
A Faster Algorithm for Constructing Minimal Perfect Hash Functions *

Edward A. Fox*# and Qi Fan Chen*# and Lenwood S. Heath*

Department of Computer Science* and Computing Center#

Virginia Polytechnic Institute and State University

Blacksburg VA 24061-0106

Abstract

Our previous research on one-probe access to large collec-

tions of data indexed by alphanumeric keys has produced the

first practical minimal perfect hash functions for this prob-

lem. Here, a new algorithm is described for quickly finding

minimal perfect hash functions whose specification space is

very close to the theoretical lower bound, i.e., around 2 bits

per key. The various stages of processing are detailed, along

with analytical and empirical results, including timing for a
set of over 3.8 million keys that was processed on a NeXTsta-

tion in about 6 hours.

1 Introduction

Next generation information systems must support integrated

access to large-state data, information, and knowledge bases.

That integration must facilitate efficient operation, as well as

ease-of-understanding, for both users and developers. Infor-

mation retrieval and filtering, hypertext, hypermedia, natural

language processing, scientific data management, transac-

tion processing, expert systems, library catalog access, and

other applications can all be built upon such an integrated

environment.

We have worked toward this goal of integrated access

from two directions. First, the CODER (COmposite Docu-

ment Expert/extended/effwtive Retrieval) system serves as

a prototyping vehicle for our theories, models, approaches,

and implementation efforts [6]. Its architecture allows black-

board as well as client-server style communication in one or

more communities of experts or algorithmic modules. A
knowledge representation language has been developed for

●This work was funded in part by grants from rite National Science
Foundation (Grants IRI-8703580 and IRI-91 1699 1) and PRC Inc.

Permission to oopy without fee all or part of this material is
granted provided that tha copies are not mada or distributed for
diract commercial advantage, the ACM copyright notice and the

titla of the publication and its date appear, and notica ie givan
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to rapublish, requiras a fee
and/or specific permission.
15th Ann Int’1 SIGIR ‘92/Denmark-6/92
Q 1992 ACM 0-89791 -524-0192 /0006 /0266 . ..$1 .50

CODER to give us control over inter-module communica-

tion, facilitating transmission in a distributed environment of

various types of dat& information, and knowledge structures

(including atoms, frames, and relations) [17]. As different

versions have been developed, CODER has matured to han-

dle a variety of applications such as electronic mail messages

[71, Navy intelligence messages [1], and access to litera-
ture on cardiology [10]. Lexical information, bibliographic

records, thesauri, reference works, full-text, facsimile and

other images, tabular data, hypertext, frames, semantic net-

works, and other forms have been processed. The collections

of information already integrated into CODER have grown
to hundreds of megabytes, and current efforts involve work

on collections measured in gigabytes.

Our second direction has been to develop an object-

oriented databases ystem tailored to the information retrieval

environment of interest, using minimal perfect hash func-

tions (MPHFs) to ensure space and time efficient index-

ing. The LEND (Large External object-oriented Network

Database) system, used in CODER, has evolved as well,

through two major versions. While CODER originally used

Prolog database facilities, or relied upon special manager

routines coded in C to provide access to large collections

of data or information, all shared access to information by

CODER modules now involves use of Version 1 or Version

2 of LEND. A complete description of the current version of

LEND appears in [4] and will also be published elsewhere.

This paper focuses on a key part of LEND — our most recent

algorithm for finding minimal perfect hash functions, which

obtains results close to the theoretical lower bound.

2 Minimal Perfect Hashing

In our implementation of LEND, we use optimal hashing

techniques to make operations as efficient as possible, pro-

viding:

● one-probe access to a record, given its key,

● no collisions to be resolved, and

● full utilization of hash table space.

266

o n-1
i I I 1 I I I 1 Key Set S

<

1’ I I Hash Table T
II m-1

o n-1
1 I I I I I I I I

) I 1 I I I I I I
o n-l

Key Set S

Hash Table T

Figure 1: Perfect and Minimal Perfect Hash Functions

Optimal speed for hashing means that each key from the
key set S will map to a unique location in the hash table

T, thus avoiding time wasted in resolving collisions. That

is achieved with a perfect hash function (PHF), whose op-

eration is illustrated at the top of Figure 1. When the hash

table has minimal size, i.e., is fully loaded, with ISI = IT!,

the hash function is called minimal. When both properties

hold, one has a minimal perfect hash function (MPHF) as

shown at the bottom of Figure 1. Note that, in reality, key

set S itself is usually neither ordered nor sequential, but can

clearly be indexed by the integers (1. ., n – 1 for convenience

of illustration.

These hash functions can be grouped further into several

categories. First, there are static and dynamic functions,

when static or dynamic key sets are involved. Our emphasis

has been on static functions, since in many retrieval and

other applications the key sets change slowly, if at all (e.g.,

on CD-ROM).

Second, hash functions can point to individual objects, or

to bins of objects. While LEND does support bin hashing [4],

that discussion is beyond the scope of this paper, and in any

case the methods used are derived from those considered here.

Further, with large or variable size objects, or in-memory

applications, direct location of single objects is desired,

Third, hash functions can preserve an a priori key order-

ing, or ignore that when ordered sequential access is not

needed. In [8], we present some methods for building order-

preserving minimal perfect hash functions. Since some types
of OPMPHFs can be derived from MPHFs, we do not discuss

that further here.

In this paper, we consider minimal perfect hash functions

pointing at individual objects in static collections where there

is no a priori key order that must be maintained. We explain

a new algorithm to find MPHFs and give experimental evi-

dence of its efficiency with large key sets.

3 MPHF Algorithm 1

To simplify discussion, we define essential terminology.

● U: key universe. IU I = N.

. S. actual key set. S c U, ISI = n << N.

● ~ hash table. IT] = m, m > n.

● h: hash function. h: U -+ T.

● h is a Pcx-&t hash function (HIP): no collisions, h is

one-to-one on S.

● h is a minimal perfwt hash function (MPHF): no colli-

sions (i.e., PHF) and m = n,

For a given key set S taken from universe U, we desire a

MPHF h that will map any key k in S to a unique slot in hash

table T.

Until the 1980’s there were no known algorithms to find

MPHFs for large key sets. Since 1980, important contribut-

ions to the theory and practice of perfect hashing were made

by various investigators including Cichelli [5], Jaeschke 1[13],

Mehlhom [14], Cercone, Krause, and Boates [2], Chang [3],

Fredman and his colleagues [11, 12], and Sager [16]. The

first practical algorithm for finding practical MPHFs for very

large key sets, i.e., including millions of keys, was reported

by Fox et al. The description [9] gives further detains on

earlier work as well.

The basic approach in [9] is to treat the problem as a

search for desired functions in a large search space s. In

actuality, preparatory Mapping and Ordering steps are needed

so that fast Searching can take place. The overall Mapping-

Ordering-Searching (MOS) scheme is illustrated in Figure

2. Mapping transforms the problem of hashing keys into

a different problem, in a different space. Ordering paves

the way for searching in that new space, so that locations

can be identified in the hash table. Hashing then involves

mapping from keys into the new space, and using the results

of Searching to find the proper hash table location. From that

perspective, the key results in [4,9] areas follows.

. Search space s requires at least 1.4427 n specification

bits (at least 21w27n distinct values must be in the space).

s Finding an MPHF is a search problem that determines

some appropriate value ins for an instance S (which is

the key set).

● S is related tos through partitioning both .S ands into

subsets Siandsi, fori = 0,1,2,...

The basic algorithm discussed in [9], herein referred to as

Algorithm 1:

Lbl

Key Set S

I

Hash Table T

Figure 2: Illustration of the Key Concepts

● is a probabilistic algorithm;

● is based on ordering the vertices in a bipartite depen-

dency graph;

● requires expected linear running time

● handles large sets containing millions of keys; and

● yields MPHFs of size c logz n bits per key

(0.5 < c < 1).

Its behavior in terms of bits per key required to find art

MPHF in a reasonable amount of time, for varying size key

sets, is illustrated in Figure 3.

Note that Algorithm 1 requires less than one word of spec-

ification space for each key in S. However, this is signifi-

cantly more space than the theoretical lower bound, which is
roughly 1.5 bits per key.

An altemativealgorithm discussed in [9], called Algorithm
2 herein, did manage to produce MPHFs for large key sets

with specification space size below 5 bits per key. Unfortu-

nately, this method is relatively complicated, and finding the

address for keys using an Algorithm 2 MPHF involves expen-

sive multiplications. We have developed a new algorithm,

described in the next section, which eliminates the need for

multiplication, yields MPHFs with specification space be-

low 2.5 bits per key, and is relatively easy to understand and

implement.

12

10

8
e

M

il.
9.-
m6

4

2
0 1Oohw 200”W0 300000 4oocoo 5c&o 6oc&e

Key SetSize

Figure 3: Bits per Key for Algorithm 1

4 MPHF Algorithm 3

The new algorithm for finding an MPHF, called herein Algo-

rithm 3, is fully described in [4]. The basic results follow in

this Section.

Algorithm 3 corrects many of the problems with Algorithm

1. First, Algorithm 1 makes use of moderately large tables

to specify the mapping for the characters that make up keys,

that in turn lead to the pseudo-random numbers used in the

Mapping stage. By using and extending Pearson’s method

[15], mapping tables containing only 128 characters are pro-

duced. The results of the Mapping stage are sufficiently

random so that more space-expensive approaches are unnec-

essary. Thus, only 128 bytes are used in the hash function

specification to describe the Mapping process.

Second, in Algorithm 1, the Searching phase was less so-

phisticated, requiring many unsuccessful operations to locate

an acceptable solution. By adding an auxiliary index data

structure, we have been able to reduce the searching time

significantly in Algorithm 3.

Third, Algorithm 3 deals with the need to reduce the size

of the specification of the MPHF by radically changing the

Mapping, Ordering, and Searching phases of Algorithm 1. In
particular, no use is made of the bipartite dependency graph

first suggested by Sager [16]. Rather, S is related tos in two

steps:

● Keys are mapped to a bucket set B. (See Figure 4.)

b= Il?[= (crz/(log2n+ 1)1,2 s c <4.

● Keys in each bucket are separately mapped to T. (See
Figure 5.)

In order to have space measured in bits per key instead

of words per key, it is necessary to search for values whose

268

[
Key Set 1
T

o

Buckets

B

49=-
1 I

R R
I

Pi

0
hll

/0
h12

n-l

I
n ,

i
0 P2 b -1

B1 B2

Figure 4: Mapping Stage of Algorithm 2

Buckets
B

Bucket

Sequence

u R?

0sort

1,
1

1
I

Bo,o BO,I Bo,bl

-=k5-
Hash Table

T 111111111111111111111111111111111111~

Figure 5; Ordering and Searching with Algorithm 2

number is proportional to [en/ (logz n + 1)1 instead of n, as

was done in Algorithm 1. This partially explains the need to

introduce buckets into the process.

The Mapping stage, and the Ordering and Searching
stages, are illustrated in Figures 4 and 5, respectively. Further

details are given in the following subsections.

4.1 Mapping

The Mapping stage accomplishes several important goals.
First, each of the n keys is mapped to an integer value, in

therange O... n– 1. This is done by pseudo-random hash

function hlo which maps several keys onto some values and

may leave other address values without any keys. See the

top of Figure 5 for an illustration of the process.

hlo : S+{o,...)l]l]

Second, we wish to shrink the range of integer values from

n to b so that later we need only search among b values.

Finding an MPHF which has specification size close to the

lower bound can be accomplished when c is close to 2, i.e.,

when b is roughly 2n/ logz n. We can accomplish this by

composing hlo with another function that will map into the
range O...l -l.

However, in the process we can, if we are clever, accom-

plish a third goat. In particular, we wish to separate the lkeys

into two major groupings. Our second function, then, is re-

ally accomplished by two functions that operate upon disjoint

portions of O...l -l.

hll : {o ,..., P1}+{O,O, P2.1}2 -1}

h12 : {Pl ,... ,1}+{ ~,~,, b,1}–l}

These, together with hlo, accomplish the mapping from

keys to buckets.

bucket(k) =

Thus, the mapping

{

hll o hlo if hlo(k) < PI

h12 o hlo otherwise

function bucket(k) is composed of

three functions: hlo randomly distributes keys into an auxil-

iary integer set {O,... , n – 1}, hll and h12 in turn randomly

deliver them into B, in particular into the unequal size subsets

B1 and B2. Note that h] 1 and h12 depend on two parame-
ters pl and ~. Good values for these two parameters are

experimentally determined to be around 0.6n and 0.3b, re-

spectively.

What this means is that roughly 60910of the keys (since

P1 = 0.671 and hlo is likely to be relatively uniform at a

269

coarse level) are mapped into roughly 30% of the buckets

(since ~ = 0.3n), i.e., l?l = {O,..., ~ – 1}. In effect, we

are forcing the buckets produced by hl 1 to each hold many

keys. This is fine, since our earlier work with searching

indicates that large groups of keys can be managed if dealt

with early in the search process.

At the same time, the other 40% of the keys are “spread”

by hlz into 70% of the buckets, i.e., B2 = {~,... ,b–

1}, yielding fewer keys per bucket. This is handy since

during searching it is desirable to have small groups of keys

processed towards the end of the operation.

In summary, the Mapping stage, illustrated in Figure 5,

accomplishes our goals of mapping to integers, compressing

the range of integers, and separating big from smatl groupings

of keys.

4.2 Ordering

During the Ordering stage, illustrated in the top portion of

Figure 5, we use the organization developed during Mapping

to prepare for Searching. The key features of this stage are

as follows.

●

●

Buckets are ordered by decreasing sizes to obtain the

bucket sequence

{Bo)O,Bo,J,..., Bo,b_l}.

(where the subscript o designates ordered buckets as

opposed to initial buckets)

Bucket sorting can be used as the maximal number of

keys in B is known.

Analysis indicates that because of our use of pseudo-

random functions at each stage of the Mapping stage, we

can estimate the number of buckets of each size. Even for

very large key sets the largest buckets will have relatively

small sizes. Clearly then a single pass through the buckets

will yield the desired bucket sequence. Searching processes

all keys in a bucket together, and proceeds from the largest

to the smallest buckets.

4.3 Searching

The Searching stage involves choosing a logz n + 1 bit pa-
rameter value go for each of the buckets, so that each key in

each bucket can be mapped by the finally constructed hash

function, h, to a previously unused slot in the hash table T,
Essentially, the group of keys in a bucket must all be “fit”

into Tat the same time, since they are mutually constrained

by virtue of the earlier processing that put them into the same

bucket. Choosing the parameter value for the bucket must

assure that its “pattern” of entries can be “fit” into open slots

in T. As we try different g () values, we “rotate” the pattern

until we find a good fit.

The Searching process maps keys in each bucket Bo,i to

T via the function h:

h20 : Sx{o,l} +{o,...,1}l}

h(~) = {ko(k, d) + g(B.,j)} mod n.

This final hashing function ho has simple form and is

easily computable for any key in S. It is formed as the sum

of two values.

h20 is a pseudo-random function mapping keys in each

B.,i to distinct values in {O, n– 1}. Recall that log2 n+ 1

bits are allocated to each bucket. A designated bit d in

these bits is used by h20 as part of the seed. As O and
1 can be the value ford, hzo can generate two different

sets of integers for keys in Bo,i. This adds a degree of
freedom to the searching, avoiding failures by changing

the d values as needed. An integer r globrd to atl buckets

has also been used as part of the seed to hzo. Should

some bucket fail to be mapped to distinct integers, a

new value for r is tried. With the help of r, the same

bucket sequence can be maintained. In the following,

we use the term pattern set Pi for the set of values of

h20 corresponding to keys in Bo,i.

Each g(BO,i) takes log2 n bits.

g(&+) ro~tes the pattern set for a fit.

g(Bo,i) can be selected by aligning an item in thepattem

with an empty slot in T. (This is an important heuristic

to improve efficiency.)

4.3.1 Auxiliary Data Structure

During the Searching phase, a considerable speedup results

from using an auxiliary index data structure to locate empty

slots. Recall that a tit means that h maps each member in

the pattern set Pi to an empty slot. Therefore, an arbitrary

member in Pi can be aligned with an empty slot, and testing

can then determine whether the remaining members fit into

other empty slots. A proper alignment then yields a proper g

value. We define

x E the index of the empty slot, and

u s the member of Pi to be aligned with z.

The rotation offset or g(Bo,i) is (x – u) mod n. The method

gives considerable speedup when key sets are of moderate to

large size.

Figure 6 illustrates the auxiliary index data structure,

along with the hash table. In the program and diagram,

there are three arrays called randomTable, mapTable

and hashTable. The randomTable [0, n–1] array is

used to remember currently empty slots in the hash table.

As it is preferable for each Pi to fill the hash table in a

270

Before

filledcount Slot Selected

r?.ndomTable

mapTable

I #

hashTrible

v

After

Slot Switched
fiUedCount O“

rmdmnTab,. M

B
Stands fel tk htd?x of

1

contains the in&x of tbe

a filled da first empty S1C4

o :%%-x”f l! %%%%”f

hashTable mapTsble

u
stmclsfor an empty

0
centaim8Pintcr to an entry

slot in the Randm Tabk

8

stmdsfmllfilkd
slot

Figure 6: Auxiliary Index Data Structure and Filling of a

Hash Table Slot

random fashion, this array initially contains a random per-

mutation of the hash addresses in [0, n – 1]. The pointer

f illedCount is initially O. It is an invariant that any slots

to the right side of f i 1 ledCount (inclusive) are empty

and any ones to the left are filled. This property guaran-

t~ only empty slots are searched to fit Pi. For any un-
filled slot z in hashTable [] , the mapTable [0, n-1]

array contains pointers pointing at randomTable [] such

that randomTable [mapTable [z]] s x. Thus, given

an empty slot z in the hash table, we can locate its posi-

tion in the randomTable [] array through mapTable [] .

Suppose a slot v of ha.shTable, which is referred to in

location y in randomTable [] , needs to be filled and

the invariant needs to be maintained after the filling ac-

tion. Then we can just switch the pointers corresponding

to mapTable [randomTable [f i-lledCount]] and

mapTable [y] and advance f illedCount right one po-

sition. See the positions of the two differently shaded boxes

in the topmost part of Figure 6. When IPi I > 1, a sequence

of switching is required.

4.3.2 Analysis of Tests Required to Fit a Pattern

Analytical study of the Search process lets us predict the

number of tests that are needed during searching. The cost

of fitting a pattern of size j into a n slots hash table T with ~

slots already filled can be approximated in the following way.
The total number of slot subse~ of size j from T is (~), out

Table 1: Number of Tests — Average vs. Expected Value

of which only ~ ~f) can fit the pattern. Imagine (~) subsets

as (~) balls in a bag, and among them W_ G ~ ~f) are white

bal~ and Bj s ~) – ~~~) are black balls. The cost of fitting

the pattern is equivalent to repeatedly drawing batls from the

bag until the first white ball is seen, without putting ‘back

previously drawn black balls. Let ~ be a random variable

equating to the number of draws to obtain the first white ball

in such an experiment. We have

(
?–1

Pr(~ = z) =
n

Bj–r

)

WJ

,=OBj+Wj–~ Bj+Wj’

When j is small and n is huge, the fitting process can be

approximated as a Bernoulli experiment where the balls after

being drawn are returned to the bag. Let -Zj be a random

variable equating to the number of draws to obtain the first

white batl in the Bernoulli experiment. We have

Pr(Zj = %) = (Bj~wj)z-’Bj~w
Let

Wj
p = Bj+wj”

Then, the expected value of Zj is 1/p.

This simple formula can be used in the algorithm to predict

the number of tests for a fit. If the predicated value is too
large (> n), then there is no point to attempt fitting the pattern.

The expected values closely match those found empirically,

as given in Table 1.

This situation is further illustrated in Figure 7, which

records the number of tests required during the Searching

271

T@s F!ucketSize
50W . ~

4m
15

Som

to

XiM

1
low I I

5

0 0
1 84 167 254 333 4t6 499 582 W5 74s

Bucket Sequence

Tests ve Bucket Sizes (keys 4)ss, bilsikey = 2.s)

Figure 7: Tests vs. Bucket Sizes – 4K keys, 2.6 bits/key

stage. The horizontal axis shows the progression over time

as buckets are processed. The staircase curve shows the size

of the buckets as they are handled. The labels on the right

show the range of bucket sizes, from less than 20 down to 1.

‘l%e number of tests required to handle each bucket, as indi-

cated by labels on the left, is shown by the many “spikes” near

the horizontal axis (but sometimes rising to over 4000, which

indicates that the original designated bit d for the bucket did

not work and had to be changed). In general, the number of

tests required is relatively small.

In summary, the Searching phase computes go values

that properly rotate patterns until all elements of a bucket fit

into the hash table. Our auxiliary data structure speeds up

searching by assuring we make tests in a random fashion,

by avoiding tests involving previously filled slots, and by

reducing the number of memory accesses for each test. Our

analysis yields an estimate for the number of tests needed at

any given stage of the processing, allowing us to omit testing

when failure is likely. Empirical studies show our estimates

to be quite accurate, indicating that Searching is generally
fast.

4.4 Timing Results

Algorithm 3 has been applied to a wide variety of key sets,

frOm small ones to very hrge onm. A 256-key get md the
resulting hash function specification, for example, is shown

in its entirety in [4]. The 3.8 million key set used in previous

studies has been processed using Algorithm 3 with param-

eters set to obtain MPHFs with 2.4 up to 3.5 bits per key.

Results are given in Table 2. Note that our algorithm pro-

cesses very large key sets in “chunks” which are saved on

disk when all cannot fit into primary memory.

Figure 8 illustrates how the Searching time, and hence

the total time, for finding MPHFs varies with bits per key

requirements. We have found similar behavior with a key set

of French words numbering approximately one half million.

Bits/Key Map Order Search Total

2.4 1890 5928 35889 43706

2.5 1886 5936 25521 33343

2.6 1887 5978 18938 26802

2.7 1887 6048 14486 22421

2.8 1897 6170 11602 19669

2.9 1894 6088 9524 17506

3.0 1905 6108 8083 16095

3.1 1894 6119 6998 15011

3.2 1885 6141 6110 14136

3.3 1884 6224 5436 13544

3.4 1886 6197 4958 13041

3.5 1886 6191 4586 12663
Not& CPU times are for NeXTstation

(68040, 64MB), cc++ v.1.36.4,

GNU g++ library v.1.39,

3,875,766 keys in 5 chunks (of 800K)

Table 2: Timing Results for Algorithm 2

0
2.4 ‘2.6 2.8 3.0 3.2 3.4

BiwKP.y

6

Figure 8: Plot of Table 2 Timing Results

Algorithm 3 seems to be able to find MPHFs for very large

key sets using less than 3 bits per key of specification space,

the most space efficient results that have been reported to

date. Note that when more than 3 bits per key are used,
there is a linear relationship between key set size and total

time to find an MP~, as the lower bound for bits per key

is approached, the time required grows rapidly as more and
more time is used to fit a bucket into the hash table during

the Searching process.

Note that Algorithm 3 was able to find an MPHF for the

3.8 million key set in about 6 hours on a NeXT workstation,

with 2.7 bits per key. This translates into about a megabyte of

space needed to store the MPHF specification for one of the

largest key sets we have been able to identify, suggesting that

Algorithm 3 is quite feasible for use on modem workstations.

272

5 Conclusion

This paper has discussed a new fast algorithm for finding

minimal perfect hash functions. Even the largest key set we

have found can be processed in a number of hours on modem

workstations using our new algorithm. With about 2.5 bits

per key of space for the MPHF specification, single access to

a key is guaranteed, using a fully loaded hash table.

The algorithm described has been applied to the problem of

tie compaction, yielding efficient operation with greatly re-

duced space utilization. A related algorithm, for bin hashing,

where m = kb keys are perfectly distributed into b buckets

each holding a group of k keys, has also been developed.

These two methods are included in the LEND system and

explained in [4], along with discussions regarding the utility

of hashing methods for information retrievat applications.

6 Acknowledgements

Professor Abraham Bookstein provided the large French

word list used in our study from the ARTFL Project at the

University of Chicago. Dr. Martin Dillon, of OCLC Inc. in

Dublin, Ohio provided the data used in our 3.8 million key

file from their catalog records.

References

[1]

[2]

[3]

[4]

[5]

[6]

Richard Bamhart. The Advanced Naval Message An-

alyzer. Videotape production, VPI&SU, November

1990. Richard Bamhart as host, producer, script-writec

Edward Fox as executive producer, project director.

Discusses the CODER system.

N. Cercone, M. Krause, and J. Boates. Minimat and

almost minimal perfect hash function search with ap-

plication to natural language lexicon design. Computers

and Mathematics with Applications, 9:215-231, 1983.

C. C. Chang. Letter oriented reciprocal hashing scheme.

Information Sciences, 38:243–255, 1986.

Qi Fan Chen. An object-oriented database system for

efficient information retrieval applications. PhD thesis,

Virginia Tech Dept. of Computer Science, March 1992.

R. J. Cichelli. Minimal perfect hash functions made

simple. Communications of the Association for Com-

puting Machinery, 23: 17–19, 19g0.

E. A. Fox and Robert K. France. Architecture of an

expert system for composite document analysis, rep-

resentation and retrieval. International Journal of Ap-

proximate Reasoning, l(l): 151-175,1987.

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Edward A. Fox. Development of the CODER system.

A testbed for artificial intelligence methods in informa-

tion retrieval. Information Processing & Management,

23(4):341-366, 1987.

Edward A. Fox, Qi Fan Chen, Amjad M. Daoud, and

Lenwood S. Heath. Order-preserving minimal perfect

hash functions and information retrieval. ACM Transac-

tionson Information Systems, 9(3):281 -308,July 1991.

Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and

Amjad M. Daoud. Practical minimal perfect hash func-

tions for large databases. Communications of the Asso-

ciation for Computing Machinery, 35(l): 105–1 21, Jan-

Ullly 1992.

Edward A. Fox, M. Prabhakar Koushik, Qi Fan Chen,

and Robert K. France. Integrated access to a large med-

ical literature database. Technical Report TR-91- 15,

Department of Computer Science, Virginia Polytechnic

Institute and State University, Blacksburg, VA, May

1991.

M. L. Fredman and J. Kom16s. On the size of separating

systems and families of perfect hash functions. SLAM

Journal on Algebraic and Discrete Methods, 5;61-68,

1984.

M. L. Fredman, J. Kom16s, and E. Szemer6di. Storing a

sparse table with 0(1) worst case access time. Journal

of the Association for Computing Machineq, 31 :538–

544,1984.

G. Jaeschke. Reciprocal hashing – a method for gener-

ating minimal perfect hash functions. Communications

of the Association for Computing Machinery, 24:829–

833,1981.

K. Mehlhom. On the program size of perfect and univer-

sal hash functions. In Proceedings of the 23rd Annual

IEEE Symposium on Foundations of Computer Science,

pages 170-175,1982.

P. K. Pearson. Fast hashing of variable-length text

strings. Communications of the Association for Com-

puting Machinery, 33(6):677-680, June 1990.

T. J. Sager. A polynomial time generator for minimal

perfect hash functions. Communications of lhe Associ-

ation for Computing Machinery, 28:523–532, 1985.

M. Weaver, R. France, Q. Chen, and E. Fox. Using a

frame-based language for information retrieval. Inter-

national Journal of Intelligent Systems, 4(3):223–257,
1989.

273

