum = 0; cmph_uint32 keylen1 = 0; buckets_size[0] = 0; for(i = 1; i < brz->k; i++) { if(buckets_size[i] == 0) continue; sum += value; value = buckets_size[i]; buckets_size[i] = sum; } memory_usage = 0; keys_index = (cmph_uint32 *)calloc((size_t)nkeys_in_buffer, sizeof(cmph_uint32)); for(i = 0; i < nkeys_in_buffer; i++) { memcpy(&keylen1, buffer + memory_usage, sizeof(keylen1)); h0 = hash(brz->h0, (char *)(buffer + memory_usage + sizeof(keylen1)), keylen1) % brz->k; keys_index[buckets_size[h0]] = memory_usage; buckets_size[h0]++; memory_usage += keylen1 + sizeof(keylen1); } filename = (char *)calloc(strlen((char *)(brz->tmp_dir)) + 11, sizeof(char)); sprintf(filename, "%s%u.cmph",brz->tmp_dir, nflushes); tmp_fd = fopen(filename, "wb"); free(filename); filename = NULL; for(i = 0; i < nkeys_in_buffer; i++) { memcpy(&keylen1, buffer + keys_index[i], sizeof(keylen1)); fwrite(buffer + keys_index[i], (size_t)1, keylen1 + sizeof(keylen1), tmp_fd); } nkeys_in_buffer = 0; memory_usage = 0; memset((void *)buckets_size, 0, brz->k*sizeof(cmph_uint32)); nflushes++; free(keys_index); fclose(tmp_fd); } free(buffer); free(buckets_size); if(nflushes > 1024) return 0; // Too many files generated. // mphf generation if(mph->verbosity) { fprintf(stderr, "\nMPHF generation \n"); } /* Starting to dump to disk the resultant MPHF: __cmph_dump function */ fwrite(cmph_names[CMPH_BRZ], (size_t)(strlen(cmph_names[CMPH_BRZ]) + 1), (size_t)1, brz->mphf_fd); fwrite(&(brz->m), sizeof(brz->m), (size_t)1, brz->mphf_fd); fwrite(&(brz->c), sizeof(double), (size_t)1, brz->mphf_fd); fwrite(&(brz->algo), sizeof(brz->algo), (size_t)1, brz->mphf_fd); fwrite(&(brz->k), sizeof(cmph_uint32), (size_t)1, brz->mphf_fd); // number of MPHFs fwrite(brz->size, sizeof(cmph_uint8)*(brz->k), (size_t)1, brz->mphf_fd); //tmp_fds = (FILE **)calloc(nflushes, sizeof(FILE *)); buff_manager = buffer_manager_new(brz->memory_availability, nflushes); buffer_merge = (cmph_uint8 **)calloc((size_t)nflushes, sizeof(cmph_uint8 *)); buffer_h0 = (cmph_uint32 *)calloc((size_t)nflushes, sizeof(cmph_uint32)); memory_usage = 0; for(i = 0; i < nflushes; i++) { filename = (char *)calloc(strlen((char *)(brz->tmp_dir)) + 11, sizeof(char)); sprintf(filename, "%s%u.cmph",brz->tmp_dir, i); buffer_manager_open(buff_manager, i, filename); free(filename); filename = NULL; key = (char *)buffer_manager_read_key(buff_manager, i, &keylen); h0 = hash(brz->h0, key+sizeof(keylen), keylen) % brz->k; buffer_h0[i] = h0; buffer_merge[i] = (cmph_uint8 *)key; key = NULL; //transfer memory ownership } e = 0; keys_vd = (cmph_uint8 **)calloc((size_t)MAX_BUCKET_SIZE, sizeof(cmph_uint8 *)); nkeys_vd = 0; error = 0; while(e < brz->m) { i = brz_min_index(buffer_h0, nflushes); cur_bucket = buffer_h0[i]; key = (char *)buffer_manager_read_key(buff_manager, i, &keylen); if(key) { while(key) { //keylen = strlen(key); h0 = hash(brz->h0, key+sizeof(keylen), keylen) % brz->k; if (h0 != buffer_h0[i]) break; keys_vd[nkeys_vd++] = (cmph_uint8 *)key; key = NULL; //transfer memory ownership e++; key = (char *)buffer_manager_read_key(buff_manager, i, &keylen); } if (key) { assert(nkeys_vd < brz->size[cur_bucket]); keys_vd[nkeys_vd++] = buffer_merge[i]; buffer_merge[i] = NULL; //transfer memory ownership e++; buffer_h0[i] = h0; buffer_merge[i] = (cmph_uint8 *)key; } } if(!key) { assert(nkeys_vd < brz->size[cur_bucket]); keys_vd[nkeys_vd++] = buffer_merge[i]; buffer_merge[i] = NULL; //transfer memory ownership e++; buffer_h0[i] = UINT_MAX; } if(nkeys_vd == brz->size[cur_bucket]) // Generating mphf for each bucket. { cmph_io_adapter_t *source = NULL; cmph_config_t *config = NULL; cmph_t *mphf_tmp = NULL; char *bufmphf = NULL; cmph_uint32 buflenmphf = 0; // Source of keys source = cmph_io_byte_vector_adapter(keys_vd, (cmph_uint32)nkeys_vd); config = cmph_config_new(source); cmph_config_set_algo(config, brz->algo); //cmph_config_set_algo(config, CMPH_BMZ8); cmph_config_set_graphsize(config, brz->c); mphf_tmp = cmph_new(config); if (mphf_tmp == NULL) { if(mph->verbosity) fprintf(stderr, "ERROR: Can't generate MPHF for bucket %u out of %u\n", cur_bucket + 1, brz->k); error = 1; cmph_config_destroy(config); brz_destroy_keys_vd(keys_vd, nkeys_vd); cmph_io_byte_vector_adapter_destroy(source); break; } if(mph->verbosity) { if (cur_bucket % 1000 == 0) { fprintf(stderr, "MPHF for bucket %u out of %u was generated.\n", cur_bucket + 1, brz->k); } } switch(brz->algo) { case CMPH_FCH: { fch_data_t * fchf = NULL; fchf = (fch_data_t *)mphf_tmp->data; bufmphf = brz_copy_partial_fch_mphf(brz, fchf, cur_bucket, &buflenmphf); } break; case CMPH_BMZ8: { bmz8_data_t * bmzf = NULL; bmzf = (bmz8_data_t *)mphf_tmp->data; bufmphf = brz_copy_partial_bmz8_mphf(brz, bmzf, cur_bucket, &buflenmphf); } break; default: assert(0); } fwrite(bufmphf, (size_t)buflenmphf, (size_t)1, brz->mphf_fd); free(bufmphf); bufmphf = NULL; cmph_config_destroy(config); brz_destroy_keys_vd(keys_vd, nkeys_vd); cmph_destroy(mphf_tmp); cmph_io_byte_vector_adapter_destroy(source); nkeys_vd = 0; } } buffer_manager_destroy(buff_manager); free(keys_vd); free(buffer_merge); free(buffer_h0); if (error) return 0; return 1; } static cmph_uint32 brz_min_index(cmph_uint32 * vector, cmph_uint32 n) { cmph_uint32 i, min_index = 0; for(i = 1; i < n; i++) { if(vector[i] < vector[min_index]) min_index = i; } return min_index; } static void brz_destroy_keys_vd(cmph_uint8 ** keys_vd, cmph_uint32 nkeys) { cmph_uint8 i; for(i = 0; i < nkeys; i++) { free(keys_vd[i]); keys_vd[i] = NULL;} } static char * brz_copy_partial_fch_mphf(brz_config_data_t *brz, fch_data_t * fchf, cmph_uint32 index, cmph_uint32 *buflen) { cmph_uint32 i = 0; cmph_uint32 buflenh1 = 0; cmph_uint32 buflenh2 = 0; char * bufh1 = NULL; char * bufh2 = NULL; char * buf = NULL; cmph_uint32 n = fchf->b;//brz->size[index]; hash_state_dump(fchf->h1, &bufh1, &buflenh1); hash_state_dump(fchf->h2, &bufh2, &buflenh2); *buflen = buflenh1 + buflenh2 + n + 2*sizeof(cmph_uint32); buf = (char *)malloc((size_t)(*buflen)); memcpy(buf, &buflenh1, sizeof(cmph_uint32)); memcpy(buf+sizeof(cmph_uint32), bufh1, (size_t)buflenh1); memcpy(buf+sizeof(cmph_uint32)+buflenh1, &buflenh2, sizeof(cmph_uint32)); memcpy(buf+2*sizeof(cmph_uint32)+buflenh1, bufh2, (size_t)buflenh2); for (i = 0; i < n; i++) memcpy(buf+2*sizeof(cmph_uint32)+buflenh1+buflenh2+i,(fchf->g + i), (size_t)1); free(bufh1); free(bufh2); return buf; } static char * brz_copy_partial_bmz8_mphf(brz_config_data_t *brz, bmz8_data_t * bmzf, cmph_uint32 index, cmph_uint32 *buflen) { cmph_uint32 buflenh1 = 0; cmph_uint32 buflenh2 = 0; char * bufh1 = NULL; char * bufh2 = NULL; char * buf = NULL; cmph_uint32 n = ceil(brz->c * brz->size[index]); hash_state_dump(bmzf->hashes[0], &bufh1, &buflenh1); hash_state_dump(bmzf->hashes[1], &bufh2, &buflenh2); *buflen = buflenh1 + buflenh2 + n + 2*sizeof(cmph_uint32); buf = (char *)malloc((size_t)(*buflen)); memcpy(buf, &buflenh1, sizeof(cmph_uint32)); memcpy(buf+sizeof(cmph_uint32), bufh1, (size_t)buflenh1); memcpy(buf+sizeof(cmph_uint32)+buflenh1, &buflenh2, sizeof(cmph_uint32)); memcpy(buf+2*sizeof(cmph_uint32)+buflenh1, bufh2, (size_t)buflenh2); memcpy(buf+2*sizeof(cmph_uint32)+buflenh1+buflenh2,bmzf->g, (size_t)n); free(bufh1); free(bufh2); return buf; } int brz_dump(cmph_t *mphf, FILE *fd) { brz_data_t *data = (brz_data_t *)mphf->data; char *buf = NULL; cmph_uint32 buflen; DEBUGP("Dumping brzf\n"); // The initial part of the MPHF have already been dumped to disk during construction // Dumping h0 hash_state_dump(data->h0, &buf, &buflen); DEBUGP("Dumping hash state with %u bytes to disk\n", buflen); fwrite(&buflen, sizeof(cmph_uint32), (size_t)1, fd); fwrite(buf, (size_t)buflen, (size_t)1, fd); free(buf); // Dumping m and the vector offset. fwrite(&(data->m), sizeof(cmph_uint32), (size_t)1, fd); fwrite(data->offset, sizeof(cmph_uint32)*(data->k), (size_t)1, fd); return 1; } void brz_load(FILE *f, cmph_t *mphf) { char *buf = NULL; cmph_uint32 buflen; cmph_uint32 i, n; brz_data_t *brz = (brz_data_t *)malloc(sizeof(brz_data_t)); DEBUGP("Loading brz mphf\n"); mphf->data = brz; fread(&(brz->c), sizeof(double), (size_t)1, f); fread(&(brz->algo), sizeof(brz->algo), (size_t)1, f); // Reading algo. fread(&(brz->k), sizeof(cmph_uint32), (size_t)1, f); brz->size = (cmph_uint8 *) malloc(sizeof(cmph_uint8)*brz->k); fread(brz->size, sizeof(cmph_uint8)*(brz->k), (size_t)1, f); brz->h1 = (hash_state_t **)malloc(sizeof(hash_state_t *)*brz->k); brz->h2 = (hash_state_t **)malloc(sizeof(hash_state_t *)*brz->k); brz->g = (cmph_uint8 **) calloc((size_t)brz->k, sizeof(cmph_uint8 *)); DEBUGP("Reading c = %f k = %u algo = %u \n", brz->c, brz->k, brz->algo); //loading h_i1, h_i2 and g_i. for(i = 0; i < brz->k; i++) { // h1 fread(&buflen, sizeof(cmph_uint32), (size_t)1, f); DEBUGP("Hash state 1 has %u bytes\n", buflen); buf = (char *)malloc((size_t)buflen); fread(buf, (size_t)buflen, (size_t)1, f); brz->h1[i] = hash_state_load(buf, buflen); free(buf); //h2 fread(&buflen, sizeof(cmph_uint32), (size_t)1, f); DEBUGP("Hash state 2 has %u bytes\n", buflen); buf = (char *)malloc((size_t)buflen); fread(buf, (size_t)buflen, (size_t)1, f); brz->h2[i] = hash_state_load(buf, buflen); free(buf); switch(brz->algo) { case CMPH_FCH: n = fch_calc_b(brz->c, brz->size[i]); break; case CMPH_BMZ8: n = ceil(brz->c * brz->size[i]); break; default: assert(0); } DEBUGP("g_i has %u bytes\n", n); brz->g[i] = (cmph_uint8 *)calloc((size_t)n, sizeof(cmph_uint8)); fread(brz->g[i], sizeof(cmph_uint8)*n, (size_t)1, f); } //loading h0 fread(&buflen, sizeof(cmph_uint32), (size_t)1, f); DEBUGP("Hash state has %u bytes\n", buflen); buf = (char *)malloc((size_t)buflen); fread(buf, (size_t)buflen, (size_t)1, f); brz->h0 = hash_state_load(buf, buflen); free(buf); //loading c, m, and the vector offset. fread(&(brz->m), sizeof(cmph_uint32), (size_t)1, f); brz->offset = (cmph_uint32 *)malloc(sizeof(cmph_uint32)*brz->k); fread(brz->offset, sizeof(cmph_uint32)*(brz->k), (size_t)1, f); return; } static cmph_uint32 brz_bmz8_search(brz_data_t *brz, const char *key, cmph_uint32 keylen, cmph_uint32 * fingerprint) { register cmph_uint32 h0; hash_vector(brz->h0, key, keylen, fingerprint); h0 = fingerprint[2] % brz->k; register cmph_uint32 m = brz->size[h0]; register cmph_uint32 n = ceil(brz->c * m); register cmph_uint32 h1 = hash(brz->h1[h0], key, keylen) % n; register cmph_uint32 h2 = hash(brz->h2[h0], key, keylen) % n; register cmph_uint8 mphf_bucket; if (h1 == h2 && ++h2 >= n) h2 = 0; mphf_bucket = brz->g[h0][h1] + brz->g[h0][h2]; DEBUGP("key: %s h1: %u h2: %u h0: %u\n", key, h1, h2, h0); DEBUGP("key: %s g[h1]: %u g[h2]: %u offset[h0]: %u edges: %u\n", key, brz->g[h0][h1], brz->g[h0][h2], brz->offset[h0], brz->m); DEBUGP("Address: %u\n", mphf_bucket + brz->offset[h0]); return (mphf_bucket + brz->offset[h0]); } static cmph_uint32 brz_fch_search(brz_data_t *brz, const char *key, cmph_uint32 keylen, cmph_uint32 * fingerprint) { register cmph_uint32 h0; hash_vector(brz->h0, key, keylen, fingerprint); h0 = fingerprint[2] % brz->k; register cmph_uint32 m = brz->size[h0]; register cmph_uint32 b = fch_calc_b(brz->c, m); register double p1 = fch_calc_p1(m); register double p2 = fch_calc_p2(b); register cmph_uint32 h1 = hash(brz->h1[h0], key, keylen) % m; register cmph_uint32 h2 = hash(brz->h2[h0], key, keylen) % m; register cmph_uint8 mphf_bucket = 0; h1 = mixh10h11h12(b, p1, p2, h1); mphf_bucket = (h2 + brz->g[h0][h1]) % m; return (mphf_bucket + brz->offset[h0]); } cmph_uint32 brz_search(cmph_t *mphf, const char *key, cmph_uint32 keylen) { brz_data_t *brz = mphf->data; cmph_uint32 fingerprint[3]; switch(brz->algo) { case CMPH_FCH: return brz_fch_search(brz, key, keylen, fingerprint); case CMPH_BMZ8: return brz_bmz8_search(brz, key, keylen, fingerprint); default: assert(0); } return 0; } void brz_destroy(cmph_t *mphf) { cmph_uint32 i; brz_data_t *data = (brz_data_t *)mphf->data; if(data->g) { for(i = 0; i < data->k; i++) { free(data->g[i]); hash_state_destroy(data->h1[i]); hash_state_destroy(data->h2[i]); } free(data->g); free(data->h1); free(data->h2); } hash_state_destroy(data->h0); free(data->size); free(data->offset); free(data); free(mphf); } /** \fn void brz_pack(cmph_t *mphf, void *packed_mphf); * \brief Support the ability to pack a perfect hash function into a preallocated contiguous memory space pointed by packed_mphf. * \param mphf pointer to the resulting mphf * \param packed_mphf pointer to the contiguous memory area used to store the resulting mphf. The size of packed_mphf must be at least cmph_packed_size() */ void brz_pack(cmph_t *mphf, void *packed_mphf) { brz_data_t *data = (brz_data_t *)mphf->data; cmph_uint8 * ptr = packed_mphf; cmph_uint32 i,n; // packing internal algo type memcpy(ptr, &(data->algo), sizeof(data->algo)); ptr += sizeof(data->algo); // packing h0 type CMPH_HASH h0_type = hash_get_type(data->h0); memcpy(ptr, &h0_type, sizeof(h0_type)); ptr += sizeof(h0_type); // packing h0 hash_state_pack(data->h0, ptr); ptr += hash_state_packed_size(h0_type); // packing k memcpy(ptr, &(data->k), sizeof(data->k)); ptr += sizeof(data->k); // packing c *((cmph_uint64 *)ptr) = (cmph_uint64)data->c; ptr += sizeof(data->c); // packing h1 type CMPH_HASH h1_type = hash_get_type(data->h1[0]); memcpy(ptr, &h1_type, sizeof(h1_type)); ptr += sizeof(h1_type); // packing h2 type CMPH_HASH h2_type = hash_get_type(data->h2[0]); memcpy(ptr, &h2_type, sizeof(h2_type)); ptr += sizeof(h2_type); // packing size memcpy(ptr, data->size, sizeof(cmph_uint8)*data->k); ptr += data->k; // packing offset memcpy(ptr, data->offset, sizeof(cmph_uint32)*data->k); ptr += sizeof(cmph_uint32)*data->k; #if defined (__ia64) || defined (__x86_64__) cmph_uint64 * g_is_ptr = (cmph_uint64 *)ptr; #else cmph_uint32 * g_is_ptr = (cmph_uint32 *)ptr; #endif cmph_uint8 * g_i = (cmph_uint8 *) (g_is_ptr + data->k); for(i = 0; i < data->k; i++) { #if defined (__ia64) || defined (__x86_64__) *g_is_ptr++ = (cmph_uint64)g_i; #else *g_is_ptr++ = (cmph_uint32)g_i; #endif // packing h1[i] hash_state_pack(data->h1[i], g_i); g_i += hash_state_packed_size(h1_type); // packing h2[i] hash_state_pack(data->h2[i], g_i); g_i += hash_state_packed_size(h2_type); // packing g_i switch(data->algo) { case CMPH_FCH: n = fch_calc_b(data->c, data->size[i]); break; case CMPH_BMZ8: n = ceil(data->c * data->size[i]); break; default: assert(0); } memcpy(g_i, data->g[i], sizeof(cmph_uint8)*n); g_i += n; } } /** \fn cmph_uint32 brz_packed_size(cmph_t *mphf); * \brief Return the amount of space needed to pack mphf. * \param mphf pointer to a mphf * \return the size of the packed function or zero for failures */ cmph_uint32 brz_packed_size(cmph_t *mphf) { cmph_uint32 i; cmph_uint32 size = 0; brz_data_t *data = (brz_data_t *)mphf->data; CMPH_HASH h0_type = hash_get_type(data->h0); CMPH_HASH h1_type = hash_get_type(data->h1[0]); CMPH_HASH h2_type = hash_get_type(data->h2[0]); size = (2*sizeof(CMPH_ALGO) + 3*sizeof(CMPH_HASH) + hash_state_packed_size(h0_type) + sizeof(cmph_uint32) + sizeof(double) + sizeof(cmph_uint8)*data->k + sizeof(cmph_uint32)*data->k); // pointers to g_is #if defined (__ia64) || defined (__x86_64__) size += sizeof(cmph_uint64)*data->k; #else size += sizeof(cmph_uint32)*data->k; #endif size += hash_state_packed_size(h1_type) * data->k; size += hash_state_packed_size(h2_type) * data->k; cmph_uint32 n = 0; for(i = 0; i < data->k; i++) { switch(data->algo) { case CMPH_FCH: n = fch_calc_b(data->c, data->size[i]); break; case CMPH_BMZ8: n = ceil(data->c * data->size[i]); break; default: assert(0); } size += n; } return size; } static cmph_uint32 brz_bmz8_search_packed(cmph_uint32 *packed_mphf, const char *key, cmph_uint32 keylen, cmph_uint32 * fingerprint) { register CMPH_HASH h0_type = *packed_mphf++; register cmph_uint32 *h0_ptr = packed_mphf; packed_mphf = (cmph_uint32 *)(((cmph_uint8 *)packed_mphf) + hash_state_packed_size(h0_type)); register cmph_uint32 k = *packed_mphf++; register double c = (double)(*((cmph_uint64*)packed_mphf)); packed_mphf += 2; register CMPH_HASH h1_type = *packed_mphf++; register CMPH_HASH h2_type = *packed_mphf++; register cmph_uint8 * size = (cmph_uint8 *) packed_mphf; packed_mphf = (cmph_uint32 *)(size + k); register cmph_uint32 * offset = packed_mphf; packed_mphf += k; register cmph_uint32 h0; hash_vector_packed(h0_ptr, h0_type, key, keylen, fingerprint); h0 = fingerprint[2] % k; register cmph_uint32 m = size[h0]; register cmph_uint32 n = ceil(c * m); #if defined (__ia64) || defined (__x86_64__) register cmph_uint64 * g_is_ptr = (cmph_uint64 *)packed_mphf; #else register cmph_uint32 * g_is_ptr = packed_mphf; #endif register cmph_uint8 * h1_ptr = (cmph_uint8 *) g_is_ptr[h0]; register cmph_uint8 * h2_ptr = h1_ptr + hash_state_packed_size(h1_type); register cmph_uint8 * g = h2_ptr + hash_state_packed_size(h2_type); register cmph_uint32 h1 = hash_packed(h1_ptr, h1_type, key, keylen) % n; register cmph_uint32 h2 = hash_packed(h2_ptr, h2_type, key, keylen) % n; register cmph_uint8 mphf_bucket; if (h1 == h2 && ++h2 >= n) h2 = 0; mphf_bucket = g[h1] + g[h2]; DEBUGP("key: %s h1: %u h2: %u h0: %u\n", key, h1, h2, h0); DEBUGP("key: %s g[h1]: %u g[h2]: %u offset[h0]: %u edges: %u\n", key, g[h1], g[h2], >offset[h0], m); DEBUGP("Address: %u\n", mphf_bucket + offset[h0]); return (mphf_bucket + offset[h0]); } static cmph_uint32 brz_fch_search_packed(cmph_uint32 *packed_mphf, const char *key, cmph_uint32 keylen, cmph_uint32 * fingerprint) { register CMPH_HASH h0_type = *packed_mphf++; register cmph_uint32 *h0_ptr = packed_mphf; packed_mphf = (cmph_uint32 *)(((cmph_uint8 *)packed_mphf) + hash_state_packed_size(h0_type)); register cmph_uint32 k = *packed_mphf++; register double c = (double)(*((cmph_uint64*)packed_mphf)); packed_mphf += 2; register CMPH_HASH h1_type = *packed_mphf++; register CMPH_HASH h2_type = *packed_mphf++; register cmph_uint8 * size = (cmph_uint8 *) packed_mphf; packed_mphf = (cmph_uint32 *)(size + k); register cmph_uint32 * offset = packed_mphf; packed_mphf += k; register cmph_uint32 h0; hash_vector_packed(h0_ptr, h0_type, key, keylen, fingerprint); h0 = fingerprint[2] % k; register cmph_uint32 m = size[h0]; register cmph_uint32 b = fch_calc_b(c, m); register double p1 = fch_calc_p1(m); register double p2 = fch_calc_p2(b); #if defined (__ia64) || defined (__x86_64__) register cmph_uint64 * g_is_ptr = (cmph_uint64 *)packed_mphf; #else register cmph_uint32 * g_is_ptr = packed_mphf; #endif register cmph_uint8 * h1_ptr = (cmph_uint8 *) g_is_ptr[h0]; register cmph_uint8 * h2_ptr = h1_ptr + hash_state_packed_size(h1_type); register cmph_uint8 * g = h2_ptr + hash_state_packed_size(h2_type); register cmph_uint32 h1 = hash_packed(h1_ptr, h1_type, key, keylen) % m; register cmph_uint32 h2 = hash_packed(h2_ptr, h2_type, key, keylen) % m; register cmph_uint8 mphf_bucket = 0; h1 = mixh10h11h12(b, p1, p2, h1); mphf_bucket = (h2 + g[h1]) % m; return (mphf_bucket + offset[h0]); } /** cmph_uint32 brz_search(void *packed_mphf, const char *key, cmph_uint32 keylen); * \brief Use the packed mphf to do a search. * \param packed_mphf pointer to the packed mphf * \param key key to be hashed * \param keylen key legth in bytes * \return The mphf value */ cmph_uint32 brz_search_packed(void *packed_mphf, const char *key, cmph_uint32 keylen) { register cmph_uint32 *ptr = (cmph_uint32 *)packed_mphf; register CMPH_ALGO algo = *ptr++; cmph_uint32 fingerprint[3]; switch(algo) { case CMPH_FCH: return brz_fch_search_packed(ptr, key, keylen, fingerprint); case CMPH_BMZ8: return brz_bmz8_search_packed(ptr, key, keylen, fingerprint); default: assert(0); } }