#include "graph.h" #include "bmz8.h" #include "bmz8_structs.h" #include "brz.h" #include "cmph_structs.h" #include "brz_structs.h" #include "cmph.h" #include "hash.h" #include "bitbool.h" #include #include #include #include #include #define MAX_BUCKET_SIZE 255 //#define DEBUG #include "debug.h" static int brz_gen_graphs(cmph_config_t *mph); static cmph_uint32 brz_min_index(cmph_uint32 * vector, cmph_uint32 n); static char * brz_read_key(FILE * fd); static void brz_destroy_keys_vd(char ** keys_vd, cmph_uint8 nkeys); static void brz_copy_partial_mphf(brz_config_data_t *brz, bmz8_data_t * bmzf, cmph_uint32 index, cmph_io_adapter_t *source); brz_config_data_t *brz_config_new() { brz_config_data_t *brz = NULL; brz = (brz_config_data_t *)malloc(sizeof(brz_config_data_t)); brz->hashfuncs[0] = CMPH_HASH_JENKINS; brz->hashfuncs[1] = CMPH_HASH_JENKINS; brz->hashfuncs[2] = CMPH_HASH_JENKINS; brz->size = NULL; brz->offset = NULL; brz->g = NULL; brz->h1 = NULL; brz->h2 = NULL; brz->h3 = NULL; brz->memory_availability = 1024*1024; brz->tmp_dir = (cmph_uint8 *)calloc(10, sizeof(cmph_uint8)); strcpy(brz->tmp_dir, "/var/tmp/\0"); assert(brz); return brz; } void brz_config_destroy(cmph_config_t *mph) { brz_config_data_t *data = (brz_config_data_t *)mph->data; DEBUGP("Destroying algorithm dependent data\n"); free(data->tmp_dir); free(data); } void brz_config_set_hashfuncs(cmph_config_t *mph, CMPH_HASH *hashfuncs) { brz_config_data_t *brz = (brz_config_data_t *)mph->data; CMPH_HASH *hashptr = hashfuncs; cmph_uint32 i = 0; while(*hashptr != CMPH_HASH_COUNT) { if (i >= 3) break; //brz only uses three hash functions brz->hashfuncs[i] = *hashptr; ++i, ++hashptr; } } void brz_config_set_memory_availability(cmph_config_t *mph, cmph_uint32 memory_availability) { brz_config_data_t *brz = (brz_config_data_t *)mph->data; brz->memory_availability = memory_availability*1024*1024; } void brz_config_set_tmp_dir(cmph_config_t *mph, cmph_uint8 *tmp_dir) { brz_config_data_t *brz = (brz_config_data_t *)mph->data; if(tmp_dir) { cmph_uint32 len = strlen(tmp_dir); free(brz->tmp_dir); if(tmp_dir[len-1] != '/') { brz->tmp_dir = calloc(len+2, sizeof(cmph_uint8)); sprintf(brz->tmp_dir, "%s/\0", tmp_dir); } else { brz->tmp_dir = calloc(len+1, sizeof(cmph_uint8)); sprintf(brz->tmp_dir, "%s\0", tmp_dir); } } } cmph_t *brz_new(cmph_config_t *mph, float c) { cmph_t *mphf = NULL; brz_data_t *brzf = NULL; cmph_uint32 i; cmph_uint32 iterations = 20; DEBUGP("c: %f\n"); brz_config_data_t *brz = (brz_config_data_t *)mph->data; brz->c = c; brz->m = mph->key_source->nkeys; DEBUGP("m: %u\n", brz->m); brz->k = ceil(brz->m/170); DEBUGP("k: %u\n", brz->k); brz->size = (cmph_uint8 *) calloc(brz->k, sizeof(cmph_uint8)); // Clustering the keys by graph id. if (mph->verbosity) { fprintf(stderr, "Partioning the set of keys.\n"); } brz->h1 = (hash_state_t **)malloc(sizeof(hash_state_t *)*brz->k); brz->h2 = (hash_state_t **)malloc(sizeof(hash_state_t *)*brz->k); brz->g = (cmph_uint8 **) malloc(sizeof(cmph_uint8 *) *brz->k); while(1) { int ok; DEBUGP("hash function 3\n"); brz->h3 = hash_state_new(brz->hashfuncs[2], brz->k); DEBUGP("Generating graphs\n"); ok = brz_gen_graphs(mph); if (!ok) { --iterations; hash_state_destroy(brz->h3); brz->h3 = NULL; DEBUGP("%u iterations remaining to create the graphs in a external file\n", iterations); if (mph->verbosity) { fprintf(stderr, "Failure: A graph with more than 255 keys was created - %u iterations remaining\n", iterations); } if (iterations == 0) break; } else break; } if (iterations == 0) { DEBUGP("Graphs with more than 255 keys were created in all 20 iterations\n"); free(brz->size); return NULL; } DEBUGP("Graphs generated\n"); brz->offset = (cmph_uint32 *)calloc(brz->k, sizeof(cmph_uint32)); for (i = 1; i < brz->k; ++i) { brz->offset[i] = brz->size[i-1] + brz->offset[i-1]; } // Generating a mphf mphf = (cmph_t *)malloc(sizeof(cmph_t)); mphf->algo = mph->algo; brzf = (brz_data_t *)malloc(sizeof(brz_data_t)); brzf->g = brz->g; brz->g = NULL; //transfer memory ownership brzf->h1 = brz->h1; brz->h1 = NULL; //transfer memory ownership brzf->h2 = brz->h2; brz->h2 = NULL; //transfer memory ownership brzf->h3 = brz->h3; brz->h3 = NULL; //transfer memory ownership brzf->size = brz->size; brz->size = NULL; //transfer memory ownership brzf->offset = brz->offset; brz->offset = NULL; //transfer memory ownership brzf->k = brz->k; brzf->c = brz->c; brzf->m = brz->m; mphf->data = brzf; mphf->size = brz->m; DEBUGP("Successfully generated minimal perfect hash\n"); if (mph->verbosity) { fprintf(stderr, "Successfully generated minimal perfect hash function\n"); } return mphf; } static int brz_gen_graphs(cmph_config_t *mph) { cmph_uint32 i, e; brz_config_data_t *brz = (brz_config_data_t *)mph->data; //cmph_uint32 memory_availability = 200*1024*1024; cmph_uint32 memory_usage = 0; cmph_uint32 nkeys_in_buffer = 0; cmph_uint8 *buffer = (cmph_uint8 *)malloc(brz->memory_availability); cmph_uint32 *buckets_size = (cmph_uint32 *)calloc(brz->k, sizeof(cmph_uint32)); cmph_uint32 *keys_index = NULL; cmph_uint8 **buffer_merge = NULL; cmph_uint32 *buffer_h3 = NULL; cmph_uint32 nflushes = 0; cmph_uint32 h3; FILE * tmp_fd = NULL; FILE ** tmp_fds = NULL; char *filename = NULL; char *key = NULL; cmph_uint32 keylen; cmph_uint32 max_size = 0; cmph_uint32 cur_bucket = 0; cmph_uint8 nkeys_vd = 0; char ** keys_vd = NULL; mph->key_source->rewind(mph->key_source->data); DEBUGP("Generating graphs from %u keys\n", brz->m); // Partitioning for (e = 0; e < brz->m; ++e) { mph->key_source->read(mph->key_source->data, &key, &keylen); /* Buffers management */ if (memory_usage + keylen + 1 > brz->memory_availability) // flush buffers { if(mph->verbosity) { fprintf(stderr, "Flushing %u\n", nkeys_in_buffer); } cmph_uint32 value = buckets_size[0]; cmph_uint32 sum = 0; cmph_uint32 keylen1 = 0; buckets_size[0] = 0; for(i = 1; i < brz->k; i++) { if(buckets_size[i] == 0) continue; sum += value; value = buckets_size[i]; buckets_size[i] = sum; } memory_usage = 0; keys_index = (cmph_uint32 *)calloc(nkeys_in_buffer, sizeof(cmph_uint32)); for(i = 0; i < nkeys_in_buffer; i++) { keylen1 = strlen(buffer + memory_usage); h3 = hash(brz->h3, buffer + memory_usage, keylen1) % brz->k; keys_index[buckets_size[h3]] = memory_usage; buckets_size[h3]++; memory_usage = memory_usage + keylen1 + 1; } filename = (char *)calloc(strlen(brz->tmp_dir) + 11, sizeof(char)); sprintf(filename, "%s%u.cmph",brz->tmp_dir, nflushes); tmp_fd = fopen(filename, "wb"); free(filename); filename = NULL; for(i = 0; i < nkeys_in_buffer; i++) { keylen1 = strlen(buffer + keys_index[i]) + 1; fwrite(buffer + keys_index[i], 1, keylen1, tmp_fd); } nkeys_in_buffer = 0; memory_usage = 0; bzero(buckets_size, brz->k*sizeof(cmph_uint32)); nflushes++; free(keys_index); fclose(tmp_fd); } memcpy(buffer + memory_usage, key, keylen + 1); memory_usage = memory_usage + keylen + 1; h3 = hash(brz->h3, key, keylen) % brz->k; if ((brz->size[h3] == MAX_BUCKET_SIZE) || ((brz->c >= 1.0) && (cmph_uint8)(brz->c * brz->size[h3]) < brz->size[h3])) { free(buffer); free(buckets_size); return 0; } brz->size[h3] = brz->size[h3] + 1; buckets_size[h3] ++; nkeys_in_buffer++; mph->key_source->dispose(mph->key_source->data, key, keylen); } if (memory_usage != 0) // flush buffers { if(mph->verbosity) { fprintf(stderr, "Flushing %u\n", nkeys_in_buffer); } cmph_uint32 value = buckets_size[0]; cmph_uint32 sum = 0; cmph_uint32 keylen1 = 0; buckets_size[0] = 0; for(i = 1; i < brz->k; i++) { if(buckets_size[i] == 0) continue; sum += value; value = buckets_size[i]; buckets_size[i] = sum; } memory_usage = 0; keys_index = (cmph_uint32 *)calloc(nkeys_in_buffer, sizeof(cmph_uint32)); for(i = 0; i < nkeys_in_buffer; i++) { keylen1 = strlen(buffer + memory_usage); h3 = hash(brz->h3, buffer + memory_usage, keylen1) % brz->k; keys_index[buckets_size[h3]] = memory_usage; buckets_size[h3]++; memory_usage = memory_usage + keylen1 + 1; } filename = (char *)calloc(strlen(brz->tmp_dir) + 11, sizeof(char)); sprintf(filename, "%s%u.cmph",brz->tmp_dir, nflushes); tmp_fd = fopen(filename, "wb"); free(filename); filename = NULL; for(i = 0; i < nkeys_in_buffer; i++) { keylen1 = strlen(buffer + keys_index[i]) + 1; fwrite(buffer + keys_index[i], 1, keylen1, tmp_fd); } nkeys_in_buffer = 0; memory_usage = 0; bzero(buckets_size, brz->k*sizeof(cmph_uint32)); nflushes++; free(keys_index); fclose(tmp_fd); } free(buffer); free(buckets_size); if(nflushes > 1024) return 0; // Too many files generated. // mphf generation if(mph->verbosity) { fprintf(stderr, "\nMPHF generation \n"); } tmp_fds = (FILE **)calloc(nflushes, sizeof(FILE *)); buffer_merge = (cmph_uint8 **)calloc(nflushes, sizeof(cmph_uint8 *)); buffer_h3 = (cmph_uint32 *)calloc(nflushes, sizeof(cmph_uint32)); for(i = 0; i < nflushes; i++) { filename = (char *)calloc(strlen(brz->tmp_dir) + 11, sizeof(char)); sprintf(filename, "%s%u.cmph",brz->tmp_dir, i); tmp_fds[i] = fopen(filename, "rb"); free(filename); filename = NULL; key = brz_read_key(tmp_fds[i]); keylen = strlen(key); h3 = hash(brz->h3, key, keylen) % brz->k; buffer_h3[i] = h3; buffer_merge[i] = (cmph_uint8 *)calloc(keylen + 1, sizeof(cmph_uint8)); memcpy(buffer_merge[i], key, keylen + 1); free(key); } e = 0; keys_vd = (char **)calloc(MAX_BUCKET_SIZE, sizeof(char *)); nkeys_vd = 0; while(e < brz->m) { i = brz_min_index(buffer_h3, nflushes); cur_bucket = buffer_h3[i]; key = brz_read_key(tmp_fds[i]); if(key) { while(key) { keylen = strlen(key); h3 = hash(brz->h3, key, keylen) % brz->k; if (h3 != buffer_h3[i]) break; keys_vd[nkeys_vd++] = key; e++; key = brz_read_key(tmp_fds[i]); } if (key) { assert(nkeys_vd < brz->size[cur_bucket]); keys_vd[nkeys_vd++] = buffer_merge[i]; e++; buffer_h3[i] = h3; buffer_merge[i] = (cmph_uint8 *)calloc(keylen + 1, sizeof(cmph_uint8)); memcpy(buffer_merge[i], key, keylen + 1); free(key); } } if(!key) { assert(nkeys_vd < brz->size[cur_bucket]); keys_vd[nkeys_vd++] = buffer_merge[i]; e++; buffer_h3[i] = UINT_MAX; buffer_merge[i] = NULL; } if(nkeys_vd == brz->size[cur_bucket]) // Generating mphf for each bucket. { cmph_io_adapter_t *source = NULL; cmph_config_t *config = NULL; cmph_t *mphf_tmp = NULL; bmz8_data_t * bmzf = NULL; // Source of keys if(nkeys_vd > max_size) max_size = nkeys_vd; source = cmph_io_vector_adapter(keys_vd, (cmph_uint32)nkeys_vd); config = cmph_config_new(source); cmph_config_set_algo(config, CMPH_BMZ8); cmph_config_set_graphsize(config, brz->c); mphf_tmp = cmph_new(config); bmzf = (bmz8_data_t *)mphf_tmp->data; brz_copy_partial_mphf(brz, bmzf, cur_bucket, source); cmph_config_destroy(config); brz_destroy_keys_vd(keys_vd, nkeys_vd); cmph_destroy(mphf_tmp); free(source); nkeys_vd = 0; } } for(i = 0; i < nflushes; i++) fclose(tmp_fds[i]); free(tmp_fds); free(keys_vd); free(buffer_merge); free(buffer_h3); fprintf(stderr, "Maximal Size: %u\n", max_size); return 1; } static cmph_uint32 brz_min_index(cmph_uint32 * vector, cmph_uint32 n) { cmph_uint32 i, min_index = 0; for(i = 1; i < n; i++) { if(vector[i] < vector[min_index]) min_index = i; } return min_index; } static char * brz_read_key(FILE * fd) { char * buf = (char *)malloc(BUFSIZ); cmph_uint32 buf_pos = 0; char c; while(1) { fread(&c, sizeof(char), 1, fd); if(feof(fd)) { free(buf); return NULL; } buf[buf_pos++] = c; if(c == '\0') break; if(buf_pos % BUFSIZ == 0) buf = (char *)realloc(buf, buf_pos + BUFSIZ); } return buf; } static void brz_destroy_keys_vd(char ** keys_vd, cmph_uint8 nkeys) { cmph_uint8 i; for(i = 0; i < nkeys; i++) free(keys_vd[i]); } static void brz_copy_partial_mphf(brz_config_data_t *brz, bmz8_data_t * bmzf, cmph_uint32 index, cmph_io_adapter_t *source) { cmph_uint32 i; cmph_uint32 n = ceil(brz->c * brz->size[index]); brz->g[index] = (cmph_uint8 *)calloc(n, sizeof(cmph_uint8)); for(i = 0; i < n; i++) { brz->g[index][i] = bmzf->g[i]; //fprintf(stderr, "gsrc[%u]: %u gdest: %u\n", i, (cmph_uint8) bmzf->g[i], brz->g[index][i]); } brz->h1[index] = hash_state_copy(bmzf->hashes[0]); brz->h2[index] = hash_state_copy(bmzf->hashes[1]); } int brz_dump(cmph_t *mphf, FILE *fd) { char *buf = NULL; cmph_uint32 buflen; cmph_uint32 nbuflen; cmph_uint32 i; brz_data_t *data = (brz_data_t *)mphf->data; DEBUGP("Dumping brzf\n"); __cmph_dump(mphf, fd); fwrite(&(data->k), sizeof(cmph_uint32), 1, fd); //dumping h1 and h2. for(i = 0; i < data->k; i++) { // h1 hash_state_dump(data->h1[i], &buf, &buflen); DEBUGP("Dumping hash state with %u bytes to disk\n", buflen); fwrite(&buflen, sizeof(cmph_uint32), 1, fd); fwrite(buf, buflen, 1, fd); free(buf); // h2 hash_state_dump(data->h2[i], &buf, &buflen); DEBUGP("Dumping hash state with %u bytes to disk\n", buflen); fwrite(&buflen, sizeof(cmph_uint32), 1, fd); fwrite(buf, buflen, 1, fd); free(buf); } // Dumping h3. hash_state_dump(data->h3, &buf, &buflen); DEBUGP("Dumping hash state with %u bytes to disk\n", buflen); fwrite(&buflen, sizeof(cmph_uint32), 1, fd); fwrite(buf, buflen, 1, fd); free(buf); // Dumping c, m, size vector and offset vector. fwrite(&(data->c), sizeof(cmph_float32), 1, fd); fwrite(&(data->m), sizeof(cmph_uint32), 1, fd); fwrite(data->size, sizeof(cmph_uint8)*(data->k), 1, fd); fwrite(data->offset, sizeof(cmph_uint32)*(data->k), 1, fd); // Dumping g function. for(i = 0; i < data->k; i++) { cmph_uint32 n = ceil(data->c * data->size[i]); fwrite(data->g[i], sizeof(cmph_uint8)*n, 1, fd); } return 1; } void brz_load(FILE *f, cmph_t *mphf) { cmph_uint32 nhashes; char *buf = NULL; cmph_uint32 buflen; cmph_uint32 i; brz_data_t *brz = (brz_data_t *)malloc(sizeof(brz_data_t)); DEBUGP("Loading brz mphf\n"); mphf->data = brz; fread(&(brz->k), sizeof(cmph_uint32), 1, f); brz->h1 = (hash_state_t **)malloc(sizeof(hash_state_t *)*brz->k); brz->h2 = (hash_state_t **)malloc(sizeof(hash_state_t *)*brz->k); DEBUGP("Reading %u h1 and %u h2\n", brz->k, brz->k); //loading h1 and h2. for(i = 0; i < brz->k; i++) { // h1 fread(&buflen, sizeof(cmph_uint32), 1, f); DEBUGP("Hash state has %u bytes\n", buflen); buf = (char *)malloc(buflen); fread(buf, buflen, 1, f); brz->h1[i] = hash_state_load(buf, buflen); free(buf); //h2 fread(&buflen, sizeof(cmph_uint32), 1, f); DEBUGP("Hash state has %u bytes\n", buflen); buf = (char *)malloc(buflen); fread(buf, buflen, 1, f); brz->h2[i] = hash_state_load(buf, buflen); free(buf); } //loading h3 fread(&buflen, sizeof(cmph_uint32), 1, f); DEBUGP("Hash state has %u bytes\n", buflen); buf = (char *)malloc(buflen); fread(buf, buflen, 1, f); brz->h3 = hash_state_load(buf, buflen); free(buf); //loading c, m, size vector and offset vector. fread(&(brz->c), sizeof(cmph_float32), 1, f); fread(&(brz->m), sizeof(cmph_uint32), 1, f); brz->size = (cmph_uint8 *) malloc(sizeof(cmph_uint8)*brz->k); brz->offset = (cmph_uint32 *)malloc(sizeof(cmph_uint32)*brz->k); fread(brz->size, sizeof(cmph_uint8)*(brz->k), 1, f); fread(brz->offset, sizeof(cmph_uint32)*(brz->k), 1, f); //loading g function. brz->g = (cmph_uint8 **) malloc(sizeof(cmph_uint8 *)*brz->k); for(i = 0; i < brz->k; i++) { cmph_uint32 n = ceil(brz->c * brz->size[i]); brz->g[i] = (cmph_uint8 *)malloc(sizeof(cmph_uint8)*n); fread(brz->g[i], sizeof(cmph_uint8)*n, 1, f); } return; } cmph_uint32 brz_search(cmph_t *mphf, const char *key, cmph_uint32 keylen) { brz_data_t *brz = mphf->data; cmph_uint32 h3 = hash(brz->h3, key, keylen) % brz->k; cmph_uint32 m = brz->size[h3]; cmph_uint32 n = ceil(brz->c * m); cmph_uint32 h1 = hash(brz->h1[h3], key, keylen) % n; cmph_uint32 h2 = hash(brz->h2[h3], key, keylen) % n; cmph_uint8 mphf_bucket; if (h1 == h2 && ++h2 >= n) h2 = 0; mphf_bucket = brz->g[h3][h1] + brz->g[h3][h2]; DEBUGP("key: %s h1: %u h2: %u h3: %u\n", key, h1, h2, h3); DEBUGP("key: %s g[h1]: %u g[h2]: %u offset[h3]: %u edges: %u\n", key, brz->g[h3][h1], brz->g[h3][h2], brz->offset[h3], brz->m); DEBUGP("Address: %u\n", mphf_bucket + brz->offset[h3]); return (mphf_bucket + brz->offset[h3]); } void brz_destroy(cmph_t *mphf) { cmph_uint32 i; brz_data_t *data = (brz_data_t *)mphf->data; for(i = 0; i < data->k; i++) { free(data->g[i]); hash_state_destroy(data->h1[i]); hash_state_destroy(data->h2[i]); } hash_state_destroy(data->h3); free(data->g); free(data->h1); free(data->h2); free(data->size); free(data->offset); free(data); free(mphf); }