#include "bmz.h" #include "cmph_structs.h" #include "bmz_structs.h" #include "hash.h" #include "vqueue.h" #include #include #include #include #include #include //#define DEBUG #include "debug.h" static uint32 UNDEFINED = UINT_MAX; static const char bitmask[8] = { 1, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7 }; #define GETBIT(array, i) (array[(i) / 8] & bitmask[(i) % 8]) #define SETBIT(array, i) (array[(i) / 8] |= bitmask[(i) % 8]) #define UNSETBIT(array, i) (array[(i) / 8] &= (~(bitmask[(i) % 8]))) static int bmz_gen_edges(mph_t *mph); static void bmz_traverse_critical_nodes(bmz_mph_data_t *bmz, uint32 v, uint32 * biggest_g_value, uint32 * biggest_edge_value, uint8 * used_edges); static void bmz_traverse_non_critical_nodes(bmz_mph_data_t *bmz, uint8 * used_edges); mph_t *bmz_mph_new(key_source_t *key_source) { mph_t *mph = NULL; bmz_mph_data_t *bmz = NULL; mph = __mph_new(MPH_BMZ, key_source); if (mph == NULL) return NULL; bmz = (bmz_mph_data_t *)malloc(sizeof(bmz_mph_data_t)); if (bmz == NULL) { __mph_destroy(mph); return NULL; } bmz->hashfuncs[0] = HASH_JENKINS; bmz->hashfuncs[1] = HASH_JENKINS; bmz->g = NULL; bmz->graph = NULL; bmz->hashes = NULL; mph->data = bmz; assert(mph->data); return mph; } void bmz_mph_destroy(mph_t *mph) { bmz_mph_data_t *data = (bmz_mph_data_t *)mph->data; DEBUGP("Destroying algorithm dependent data\n"); free(data); __mph_destroy(mph); } void bmz_mph_set_hashfuncs(mph_t *mph, CMPH_HASH *hashfuncs) { bmz_mph_data_t *bmz = (bmz_mph_data_t *)mph->data; CMPH_HASH *hashptr = hashfuncs; uint32 i = 0; while(*hashptr != HASH_COUNT) { if (i >= 2) break; //bmz only uses two hash functions bmz->hashfuncs[i] = *hashptr; ++i, ++hashptr; } } mphf_t *bmz_mph_create(mph_t *mph, float bmz_c) { mphf_t *mphf = NULL; bmz_mphf_data_t *bmzf = NULL; uint32 i; uint32 iterations = 10; uint8 *used_edges = NULL; uint32 biggest_g_value = 0; uint32 biggest_edge_value = 1; DEBUGP("bmz_c: %f\n", bmz_c); bmz_mph_data_t *bmz = (bmz_mph_data_t *)mph->data; bmz->m = mph->key_source->nkeys; bmz->n = ceil(bmz_c * mph->key_source->nkeys); DEBUGP("m (edges): %u n (vertices): %u bmz_c: %f\n", bmz->m, bmz->n, bmz_c); bmz->graph = graph_new(bmz->n, bmz->m); DEBUGP("Created graph\n"); bmz->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*3); for(i = 0; i < 3; ++i) bmz->hashes[i] = NULL; // Mapping step if (mph->verbosity) { fprintf(stderr, "Entering mapping step for mph creation of %u keys with graph sized %u\n", bmz->m, bmz->n); } while(1) { int ok; DEBUGP("hash function 1\n"); bmz->hashes[0] = hash_state_new(bmz->hashfuncs[0], bmz->n); DEBUGP("hash function 2\n"); bmz->hashes[1] = hash_state_new(bmz->hashfuncs[1], bmz->n); DEBUGP("Generating edges\n"); ok = bmz_gen_edges(mph); if (!ok) { --iterations; hash_state_destroy(bmz->hashes[0]); bmz->hashes[0] = NULL; hash_state_destroy(bmz->hashes[1]); bmz->hashes[1] = NULL; DEBUGP("%u iterations remaining\n", iterations); if (mph->verbosity) { fprintf(stderr, "simple graph creation failure - %u iterations remaining\n", iterations); } if (iterations == 0) break; } else break; } if (iterations == 0) { graph_destroy(bmz->graph); return NULL; } // Ordering step if (mph->verbosity) { fprintf(stderr, "Starting ordering step\n"); } graph_obtain_critical_nodes(bmz->graph); // Searching step if (mph->verbosity) { fprintf(stderr, "Starting Searching step.\n"); fprintf(stderr, "\tTraversing critical vertices.\n"); } DEBUGP("Searching step\n"); used_edges = (uint8 *)malloc((bmz->m*sizeof(uint8))/8 + 1); memset(used_edges, 0, bmz->m/8 + 1); free(bmz->g); bmz->g = malloc(bmz->n * sizeof(uint32)); assert(bmz->g); for (i = 0; i < bmz->n; ++i) bmz->g[i] = UNDEFINED; for (i = 0; i < bmz->n; ++i) // critical nodes { if (graph_node_is_critical(bmz->graph, i) && (bmz->g[i] == UNDEFINED)) { bmz_traverse_critical_nodes(bmz, i, &biggest_g_value, &biggest_edge_value, used_edges); } } if (mph->verbosity) { fprintf(stderr, "\tTraversing non critical vertices.\n"); } bmz_traverse_non_critical_nodes(bmz, used_edges); // non_critical_nodes graph_destroy(bmz->graph); free(used_edges); bmz->graph = NULL; mphf = (mphf_t *)malloc(sizeof(mphf_t)); mphf->algo = mph->algo; bmzf = (bmz_mphf_data_t *)malloc(sizeof(bmz_mph_data_t)); bmzf->g = bmz->g; bmz->g = NULL; //transfer memory ownership bmzf->hashes = bmz->hashes; bmz->hashes = NULL; //transfer memory ownership bmzf->n = bmz->n; bmzf->m = bmz->m; mphf->data = bmzf; mphf->size = bmz->m; DEBUGP("Successfully generated minimal perfect hash\n"); if (mph->verbosity) { fprintf(stderr, "Successfully generated minimal perfect hash function\n"); } return mphf; } static void bmz_traverse_critical_nodes(bmz_mph_data_t *bmz, uint32 v, uint32 * biggest_g_value, uint32 * biggest_edge_value, uint8 * used_edges) { uint32 next_g; uint32 u; /* Auxiliary vertex */ uint32 lav; /* lookahead vertex */ uint8 collision; vqueue_t * q = vqueue_new((uint32)(0.5*graph_ncritical_nodes(bmz->graph))); graph_iterator_t it, it1; DEBUGP("Labelling critical vertices\n"); bmz->g[v] = (uint32)ceil ((double)(*biggest_edge_value)/2) - 1; next_g = (uint32)floor((double)(*biggest_edge_value/2)); /* next_g is incremented in the do..while statement*/ *biggest_g_value = next_g; vqueue_insert(q, v); while(!vqueue_is_empty(q)) { v = vqueue_remove(q); it = graph_neighbors_it(bmz->graph, v); while ((u = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR) { if (graph_node_is_critical(bmz->graph, u) && (bmz->g[u] == UNDEFINED)) { collision = 1; while(collision) // lookahead to resolve collisions { next_g = *biggest_g_value + 1; it1 = graph_neighbors_it(bmz->graph, u); collision = 0; while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR) { if (graph_node_is_critical(bmz->graph, lav) && (bmz->g[lav] != UNDEFINED)) { assert(next_g + bmz->g[lav] < bmz->m); if (GETBIT(used_edges, next_g + bmz->g[lav])) { collision = 1; break; } } } if (next_g > *biggest_g_value) *biggest_g_value = next_g; } // Marking used edges... it1 = graph_neighbors_it(bmz->graph, u); while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR) { if (graph_node_is_critical(bmz->graph, lav) && (bmz->g[lav] != UNDEFINED)) { SETBIT(used_edges,next_g + bmz->g[lav]); if(next_g + bmz->g[lav] > *biggest_edge_value) *biggest_edge_value = next_g + bmz->g[lav]; } } bmz->g[u] = next_g; // Labelling vertex u. vqueue_insert(q, u); } } } vqueue_destroy(q); } static uint32 next_unused_edge(bmz_mph_data_t *bmz, uint8 * used_edges, uint32 unused_edge_index) { while(1) { assert(unused_edge_index < bmz->m); if(GETBIT(used_edges, unused_edge_index)) unused_edge_index ++; else break; } return unused_edge_index; } static void bmz_traverse(bmz_mph_data_t *bmz, uint8 * used_edges, uint32 v, uint32 * unused_edge_index) { graph_iterator_t it = graph_neighbors_it(bmz->graph, v); uint32 neighbor = 0; while((neighbor = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR) { DEBUGP("Visiting neighbor %u\n", neighbor); if(bmz->g[neighbor] != UNDEFINED) continue; *unused_edge_index = next_unused_edge(bmz, used_edges, *unused_edge_index); bmz->g[neighbor] = *unused_edge_index - bmz->g[v]; (*unused_edge_index)++; bmz_traverse(bmz, used_edges, neighbor, unused_edge_index); } } static void bmz_traverse_non_critical_nodes(bmz_mph_data_t *bmz, uint8 * used_edges) { uint32 i, v1, v2, unused_edge_index = 0; DEBUGP("Labelling non critical vertices\n"); for(i = 0; i < bmz->m; i++) { v1 = graph_vertex_id(bmz->graph, i, 0); v2 = graph_vertex_id(bmz->graph, i, 1); if((bmz->g[v1] != UNDEFINED && bmz->g[v2] != UNDEFINED) || (bmz->g[v1] == UNDEFINED && bmz->g[v2] == UNDEFINED)) continue; if(bmz->g[v1] != UNDEFINED) bmz_traverse(bmz, used_edges, v1, &unused_edge_index); else bmz_traverse(bmz, used_edges, v2, &unused_edge_index); } for(i = 0; i < bmz->n; i++) { if(bmz->g[i] == UNDEFINED) { bmz->g[i] = 0; bmz_traverse(bmz, used_edges, i, &unused_edge_index); } } } static int bmz_gen_edges(mph_t *mph) { uint32 e; bmz_mph_data_t *bmz = (bmz_mph_data_t *)mph->data; uint8 multiple_edges = 0; DEBUGP("Generating edges for %u vertices\n", bmz->n); graph_clear_edges(bmz->graph); mph->key_source->rewind(mph->key_source->data); for (e = 0; e < mph->key_source->nkeys; ++e) { uint32 h1, h2; uint32 keylen; char *key; mph->key_source->read(mph->key_source->data, &key, &keylen); h1 = hash(bmz->hashes[0], key, keylen) % bmz->n; h2 = hash(bmz->hashes[1], key, keylen) % bmz->n; if (h1 == h2) if (++h2 >= bmz->n) h2 = 0; if (h1 == h2) { if (mph->verbosity) fprintf(stderr, "Self loop for key %e\n", e); mph->key_source->dispose(mph->key_source->data, key, keylen); return 0; } DEBUGP("Adding edge: %u -> %u for key %s\n", h1, h2, key); mph->key_source->dispose(mph->key_source->data, key, keylen); multiple_edges = graph_contains_edge(bmz->graph, h1, h2); if (mph->verbosity && multiple_edges) fprintf(stderr, "A non simple graph was generated\n"); if (multiple_edges) return 0; // checking multiple edge restriction. graph_add_edge(bmz->graph, h1, h2); } return !multiple_edges; } int bmz_mphf_dump(mphf_t *mphf, FILE *fd) { char *buf = NULL; uint32 buflen; uint32 nbuflen; uint32 i; uint32 two = htonl(2); //number of hash functions bmz_mphf_data_t *data = (bmz_mphf_data_t *)mphf->data; uint32 nn, nm; __mphf_dump(mphf, fd); fwrite(&two, sizeof(uint32), 1, fd); hash_state_dump(data->hashes[0], &buf, &buflen); DEBUGP("Dumping hash state with %u bytes to disk\n", buflen); nbuflen = htonl(buflen); fwrite(&nbuflen, sizeof(uint32), 1, fd); fwrite(buf, buflen, 1, fd); free(buf); hash_state_dump(data->hashes[1], &buf, &buflen); DEBUGP("Dumping hash state with %u bytes to disk\n", buflen); nbuflen = htonl(buflen); fwrite(&nbuflen, sizeof(uint32), 1, fd); fwrite(buf, buflen, 1, fd); free(buf); nn = htonl(data->n); fwrite(&nn, sizeof(uint32), 1, fd); nm = htonl(data->m); fwrite(&nm, sizeof(uint32), 1, fd); for (i = 0; i < data->n; ++i) { uint32 ng = htonl(data->g[i]); fwrite(&ng, sizeof(uint32), 1, fd); } #ifdef DEBUG fprintf(stderr, "G: "); for (i = 0; i < data->n; ++i) fprintf(stderr, "%u ", data->g[i]); fprintf(stderr, "\n"); #endif return 1; } void bmz_mphf_load(FILE *f, mphf_t *mphf) { uint32 nhashes; char fbuf[BUFSIZ]; char *buf = NULL; uint32 buflen; uint32 i; hash_state_t *state; bmz_mphf_data_t *bmz = (bmz_mphf_data_t *)malloc(sizeof(bmz_mphf_data_t)); DEBUGP("Loading bmz mphf\n"); mphf->data = bmz; fread(&nhashes, sizeof(uint32), 1, f); nhashes = ntohl(nhashes); bmz->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*(nhashes + 1)); bmz->hashes[nhashes] = NULL; DEBUGP("Reading %u hashes\n", nhashes); for (i = 0; i < nhashes; ++i) { hash_state_t *state = NULL; fread(&buflen, sizeof(uint32), 1, f); buflen = ntohl(buflen); DEBUGP("Hash state has %u bytes\n", buflen); buf = (char *)malloc(buflen); fread(buf, buflen, 1, f); state = hash_state_load(buf, buflen); bmz->hashes[i] = state; free(buf); } DEBUGP("Reading m and n\n"); fread(&(bmz->n), sizeof(uint32), 1, f); bmz->n = ntohl(bmz->n); fread(&(bmz->m), sizeof(uint32), 1, f); bmz->m = ntohl(bmz->m); bmz->g = (uint32 *)malloc(sizeof(uint32)*bmz->n); fread(bmz->g, bmz->n*sizeof(uint32), 1, f); for (i = 0; i < bmz->n; ++i) bmz->g[i] = ntohl(bmz->g[i]); #ifdef DEBUG fprintf(stderr, "G: "); for (i = 0; i < bmz->n; ++i) fprintf(stderr, "%u ", bmz->g[i]); fprintf(stderr, "\n"); #endif return; } uint32 bmz_mphf_search(mphf_t *mphf, const char *key, uint32 keylen) { bmz_mphf_data_t *bmz = mphf->data; uint32 h1 = hash(bmz->hashes[0], key, keylen) % bmz->n; uint32 h2 = hash(bmz->hashes[1], key, keylen) % bmz->n; DEBUGP("key: %s h1: %u h2: %u\n", key, h1, h2); if (h1 == h2 && ++h2 > bmz->n) h2 = 0; DEBUGP("key: %s g[h1]: %u g[h2]: %u edges: %u\n", key, bmz->g[h1], bmz->g[h2], bmz->m); return bmz->g[h1] + bmz->g[h2]; } void bmz_mphf_destroy(mphf_t *mphf) { bmz_mphf_data_t *data = (bmz_mphf_data_t *)mphf->data; free(data->g); hash_state_destroy(data->hashes[0]); hash_state_destroy(data->hashes[1]); free(data->hashes); free(data); free(mphf); }