
Fabiano Cupertino Botelho

Orientador - Nivio Ziviani

Algoritmos de Espaço Quase Ótimo

Para Hashing Perfeito

Proposta de tese de doutorado apresentada

ao Curso de Pós-Graduação em Ciência da

Computação da Universidade Federal de

Minas Gerais, como requisito parcial para

a obtenção do grau de doutor em Ciência

da Computação.

Belo Horizonte
January 7, 2008

Abstract

A perfect hash function (PHF) h : U → [0, m−1] for a key set S is a function that maps

the keys of S to unique values. A minimal perfect hash function (MPHF) is a PHF with

the smallest range, i.e., m = n. The minimum amount of space to represent a PHF for a

given set S is known to be approximately 1.4427n2/m bits, where n = |S|. Minimal perfect

hash functions are widely used for memory efficient storage and fast retrieval of items from

static sets, such as words in natural languages, reserved words in programming languages

or interactive systems, universal resource locations (URLs) in web search engines, or item

sets in data mining techniques.

The main results of this thesis proposal are the design, analysis and implementation

of: (i) internal memory based algorithms that assume uniform hashing to build PHFs

(for m = 1.23n) and MPHFs (for m = n) based on random graphs, and (ii) an external

memory based algorithm that has experimentally proven practicality for sets in the order of

billions of keys and has time and space usage carefully analyzed without assuming uniform

hashing, which is an unrealistic assumption because each uniform hash function requires

Ω(|U | log m) bits of storage space.

Both internal and external algorithms have the following properties: (i) evaluation of

a PHF or a MPHF requires constant time, (ii) the algorithms are simple to describe and

implement, and generate the functions in linear time, (iii) the amount of space needed

to represent a PHF is 1.95n bits and a MPHF is 2.62n bits, which is around a factor

of 2 from the information theoretical minimum of approximately 1.17n and 1.4427n bits,

respectively. Therefore, the algorithms give low space usage for realistic values of n. No

previously known algorithm has these properties. To our knowledge, any algorithm in the

literature with the third property either: (i) requires exponential time for construction and

evaluation, or (ii) uses near-optimal space only asymptotically, for extremely large n.

The external memory based algorithm achieves an order-of-magnitude increase in

the size of the problem to be solved compared to previous “practical” methods. We

demonstrate the scalability of our algorithm by constructing minimum perfect hash

functions for a set of 1.024 billion URLs from the World Wide Web of average length

64 characters in approximately 62 minutes, using a commodity PC.

i

Resumo

Uma função hash perfeita (FHP) h : U → [0, m − 1] para um conjunto de chaves S é

uma função que mapeia as chaves de S para valores únicos. Uma função hash perfeita

mı́nima (FHPM) é uma FHP com o menor intervalo, isto é, m = n. A quantidade

mı́nima de espaço para representar uma FHP para um dado conjunto S é aproximadamente

1.4427n2/m bits, onde n = |S|. Funções hash perfeitas mı́nimas são amplamente utilizadas

para armazenamento eficiente e recuperação rápida de itens de conjuntos estáticos, como

palavras em linguagem natural, palavras reservadas em linguagens de programação ou

sistemas interativos, URLs (universal resource locations) em máquinas de busca, ou

conjuntos de itens em técnicas de mineração de dados.

Os principais resultados desta proposta de tese são o projeto, análise e implementação

de: (i) algoritmos baseados em memória interna que assumem hashing uniforme para

construir FHPs (para m = 1.23n) e FHPMs (para m = n) baseados em grafos randômicos,

e (ii) um algoritmo baseado em memória externa que pode ser utilizado na prática

para conjuntos contendo bilhões de chaves que tem complexidade de tempo e espaço

cuidadosamente analisados sem assumir hashing uniforme, a qual é uma suposição não

realista porque cada função hash uniforme requer Ω(|U | log m) bits para ser armazenada.

Ambos algoritmos internos e externo tem as seguintes propriedades: (i) avaliação de

uma FHP ou uma FHPM requer tempo constante, (ii) os algoritmos são simples para

descrever e implementar, e geram as funções em tempo linear, (iii) a quantidade de espaço

necessário para representar uma FHP é 1.95n bits e uma FHPM é 1.4427n bits, o qual

está em torno de um fator de 2 distante do mı́nimo teórico de aproximadamente 1.17n e

1.4427n bits, respectivamente. Portanto, os algoritmos geram funções com baixa utilização

de espaço na representação e na geração para valores de n reaĺısticos. Nenhum algoritmo

conhecido anteriormente possui estas propriedades. Pelo que sabemos, qualquer algoritmo

da literatura com a terceira propriedade tem um dos seguintes problemas: (i) requer tempo

exponencial para construir e avaliar a função resultante, ou (ii) usa espaço quase ótimo

somente assintóticamente, para valores de n extremamente grandes.

O algoritmo baseado em memória externa alcança um almento de uma ordem de

magnitude no tamanho do problema a ser resolvido, quando comparado à métodos

“práticos” anteriormente publicados. Nós demonstramos a escalabilidade do nosso

algoritmo gerando uma FHPM para um conjunto com 1.024 bilhões de URLs da World

Wide Web, cada uma com 64 caracteres na média, em aproximadamente 62 minutos,

usando um simples PC.

ii

Accepted and Submitted Papers

1. F.C. Botelho, Y. Kohayakawa, and N. Ziviani. A practical minimal perfect hashing

method. In Proceedings of the 4th International Workshop on Efficient and

Experimental Algorithms (WEA’05), pages 488–500. Springer LNCS vol. 3503,

2005.

2. F.C. Botelho, R. Pagh, and N. Ziviani. Simple and Space-Efficient Minimal Perfect

Hash Functions. Proceedings of the 10th Workshop on Algorithms and Data

Structures (WADs’07), pages 139–150. Springer LNCS vol. 4619, 2007. To appear.

3. F.C. Botelho, and N. Ziviani. External Perfect Hashing for Very Large Key Sets.

Submitted to 16th Conference on Information and Knowledge Management, 2007.

iii

iv

Near Space-Optimal Perfect Hashing

Algorithms

v

vi

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Motivation . 1

1.2 Basic Concepts and Notation . 4

1.3 Related work . 6

1.3.1 Theoretical results . 7

1.3.2 Practical results that assume uniform hashing 8

1.3.3 Empirical results . 10

1.4 Objectives and Initial Contributions . 10

1.5 Organization of this Work . 12

2 A practical minimal perfect hashing method 13

2.1 The CHM algorithm . 14

2.2 Our algorithm . 16

2.2.1 Mapping Step . 17

2.2.2 Ordering Step . 19

2.2.3 Searching Step . 20

2.3 Experimental Results . 25

2.4 Conclusion . 27

3 A family of near space-optimal algorithms 29

3.1 The family of algorithms . 29

3.1.1 Mapping Step . 32

3.1.2 Assigning Step . 34

vii

3.1.3 Ranking Step . 36

3.1.4 Evaluating the Resulting Functions 37

3.2 The Uniform Hashing Assumption . 38

3.3 Storage Requirements for the Resulting Functions 39

3.3.1 The 2-Graph Instance . 40

3.3.2 The 3-Graph Instance . 41

3.4 Experimental Results . 41

3.5 Conclusions . 43

4 A scalable minimal perfect hashing method 45

4.1 The EPH algorithm . 46

4.1.1 Implementation of the EPH algorithm 47

4.1.2 The algorithm used for the buckets 51

4.1.3 Hash functions used by the EPH algorithm 53

4.2 Analytical results . 56

4.2.1 The linear time complexity . 56

4.2.2 Space used for constructing a MPHF 57

4.2.3 Analysis of the hash functions . 58

4.3 Experimental results . 59

4.3.1 The data and the experimental setup 59

4.3.2 Performance of the algorithms . 59

4.3.3 Controlling disk accesses . 64

4.4 Conclusions . 65

5 Conclusions and Future Work 67

5.1 Conclusions . 67

5.2 Future Work . 69

Bibliography 71

viii

List of Figures

1.1 (a) Perfect hash function (b) Minimal perfect hash function 2

2.1 Perfect assignment problem for a graph with six vertices and five edges . . 15

2.2 Main steps of the algorithm for constructing a minimal perfect hash function 16

2.3 Ordering step for a graph with 9 vertices and 8 edges 20

2.4 Example of the assignment of values to critical vertices 21

2.5 Example of the assignment of values to non-critical vertices 22

3.1 (a) Mapping step generates a bipartite 2−graph. (b) Assigning step builds

a labeling g so that each edge is uniquely assigned to a vertex. (c) Ranking

step builds a function rank : V → [0, n − 1] 30

3.2 Main steps of the family of algorithms . 31

3.3 . 32

3.4 Mapping step . 33

3.5 Values of c(r) for r ∈ {2, 3, . . . , 10}, previously reported in [42] 34

3.6 Example of the assigning step . 35

3.7 Assigning step . 35

3.8 Ranking step . 36

3.9 Example of the Ranking step . 36

3.10 Generation of the lookup table Tr . 37

3.11 Pseudo code for the PHF presented in Eq. (3.1) 38

3.12 Pseudo code for the MPHF presented in Eq. (3.2) 38

4.1 Main steps of the EPH algorithm . 46

4.2 Partitioning step . 48

4.3 Situation of the buckets at the end of the partitioning step: (a) Logical view

(b) Physical view . 49

4.4 Searching step . 50

ix

4.5 Reading a bucket . 50

4.6 (a) Mapping step generates a bipartite graph (b) Assigning step generates

a labeling g so that each edge is uniquely associated with one of its vertices

(c) Ranking step builds a function rank : V → [0, n − 1] 51

4.7 Partitioning time and searching time versus number of keys in S for the

EPH algorithm. The solid line corresponds to a linear regression model for

the total time. 61

x

List of Tables

2.1 Determining the c value theoretically . 18

2.2 Probability P|Ecrit| that |E(Gcrit)| ≤ n/2 for different c values and different

number of keys for a collections of URLs 18

2.3 The maximal value of Nt for different number of URLs 24

2.4 Main characteristics of the algorithms . 25

2.5 Time measurements for our algorithm and the CHM algorithm 26

2.6 Time measurements for our tuned algorithm with c = 1.00 and c = 0.93 . . 27

3.1 Comparison of the algorithms for constructing MPHFs considering

generation time and storage space, and using n = 3, 541, 615 for the two

collections . 42

3.2 Comparison of the algorithms considering evaluation time and using the

collections IPs and URLs with n = 3, 541, 615 43

3.3 Comparison of the PHFs and MPHFs generated by our algorithms,

considering generation time, evaluation time and storage space metrics using

n = 3, 541, 615 for the two collections. For packed schemes see Sections 3.3.1

and 3.3.2 . 44

3.4 Comparison of the algorithms considering evaluation time and using the

collections IPs and URLs with n = 15, 000, 000 44

4.1 EPH algorithm: average time in seconds for constructing a MPHF with

confidence level of 95% in a PC using 200 megabytes of internal memory. . 60

4.2 Heuristic BPZ algorithm: space usage to respectively store the resulting

PHFs and MPHFs. 62

4.3 EPH algorithm: space usage to respectively store the resulting PHFs and

MPHFs. 62

xi

4.4 Construction time and storage space without considering the fixed cost to

store lookup tables. 63

4.5 Evaluation time. 64

4.6 Influence of the internal memory area size (µ) in the EPH algorithm runtime

to construct PHFs or MPHFs for 1.024 billion keys (time in minutes). . . . 65

xii

Chapter 1

Introduction

Ubiquitous in areas including artificial intellegence, data structures, database, data mining

and information retrieval is the need to access items based on the value of a key. Some

types of databases are updated only rarely, typically by periodic batch updates. This is

true, for example, for most data warehousing applications (see [53] for more examples and

discussion). In such scenarios it is possible to improve query performance by creating very

compact representations of keys by minimal perfect hash functions. In applications where

the set of keys is fixed for a long period of time the construction of a minimal perfect hash

function can be done as part of the preprocessing phase. For example, On-Line Analytical

Processing (OLAP) applications use extensive preprocessing of data to allow very fast

evaluation of certain types of queries.

Perfect hashing is a space-efficient way of creating compact representation for a static

set S of n keys. For applications with successful searches, the representation of a key x ∈ S

is simply the value h(x), where h is a perfect hash function (PHF) for the set S of values

considered. The word “perfect” refers to the fact that the function will map the elements

of S to unique values (is identity preserving). Minimal perfect hash function (MPHF)

produces values that are integers in the range [0, n − 1], which is the smallest possible

range. Figure 1.1(a) illustrates a perfect hash function and Figure 1.1(b) illustrates a

minimal perfect hash function.

1.1 Motivation

Minimal perfect hash functions are widely used for memory efficient storage and fast

retrieval of items from static sets, such as words in natural languages, reserved words

1

2 CHAPTER 1. INTRODUCTION

0 n−1...21

0 n−1...21

Hash Table

Key Set

0 n−121 ...

(b)

210 ... m−1

Key Set

Hash Table

(a)

Figure 1.1: (a) Perfect hash function (b) Minimal perfect hash function

in programming languages or interactive systems, universal resource locations (URLs) in

web search engines, or item sets in data mining techniques. Search engines are nowadays

indexing tens of billions of pages and algorithms like PageRank [11], which uses the web

link structure to derive a measure of popularity for Web pages, would benefit from a MPHF

for storage and retrieval of billions of URLs.

Until now, because of the limitations of current algorithms, the use of MPHFs is

restricted to scenarios where the set of keys being hashed is relatively small. However,

in many cases it is crucial to deal in an efficient way with very large sets of keys. In the

IR community, the work with huge collections is a daily task. For instance, the simple

assignment of number identifiers to web pages of a collection can be a challenging task.

While traditional databases simply cannot handle more traffic once the working set of

URLs does not fit in main memory anymore, one of the algorithms we propose here to

construct MPHFs can easily scale to billions of entries.

We now present some examples where minimal perfect hash functions have successfully

been applied to:� A perfect hash function can be used to implement a data structure with the same

functionality as a Bloom filter [45]1. In many applications where a set S of elements

is to be stored, it is acceptable to include in the set some false positives with a small

probability by storing a signature for each perfect hash value. This data structure

1The Bloom filter, conceived by Burton H. Bloom in 1970, is a space-efficient probabilistic data structure

that is used to test whether an element is a member of a set. False positives are possible, but false negatives

are not. Elements can be added to the set, but not removed (though this can be addressed with a counting

filter). The more elements that are added to the set, the larger the probability of false positives.

1.1. MOTIVATION 3

requires around 30% less space usage when compared with Bloom filters, plus the

space for the perfect hash function. Bloom filters have applications in distributed

databases and data mining (association rule mining [14, 15]).� Perfect hash functions have also been used to speed up the partitioned hash-join

algorithm presented in [43]. By using a perfect hash function to reduce the targeted

hash-bucket size from 4 tuples to just 1 tuple they have avoided following the bucket-

chain during hash-lookups that causes too many cache and translation lookaside

buffer (TLB) misses.� Suppose there is a composite foreign key to a table T of size n. Then the size of the

key needed in T will typically be larger than log n. For example, suppose tuples of R

contain geographical coordinates that are used as foreign key references. Replacing

the coordinates with a surrogate key may be a bad choice if common queries on R

involve conditions on the coordinates, as a join would be required to retrieve the

coordinates. In general, if we have a natural foreign key that carries information

relevant for queries, we can avoid the cost of additionally storing a surrogate key.

The perfect hash function used depends on the set S of distinct key values that occur.

It is known that maintaining a perfect hash function dynamically under insertions into S

is only possible using space that is super-linear in n [20]. However, in this thesis proposal

we consider the case where S is fixed, and construction of a perfect hash function can be

done as part of the preprocessing of data (e.g., in a data warehouse). To the best of our

knowledge, previously suggested perfect hashing methods have not been able to generate

functions for realistic data sizes that require a number of bits to be stored close to the

theoretical lower bound, which is around 1.4427n bits (see in Section 1.2 an intuitive proof

and refer to [19] for a complete proof). Second, all previous methods suffer from either

an incomplete theoretical understanding (so there is no guarantee that it works well on a

given data set) or seems impractical due to a very intricate and time-consuming evaluation

procedure.

Though there has been considerable work on how to construct good perfect hash

functions, there is a gap between theory and practice among all previous methods

on minimal perfect hashing. On one side, there are good theoretical results without

experimentally proven practicality for large key sets. On the other side, there are the

theoretically analyzed time and space usage algorithms that assume that uniform random

hash functions are available for free (see Definition 3 in Section 1.2), which is an unrealistic

4 CHAPTER 1. INTRODUCTION

assumption.

Our aim in this thesis proposal is twofold. First, we present new algorithms for

constructing MPHFs in the internal memory that, as usual, assume uniform hashing and

require O(n) computer words in the generation process. The algorithms outperform the

main practical algorithms available in the literature. Second, we have used a number of

techniques from the literature to obtain a scalable external memory based algorithm that

is theoretically well-understood because it does not assume uniform hashing. Also, the

algorithm requires just O(N) computer words, where N ≪ n in the generation process.

That is why it achieves an order-of-magnitude in the size of the greatest key set for which

a MPHF was obtained in the literature [8] on a commodity PC. This improvement comes

from a combination of a novel, theoretically optimal perfect hashing scheme that greatly

simplifies previous methods, and the fact that our algorithm is designed to make good use

of the memory hierarchy.

1.2 Basic Concepts and Notation

In this section we present the basic concepts and notation used throughout this thesis

proposal.

Definition 1 Let U be an universe of keys of size u and let S be a subset of U containing

n keys, where n ≪ u. Each key is made up by symbols from a finite an ordered alphabet

Σ of size |Σ|. The maximum size of a key is denoted by L.

Definition 2 Let h : U → M be a hash function that maps the keys from U to a given

interval of integers M = [0, m − 1] = {0, 1, . . . , m − 1}. Given a key x ∈ S, the hash

function h computes an integer in [0, m − 1].

Definition 3 Uniform hash assumption: the classic analysis of hashing schemes often

entails the assumption that the hash functions used are uniformly chosen at random among

all the functions from U to M , where u = |U | and m = |M |. There are mu possible hash

functions because each element of U can be mapped to anyone of the m integers from the

range M . This assumption is impractical since just specifying such a function requires

O(u log m) bits2, which usually far exceeds the available storage.

2Throughout the thesis proposal we denote log2 x as log x

1.2. BASIC CONCEPTS AND NOTATION 5

Fortunately in most cases heuristic hash functions behave very closely to the expected

behavior of random hash functions, but there are cases when rigorous probabilistic

guarantees are necessary [12]. For instance, various adaptive hashing schemes presume

that a hash function with certain prescribed properties can be found in constant expected

time. This holds if the function is chosen uniformly at random from all possible functions

until a suitable one is found but not necessarily if the search is limited to a smaller set

of functions. This situation has led Carter and Wegman [13] to the concept of universal

hashing.

Definition 4 A family of hash functions H is defined as weakly universal if for any pair

of distinct elements x1, x2 ∈ U and h is chosen uniformly at random from H then

Pr(h(x1) = h(x2)) ≤ 1

m
.

Definition 5 A family of hash functions H is defined as strongly universal or pair-wise

independent if for any pair of distinct elements x1, x2 ∈ U and arbitrary y1, y2 ∈ M then

Pr(h(x1) = y1 and h(x2) = y2) =
1

m2
.

It turns out that in many situations the analysis of various hashing schemes can be

completed under the weaker assumption that h is chosen uniformly at random from an

universal family, rather than the assumption that h is chosen uniformly at random from

among all possible functions. In other words, limited randomness suffices in practice [52].

Definition 6 A perfect hash function phf : S → M is an injection on S. That is, for all

pair s1, s2 ∈ S such that s1 6= s2, then phf(s1) 6= phf(s2), where m ≥ n. For being an

injection, phf maps each key in S to an unique integer in M , as shown in Figure 1.1 (a). As

no collisions occur, if phf is used to index a hash table of size m with n records identified

by the n keys in S, each record can be retrieved in one probe.

Definition 7 A minimal perfect hash function mphf : S → M is a bijection on S. That

is, each key in S is mapped to an unique integer in M , and m = n, as shown in Figure 1.1

(b).

Definition 8 A perfect hash function is order-preserving if for any pair of keys si and

sj ∈ S then phf(si) < phf(sj) if and only if i < j.

Theorem 1 Every perfect hash function phf : S → M , where |S| = n and |M | = m,

requires at least n2−n
2m

log e bits to be stored.

6 CHAPTER 1. INTRODUCTION

Proof: The probability that randomly mapping n elements into a range of size m without

collisions (i.e., results in a PHF) is:

Prph(n, m) =
(m − 1)(m − 2) . . . (m − n + 1)

mn
=

(

1 − 1

m

) (

1 − 2

m

)

. . .

(

1 − n − 1

m

)

When the table is large (i.e. m ≫ n), we can use the approximation ex = 1 + x for small

x to obtain:

Prph(n, m) ≈ e−1/m · e−2/m · · · e−(n−1)/m

≈ e−(1+2+3+(n−1))/m

≈ e−(n2−n)/2m

Thus, the presence of a hash collision is highly likely when the table size m is much less

than n2. This is an instance of the well known “birthday paradox”, which says that in a

group of only 23 people have more than 50% chance of having at least one shared birthday.

Therefore, at least 1/Prph(n, m) = e(n2−n)/2m hash functions are required to generate a

PHF. Thus, at least n2−n
2m

log e bits are required to encode that set of hash functions. �

Theorem 2 Every minimal perfect hash function mphf : S → M , where |S| = n and

|M | = m = n, requires at least n log e bits to be stored.

Proof: The probability of finding a minimal perfect hash (where n = m) is:

Prmph(n, n) =
n!

nn
= elog n!−n log n ≈ e(n log n−n)−n log n = e−n

which uses Stirling’s approximation log n! ≈ n log n − n. Therefore, the expected

number of bits needed to describe these rare minimal perfect hash functions is at least

log(1/Prmph(n, n)) = n log e, intuitively. �.

The above proofs have been previously reported by Fox et al [28] based on earlier

analysis by Mehlhorn [44].

1.3 Related work

There is a gap between theory and practice among minimal perfect hashing methods. On

one side, there are good theoretical results without experimentally proven practicality for

large key sets. We will argue below that these methods are indeed not practical. On

1.3. RELATED WORK 7

the other side, there are two categories of practical algorithms: the theoretically analyzed

time and space usage algorithms that assume uniform random hash functions for their

methods, which is an unrealistic assumption, and the algorithms that present only empirical

evidences. The aim of this section is to discuss the existent gap among these three types

of algorithms available in the literature.

1.3.1 Theoretical results

In this section we review some of the most important theoretical results on minimal perfect

hashing. For a complete survey until 1997 refer to Czech, Havas and Majewski [19].

Fredman, Komlós and Szemerédi [30] proved, using a counting argument, that at least

n log e + log log u − O(log n) bits are required to represent a MPHF, provided that u ≥
nα for some α > 2. In general, for m > n the space required to represent a PHF is

around (1 + (m/n− 1) ln(1− n/m)) n log e bits. A simpler proof of this was later given by

Radhakrishnan [51].

Mehlhorn [44] has made this bound almost tight by providing an algorithm that

constructs a MPHF that can be represented with at most n log e+log log u+O(log n) bits.

However, his algorithm is far away from practice because its construction and evaluation

time is exponential on n (i.e., nθ(nenu log u)).

Schmidt and Siegel [52] proposed the first algorithm for constructing a MPHF with

constant evaluation time and description size O(n+log log u) bits. Their algorithm, as well

as all other algorithms we will consider, is for the Word RAM model of computation [31].

In this model an element of the universe U fits into one machine word, and arithmetic

operations and memory accesses have unit cost. From a practical point of view, the

algorithm of Schmidt and Siegel is not attractive. The scheme is complicated to implement

and the constant of the space bound is large: For a set of n keys, at least 29n bits are used,

which means a space usage similar in practice to the best schemes using O(n log n) bits.

Though it seems that [52] aims to describe its algorithmic ideas in the clearest possible

way, not trying to optimize the constant, it appears hard to improve the space usage

significantly.

More recently, Hagerup and Tholey [32] have come up with the best theoretical result

we know of. The MPHF obtained can be evaluated in O(1) time and stored in n log e +

log log u+O(n(log log n)2/ log n+log log log u) bits. The construction time is O(n+log log u)

using O(n) words of space. Again, the terms involving u are negligible. In spite of its

theoretical importance, the Hagerup and Tholey [32] algorithm is also not practical, as it

8 CHAPTER 1. INTRODUCTION

emphasizes asymptotic space complexity only. (It is also very complicated to implement,

but we will not go into that.) For n < 2150 the scheme is not well-defined, as it relies on

splitting the key set into buckets of size n̂ ≤ log n/(21 log log n). If we fix this by letting

the bucket size be at least 1, then buckets of size one will be used for n < 2300, which

means that the space usage will be at least (3 log log n + log 7) n bits. For a set of a billion

keys, this is more than 17 bits per element. Since 2300 exceeds the number of atoms in

the known universe, it is safe to conclude that the Hagerup-Tholey MPHF is not space

efficient in practical situations. While we believe that their algorithm has been optimized

for simplicity of exposition, rather than constant factors, it seems difficult to significantly

reduce the space usage based on their approach.

1.3.2 Practical results that assume uniform hashing

Let us now describe the main practical results analyzed with the unrealistic assumption

that uniform random hash functions are available for free.

Schemes with space usage known analytically

The algorithm proposed by Czech, Havas and Majewski [18] uses the uniform hashing

assumption to construct order preserving MPHFs. The method uses two uniform random

hash functions h1(x) : S → [0, cn−1] and h2(x) : S → [0, cn−1] to generate MPHFs in the

following form: mphf(x) = (g[h1(x)] + g[h2(x)] mod n where c > 2. The resulting MPHFs

can be evaluated in O(1) time and stored in O(n log n) bits (that is optimal for an order

preserving MPHF). The resulting MPHF is generated in expected O(n) time. Botelho,

Kohayakawa and Ziviani [8] improved the space requirement at the expense of generating

functions in the same form that are not order preserving. Their algorithm is also linear on

n, but runs faster than the ones by Czech et al [18] and the resulting MPHF are stored

using half of the space because c ∈ [0.93, 1.15]. However, the resulting MPHFs still need

O(n log n) bits to be stored.

Majewski et al [42] have proposed a family of MPHF methods that generalizes the work

in [18]. Although the resulting functions are almost as compact as the ones generated by

the work in [8], they still require O(n log n) bits to be stored. Botelho, Pagh and Ziviani [8]

have designed a family of algorithms that improves the space requirement from O(n log n)

to O(n) bits at the expense of generating functions that are not order preserving.

Since the space requirements for uniform random hash functions makes them unsuitable

for implementation, one has to settle for a more realistic setup. The first step in this

1.3. RELATED WORK 9

direction was given by Pagh [46]. He proposed a family of randomized algorithms for

constructing MPHFs of the form mphf(x) = (f(x) + d[g(x)]) mod n, where f and g are

chosen from a family of universal hash functions [13] and d is a set of displacement values

to resolve collisions that are caused by the function f . Pagh identified a set of conditions

concerning f and g and showed that if these conditions are satisfied, then a minimal perfect

hash function can be computed in expected time O(n) and stored in (2 + ǫ)n log n bits.

Dietzfelbinger and Hagerup [21] improved the algorithm proposed in [46], reducing

from (2 + ǫ)n log n to (1 + ǫ)n log n the number of bits required to store the function,

but in their approach f and g must be chosen from a class of hash functions that meet

additional requirements. Woelfel [55] has shown how to decrease the space usage further,

to O(n log log n) bits asymptotically, still with a quite simple algorithm. However, there is

no empirical evidence on the practicality of this scheme.

Prabhakar and Bonomi [50] have designed perfect hash functions to be used for storing

routing tables in routers for networking applications. They have shown that the storage

requirement for the resulting functions goes to 2en when n goes to infinity. In their

simulations the resulting functions were stored in 8.6n bits. The main advantage of their

scheme is that it is simple enough to be implemented in hardware.

Schemes with space usage not known analytically

Fox et al. [29] created the first scheme with good average-case performance for large

datasets, i.e., n ≈ 106. They have designed two algorithms, the first one generates a MPHF

that can be evaluated in O(1) time and stored in O(n log n) bits. The second algorithm

uses quadratic hashing and adds branching based on a table of binary values to get a

MPHF that can be evaluated in O(1) time and stored in c(n + 1/ log n) bits. They argued

that c would be typically lower than 5, however, it is clear from their experimentation that

c grows with n and they did not discuss this. They claimed that their algorithms would

run in linear time, but, it is shown in [19, Section 6.7] that the algorithms have exponential

running times in the worst case, although the worst case has small probability of occurring.

Fox, Chen and Heath [28] improved the above result to get a function that can be stored

in cn bits. The method uses four uniform random hash functions h10 : S → [0, n − 1],

h11 : [0, p1 − 1] → [0, p2 − 1], h12 : [p1, n − 1] → [p2, b − 1] and h20 : S × {0, 1} → [0, n − 1]

10 CHAPTER 1. INTRODUCTION

to construct a MPHF that has the following form:

mphf(x) = (h20(x, d) + g(i(x))) mod n

i(x) =

h11 ◦ h10(x) if h10(x) < p1

h12 ◦ h10(x) otherwise.

where p1 = 0.6n and p2 = 0.3n were experimentally determined, and ⌈b = cn/(log n + 1)⌉.
Again c is only established for small values of n. It could very well be that c grows with n.

So, the limitation of the three algorithms is that no guarantee on the size of the resulting

MPHF is provided.

1.3.3 Empirical results

In this section we discuss results that present only empirical evidences for specific

applications. Lefebvre and Hoppe [41] have recently designed MPHFs that require up

to 7 bits per key to be stored and are tailored to represent sparse spatial data. As the

works by Fox et al [28, 29], the space usage is not known analytically.

In the same trend, Chang, Lin and Chou [14, 15] have designed MPHFs tailored for

mining association rules and traversal patterns in data mining techniques.

1.4 Objectives and Initial Contributions

Our primary objective is to design algorithms that are theoretically well-founded and can

be efficiently used in practice. For that we investigate ways to bridge the existent gap

between theory and practice among the minimal perfect hashing algorithms available in

the literature.

The attractiveness of using PHFs and MPHFs depend on the following issues [32]:

1. The amount of CPU time required by the algorithms for constructing the functions.

2. The space requirements of the algorithms for constructing the functions.

3. The amount of CPU time required by a function for each retrieval.

4. The space requirements of the description of the resulting functions to be used at

retrieval time.

1.4. OBJECTIVES AND INITIAL CONTRIBUTIONS 11

Our initial contributions correspond to the design, analysis and implementation of

three new algorithms to generate PHFs and MPHFs. The very first result presented in [8]

improved the space requirement of the algorithm by Czech, Havas and Majewski [18] at

the expense of generating functions in the same form that are not order preserving, but

are computed in time O(1). The algorithm generates MPHFs based on simple random

graphs that may have cycles, while the algorithm in [18] uses acyclic random graphs. Both

algorithms are linear on n, but our algorithm runs 60% faster than the one in [18], and

the resulting MPHFs are stored using half of the space. However, the resulting MPHFs

still need O(n log n) bits to be stored. As in [18], the algorithm assumes uniform hashing

and needs O(n) computer words of the Word RAM model to construct the functions. The

complete description of the algorithm is presented in Chapter 2.

The second work [9] presents a simple, efficient, near space-optimal and practical family

F of algorithms for generating PHFs and MPHFs. The algorithms in F use acyclic

random hypergraphs given by function values of r uniform random hash functions on

S for generating PHFs and MPHFs that require O(n) bits to be stored. This idea is not

new, see e.g. [42], but we proceed differently to achieve a space usage of O(n) bits rather

than O(n log n) bits. Therefore, we have reduced by a factor of O(log n) the complexity

order of the algorithms in [42]. Evaluation time for all schemes considered is constant. For

r = 2 we obtain a space usage of around 3.6n bits for a MPHF, and for r = 3 we obtain

a space usage of less than 2.7n bits for a MPHF. This is within a factor of 2 from the

information theoretical lower bound of approximately 1.4427n bits.

More compact, and even simpler, representations can be achieved for larger m. For

example, for m = 1.23n we can get a space usage of 1.95n bits. This is slightly more

than two times the information theoretical lower bound of around 1.17n bits. The bounds

for r = 3 assume a conjecture about the emergence of a 2-core in a random 3-partite

hypergraph, whereas the bounds for r = 2 are fully proved. Choosing r > 3 does not give

any improvement of these results. As usual, the algorithms assume uniform hashing and

require O(n) computer words in the construction process. The complete description of the

family is presented in Chapter 3.

In our third work [10] we present a new external memory based algorithm, which is

referred to as EPH algorithm. The algorithm split the incoming key set S into small buckets

containing at most 256 keys. Then, a MPHF is generated for each bucket and using an

offset array we obtain a MPHF for S. To the best of our knowledge the algorithm is the

first one that demonstrates the capability of generating MPHFs for sets in the order of

12 CHAPTER 1. INTRODUCTION

billions of keys, and the generated functions require less than 4 bits per key to be stored.

This improvement comes mainly from the fact that our method is designed to make good

use of the memory hierarchy because it operates on small buckets of keys, increasing the

probability of cache hits.

Differently from our two previous work and the practical results in the literature, the

EPH algorithm does not assume uniform hashing and needs O(N) computer words, where

N ≪ n, for the construction process. Therefore, the algorithm is theoretically well-

understood and increases one order of magnitude in the size of the greatest key set for

which a MPHF was obtained in the literature [8] on a commodity PC. Notice that both

space usage for representing the MPHF and the construction time are carefully proven. As

a consequence, the algorithm will work for every key set. Additionally, the EPH algorithm

is much simpler than previous theoretical well-founded schemes, as the ones presented

in [32, 52]. The complete description of the algorithm is presented in Chapter 4.

Finally, we have created the C Minimal Perfect Hashing Library that is available at

http://cmph.sf.net under the GNU Lesser General Public License (LGPL). The library

was conceived for two reasons. First, we would like to make available our algorithms to test

their applicability in practice. We have received very good feedbacks about the practicality

of the library. Second, we realized that there was a lack of similar libraries in the open

source community.

1.5 Organization of this Work

This text is organized as follows: Chapter 2 presents the first algorithm we came up

with to generate MPHFs. Chapter 3 presents a family of algorithms that generates near

space-optimal MPHFs. Chapter 4 presents the first algorithm that is theoretically well-

understood and can be applied to sets in the order of billions of keys, which is our main

partial result. Finally, in Chapter 5 we conclude and present some suggestions regarding

future steps to be taken in this research.

Chapter 2

A practical minimal perfect hashing

method

In this chapter we describe a new way of constructing minimal perfect hash functions. The

algorithm shares several features with the one due to Czech, Havas and Majewski [18],

from now on referred to as CHM algorithm. In particular, our algorithm is also based on

the generation of random graphs G = (V, E), where E is in one-to-one correspondence with

the key set S for which we wish to generate the hash function. The two main differences

between our algorithm and theirs are as follows: (i) we generate random graphs G = (V, E)

with |V | = cn and |E| = |S| = n, where c = 1.15, and hence G contains cycles with high

probability1, while they generate acyclic random graphs G = (V, E) with |V | = cn and

|E| = |S| = n, with a greater number of vertices: |V | > 2n; (ii) they generate order

preserving minimal perfect hash functions while our algorithm does not preserve order.

Thus, our algorithm improves the space requirement at the expense of generating functions

that are not order preserving.

Our algorithm is efficient and may be tuned to yield a MPHF with a very economical

description. As the algorithm in [18], our algorithm produces a MPHF in O(n) expected

time for a set of n keys. The MPHF description requires 1.15n computer words, and

evaluating it requires two accesses to an array of 1.15n integers. We further derive a

heuristic that improves the space requirement from 1.15n words down to 0.93n words.

Our scheme is very practical: to generate a minimal perfect hash function for a collection

of 100 million universe resource locations (URLs), each 63 bytes long on average, our

algorithm running on a commodity PC takes 811 seconds on average. In Section 2.1 we

1In the sequel, we write “with high probability” to mean with probability 1 − n−δ for δ > 0

13

14 CHAPTER 2. A PRACTICAL MINIMAL PERFECT HASHING METHOD

present the CHM algorithm and in Section 2.2 we present our algorithm. We finish this

chapter comparing the two algorithms in Section 4.3.

2.1 The CHM algorithm

In this section we briefly present the CHM algorithm. For that, consider now a problem

known as the perfect assignment problem: For a given undirected graph G = (V, E), where

|V | = cn and |E| = n, find a function g:V → {0, 1, . . . , |V | − 1} such that the function

mphf : E → {0, 1, . . . , n − 1}, defined as

mphf(e) = (g(a) + g(b)) mod n (2.1)

is a bijection, where e = {a, b}. This means that we are looking for an assignment of values

to vertices so that for each edge the sum of values associated with endpoints taken modulo

the number of edges is a unique integer in the range [0, n − 1].

Many methods for generating MPHFs use a mapping, ordering and searching (MOS)

approach, a description coined by Fox, Chen and Heath [28]. In the MOS approach, the

construction of a minimal perfect hash function is accomplished in three steps. First, the

mapping step transforms the key set from the original universe to a new universe. Second,

the ordering step places the keys in a sequential order that determines the order in which

hash values are assigned to keys. Third, the searching step attempts to assign hash values

to the keys. The CHM algorithm uses the MOS approach as well as our algorithm presented

in Section 2.2.

The ordering and searching steps of the MOS approach are a very simple way of solving

the perfect assignment problem. Czech, Havas and Majewski [18] showed that the perfect

assignment problem can be solved in optimal time if G is acyclic. To generate an acyclic

random graph, the method assumes that two uniform hash functions h1 and h2 are available

for free. The functions h1 and h2 are constructed as follows. We impose some upper

bound L on the lengths of the keys in S. To define hj (j = 1,2), we generate an L × |Σ|
table of random integers tablej. For a key x ∈ S of length |x| ≤ L and j ∈ {1, 2}, we let

hj(x) =
(

∑|x|−1
i=0 tablej[i, x[i]]

)

mod m. (2.2)

Thus, set S has a corresponding graph G = G(h1, h2), with V = {0, 1, . . . , m − 1}, where

|V | = m, and E = {{h1(x), h2(x)} : x ∈ S}. In order to guarantee acyclicity the algorithm

repeatedly selects h1 and h2 until the corresponding graph is acyclic. For the solution to

2.1. THE CHM ALGORITHM 15

be useful we must have |S| = n and m = cn, for some constant c, such that acyclic graphs

dominate the space of all random graphs. Havas et al. [33] proved that if m = cn holds

with c > 2 the probability that G is acyclic is

Pra = e1/c

√

c − 2

c
· (2.3)

For c = 2.09 the probability of a random graph being acyclic is Pra > 1
3
. Consequently,

for such c, the expected number of iterations to obtain an acyclic graph is lower than 3

and the g function needs 2.09n integer numbers to be stored, since its domain is the set V

of size m = cn.

Given an acyclic graph G, for the ordering step we associate with each edge an unique

number mphf(e) ∈ [0, n − 1] in the order of the keys of S to obtain an order preserving

function. Figure 2.1 illustrates the perfect assignment problem for an acyclic graph with

six vertices and with the five function values assigned to the edges.

The searching step starts from the weighted graph G obtained in the ordering step. For

each connected component of G choose a vertex v and set g(v) to 0. For example, suppose

that vertex 0 in Figure 2.1 is chosen and the assignment g(0) = 0 is made. Traverse the

graph using a depth-first or a breadth-first search algorithm, beginning with vertex v. If

vertex b is reached from vertex a and the value associated with the edge e = {a, b} is

mphf(e), set g(b) to (mphf(e) − g(a)) mod n. In Figure 2.1, following the adjacent list of

vertex 0, g(2) is set to 3. Next, following the adjacent list of vertex 2, g(1) is set to 2 and

g(3) is set to 1, and so on.

0

2

1

3

4

5

41

2 3
0

v g(v)

0 0

1 2

2 3

3 1

4 0

5 1

Figure 2.1: Perfect assignment problem for a graph with six vertices and five edges

Now we show why G must be acyclic. If the graph G was not acyclic, the assignment

process might trace around a cycle and insist on reassigning some already-processed vertex

with a different g value than the one that has already been assigned to it. For example,

let us suppose that in Figure 2.1 the edge {3, 4} has been replaced by the edge {0, 1}. In

16 CHAPTER 2. A PRACTICAL MINIMAL PERFECT HASHING METHOD

this case, two different values are set to g(0). Following the adjacent list of vertex 1, g(0)

is set to 4. But g(0) was set to 0 before.

2.2 Our algorithm

We now present how our MPHF, which has the same form of the one generated by the

CHM algorithm, will be constructed. We make use of two uniform hash functions h1

and h2 : U → V , where V = [0, m − 1] for some suitably chosen integer m = cn, where

n = |S| (see Eq. (2.2)). We build a random graph G = G(h1, h2) on S, whose edge set

is
{

{h1(x), h2(x)} : x ∈ S
}

. There is an edge in G for each key in the set of keys S. Note

that in our case the random graph G may have cycles.

In what follows, we shall be interested in the 2-core of the random graph G, that is,

the maximal subgraph of G with minimal degree at least 2 (see, e.g., [4, 36]). Because of

its importance in our context, we call the 2-core the critical subgraph of G and denote it

by Gcrit. The vertices and edges in Gcrit are said to be critical. We let Vcrit = V (Gcrit)

and Ecrit = E(Gcrit). Moreover, we let Vncrit = V − Vcrit be the set of non-critical vertices

in G. We also let Vscrit ⊆ Vcrit be the set of all critical vertices that have at least one

non-critical vertex as a neighbour. Let Encrit = E(G) − Ecrit be the set of non-critical

edges in G. Finally, we let Gncrit = (Vncrit ∪ Vscrit, Encrit) be the non-critical subgraph

of G. The non-critical subgraph Gncrit corresponds to the “acyclic part” of G. We have

G = Gcrit ∪ Gncrit.

We then construct a suitable labelling g : V → Z of the vertices of G: we choose g(v)

for each v ∈ V (G) in such a way that mphf(x) = g(h1(x)) + g(h2(x)) (x ∈ S) is a MPHF

for S. We will see later on that this labelling g can be found in linear time if the number

of edges in Gcrit is at most 1
2
|E(G)|.

Figure 3.2 presents a pseudo code for the algorithm. The procedure GenerateMPHF

(S, g) receives as input the set of keys S and produces the labelling g. The method uses

a mapping, ordering and searching approach. We now describe each step.

procedure GenerateMPHF (S , g)
Mapping (S , G) ;

Ordering (G , Gcrit , Gncrit) ;
Searching (G , Gcrit , Gncrit , g) ;

Figure 2.2: Main steps of the algorithm for constructing a minimal perfect hash function

2.2. OUR ALGORITHM 17

2.2.1 Mapping Step

The procedure Mapping (S, G) receives as input the set of keys S and generates the random

graph G = G(h1, h2), by generating two auxiliary functions h1, h2 : U → [0, m − 1] (see

Eq. (2.2)). This is done by filling each tablej for j ∈ {1, 2} with random integer numbers.

The random graph G = G(h1, h2) has vertex set V = [0, m − 1] and edge set
{

{h1(x), h2(x)} : x ∈ S
}

. We need G to be simple, i.e., G should have neither loops

nor multiple edges. A loop occurs when h1(x) = h2(x) for some x ∈ S. We solve this in

an ad hoc manner: we simply let h2(x) = (2h1(x) + 1) mod m in this case. If we still find

a loop after this, we generate another pair (h1, h2). When a multiple edge occurs we abort

and generate a new pair (h1, h2).

Analysis of the Mapping Step

We start by discussing some facts on random graphs. Let G = (V, E) with |V | = m

and |E| = n be a random graph in the uniform model G(m, n), the model in which all

the
((m

2
)

n

)

graphs on V with n edges are equiprobable. The study of G(m, n) goes back to

the classical work of Erdős and Rényi [24, 25, 26] (for a modern treatment, see [4, 36]).

Let d = 2n/m be the average degree of G. It is well known that, if d > 1, or, equivalently,

if c < 2 (recall that we have m = cn), then, almost every G contains2 a “giant” component

of order (1 + o(1))bm, where b = 1 − T/d, and 0 < T < 1 is the unique solution to the

equation Te−T = de−d. Moreover, all the other components of G have O(log m) vertices.

Also, the number of vertices in the 2-core of G (the maximal subgraph of G with minimal

degree at least 2) that do not belong to the giant component is o(m) almost surely.

Pittel and Wormald [49] present detailed results for the 2-core of the giant component

of the random graph G. Since tablej (j ∈ {1, 2}) are random, G = G(h1, h2) is a random

graph. In what follows, we work under the hypothesis that G = G(h1, h2) is drawn

from G(m, n). Thus, following [49], the number of vertices of Gcrit is

|V (Gcrit)| = (1 + o(1))(1 − T)bm (2.4)

almost surely. Moreover, the number of edges in this 2-core is

|E(Gcrit)| = (1 + o(1))
(

(1 − T)b + b(d + T − 2)/2
)

m (2.5)

2As is usual in the theory of random graphs, we use the terms ‘almost every’ and ‘almost surely’ to

mean ‘with probability tending to 1 as m → ∞’.

18 CHAPTER 2. A PRACTICAL MINIMAL PERFECT HASHING METHOD

almost surely. Let dcrit = 2|E(Gcrit)|/|V (Gcrit)| be the average degree of Gcrit. We are

interested in the case in which dcrit is a constant.

As mentioned before, for us to find the labelling g : V → Z of the vertices of G =

G(h1, h2) in linear time, we require that |E(Gcrit)| ≤ 1
2
|E(G)| = 1

2
|S| = n/2. The crucial

step now is to determine the value of c (in m = cn) to obtain a random graph G =

Gcrit ∪ Gncrit with |E(Gcrit)| ≤ 1
2
|E(G)|.

Table 2.1 gives some values for |V (Gcrit)| and |E(Gcrit)| using Eqs (2.4) and (2.5). The

theoretical value for c is around 1.152, which is remarkably close to the empirical results

presented in Table 2.2. In this table, generated from real data, the probability P|E(Gcrit)|

that |E(Gcrit)| ≤ 1
2
|E(G)| tends to 0 when c < 1.15 and it tends to 1 when c ≥ 1.15 and

n increases. We found this match between the empirical and the theoretical results most

pleasant, and this is why we consider that this random graph, conditioned on being simple,

strongly resembles the random graph from the uniform model G(m, n).

d T b |V (Gcrit)| |E(Gcrit)| c

1.734 0.510 0.706 0.399n 0.498n 1.153

1.736 0.509 0.707 0.400n 0.500n 1.152

1.738 0.508 0.708 0.401n 0.501n 1.151

1.739 0.508 0.708 0.401n 0.501n 1.150

1.740 0.507 0.709 0.401n 0.502n 1.149

Table 2.1: Determining the c value theoretically

We now briefly argue that the expected number of iterations to obtain a simple

graph G = G(h1, h2) is constant for m = cn and c = 1.15. Let p be the probability of

generating a random graph G without loops and without multiple edges. If p is bounded

from below by some positive constant, then we are done, because the expected number of

c URLs (n)

103 104 105 106 2 × 106 3 × 106 4 × 106

1.13 0.22 0.02 0.00 0.00 0.00 0.00 0.00

1.14 0.35 0.15 0.00 0.00 0.00 0.00 0.00

1.15 0.46 0.55 0.65 0.87 0.95 0.97 1.00

1.16 0.67 0.90 1.00 1.00 1.00 1.00 1.00

1.17 0.82 0.99 1.00 1.00 1.00 1.00 1.00

Table 2.2: Probability P|Ecrit| that |E(Gcrit)| ≤ n/2 for different c values and different

number of keys for a collections of URLs

2.2. OUR ALGORITHM 19

iterations to obtain such a graph is then 1/p = O(1).

Let X be a random variable counting the number of iterations to generate G. Variable

X follows a geometric distribution with P (X = i) = p(1− p)i−1. So, the expected number

of iterations to generate G is Ni(X) =
∑∞

j=1 jP (X = j) = 1/p and its variance is V (X) =

(1 − p)/p2.

Let ξ be the space of edges in G that may be generated by h1 and h2. The graphs

generated in this step are undirected and the number of possible edges in ξ is given by

|ξ| =
(

m
2

)

. The number of possible edges that might become a multiple edge when the jth

edge is added to G is j − 1, and the incremental construction of G implies that p(m) is:

p(m) =

n
∏

j=1

(

m
2

)

− (j − 1)
(

m
2

) =

n−1
∏

j=0

(

m
2

)

− j
(

m
2

) ·

As m = cn we can rewrite the probability p(n) as:

p(n) =

n−1
∏

j=0

1 −
(

2j

c2n2 − cn

)

·

Using an asymptotic estimate from Palmer [48] that states that the inequality f1(x) ≤ f2(x)

is true ∀ x ∈ ℜ for two functions f1 : ℜ → ℜ and f2 : ℜ → ℜ defined as f1(x) = 1 − x and

f2(x) = e−x, we have

p(n) ≤
n−1
∏

j=0

e
−

“

2j

c2n2
−cn

”

= e
−

“

n−1

c2n−c

”

.

for x = 2j
c2n2−cn

. Thus,

lim
n→∞

p(n) ≃ e−
1

c2 . (2.6)

As Ni(X) = 1/p then Ni(X) ≃ e
1

c2 = 2.13 (recall c = 1.15). Therefore, as the expected

number of iterations is O(1), the mapping step takes O(n) time.

2.2.2 Ordering Step

The procedure Ordering (G, Gcrit, Gncrit) receives as input the graph G and partitions G

into the two subgraphs Gcrit and Gncrit, so that G = Gcrit ∪Gncrit. For that, the procedure

iteratively remove all vertices of degree 1 until done.

Figure 2.3(a) presents a sample graph with 9 vertices and 8 edges, where the degree

of a vertex is shown besides each vertex. Applying the ordering step in this graph, the

20 CHAPTER 2. A PRACTICAL MINIMAL PERFECT HASHING METHOD

5-vertex graph showed in Figure 2.3(b) is obtained. All vertices with degree 0 are non-

critical vertices and the others are critical vertices. In order to determine the vertices in

Vscrit we collect all vertices v ∈ V (Gcrit) with at least one vertex u that is in Adj(v) and in

V (Gncrit), as the vertex 8 in Figure 2.3(b).

d:2

d:5

d:2

d:2

d:1

d:2d:2

d:0

d:0

a) d:2

d:4

d:2

d:0

d:0

d:2d:2

d:0

d:0

b)

6

7 0

1

2

34

5

8

6

7 0

34

5

8

2

1

Figure 2.3: Ordering step for a graph with 9 vertices and 8 edges

Analysis of the Ordering Step

The time complexity of the ordering step is O(|V (G)|) (see [19]). As |V (G)| = m = cn,

the ordering step takes O(n) time.

2.2.3 Searching Step

In the searching step, the key part is the perfect assignment problem: find g : V (G) → Z

such that the function mphf : E(G) → Z defined by

mphf(e) = g(a) + g(b) (e = {a, b}) (2.7)

is a bijection from E(G) to [0, n − 1] (recall n = |S| = |E(G)|). We are interested in a

labelling g : V → Z of the vertices of the graph G = G(h1, h2) with the property that

if x and y are keys in S, then g(h1(x)) + g(h2(x)) 6= g(h1(y)) + g(h2(y)); that is, if we

associate to each edge the sum of the labels on its endpoints, then these values should

be all distinct. Moreover, we require that all the sums g(h1(x)) + g(h2(x)) (x ∈ S) fall

between 0 and |E(G)| − 1 = n − 1, so that we have a bijection between S and [0, n − 1].

The procedure Searching (G, Gcrit, Gncrit, g) receives as input G, Gcrit, Gncrit and finds a

suitable ⌊log |V (G)|⌋+1 bit value for each vertex v ∈ V (G), stored in the array g. This step

is first performed for the vertices in the critical subgraph Gcrit of G (the 2-core of G) and

then it is performed for the vertices in Gncrit (the non-critical subgraph of G that contains

the “acyclic part” of G). The reason the assignment of the g values is first performed on

the vertices in Gcrit is to resolve reassignments as early as possible (such reassignments are

consequences of the cycles in Gcrit and are depicted hereinafter).

2.2. OUR ALGORITHM 21

Assignment of Values to Critical Vertices

The labels g(v) (v ∈ V (Gcrit)) are assigned in increasing order following a greedy strategy

where the critical vertices v are considered one at a time, according to a breadth-first

search on Gcrit. If a candidate value x for g(v) is forbidden because setting g(v) = x would

create two edges with the same sum, we try x + 1 for g(v). This fact is referred to as a

reassignment.

Let AE be the set of addresses assigned to edges in E(Gcrit). Initially AE = ∅. Let x be a

candidate value for g(v). Initially x = 0. Considering the subgraph Gcrit in Figure 2.3(b),

a step by step example of the assignment of values to vertices in Gcrit is presented in

Figure 2.4. Initially, a vertex v is chosen, the assignment g(v) = x is made and x is set

to x + 1. For example, suppose that vertex 8 in Figure 2.4(a) is chosen, the assignment

g(8) = 0 is made and x is set to 1.

b) c) d)a) 7 0

34

8

7 0

34

8

7 0

34

8

7 0

34

8 g:0

g:1g:4 5

4

3 2

1

5 g:2g:3

g:0

g:1g:5 6

5

3 2

1

5 g:2g:3

g:0

g:1g:6 7

6

3 2

1

5 g:2g:3

g:0

Figure 2.4: Example of the assignment of values to critical vertices

In Figure 2.4(b), following the adjacency list of vertex 8, the unassigned vertex 0 is

reached. At this point, we collect in the temporary variable Y all adjacencies of vertex

0 that have been assigned an x value, and Y = {8}. Next, for all u ∈ Y , we check if

g(u) + x 6∈ AE. Since g(8) + 1 = 1 6∈ AE , then g(0) is set to 1, x is incremented by

1 (now x = 2) and AE = AE ∪ {1} = {1}. Next, vertex 3 is reached, g(3) is set to 2,

x is set to 3 and AE = AE ∪ {2} = {1, 2}. Next, vertex 4 is reached and Y = {3, 8}.

Since g(3) + 3 = 5 6∈ AE and g(8) + 3 = 3 6∈ AE , then g(4) is set to 3, x is set to 4

and AE = AE ∪ {3, 5} = {1, 2, 3, 5}. Finally, vertex 7 is reached and Y = {0, 8}. Since

g(0) + 4 = 5 ∈ AE , x is incremented by 1 and set to 5, as depicted in Figure 2.4(c). Since

g(8) + 5 = 5 ∈ AE, x is again incremented by 1 and set to 6, as depicted in Figure 2.4(d).

These two reassignments are indicated by the arrows in Figure 2.4. Since g(0)+6 = 7 6∈ AE

and g(8) + 6 = 6 6∈ AE , then g(7) is set to 6 and AE = AE ∪ {6, 7} = {1, 2, 3, 5, 6, 7}. This

finishes the algorithm.

22 CHAPTER 2. A PRACTICAL MINIMAL PERFECT HASHING METHOD

Assignment of Values to Non-Critical Vertices

As Gncrit is acyclic, we can impose the order in which addresses are associated with edges

in Gncrit, making this step simple to solve by a standard depth first search algorithm.

Therefore, in the assignment of values to vertices in Gncrit we benefit from the unused

addresses in the gaps left by the assignment of values to vertices in Gcrit. For that, we

start the depth-first search from the vertices in Vscrit because the g values for these critical

vertices have already been assigned and cannot be changed.

Considering the subgraph Gncrit in Figure 2.3(b), a step by step example of the

assignment of values to vertices in Gncrit is presented in Figure 2.5. Figure 2.5(a) presents

the initial state of the algorithm. The critical vertex 8 is the only one that has non-critical

neighbours. In the example presented in Figure 2.4, the addresses {0, 4} were not used.

So, taking the first unused address 0 and the vertex 1, which is reached from the vertex 8,

g(1) is set to 0− g(8) = 0, as shown in Figure 2.5(b). The only vertex that is reached from

vertex 1 is vertex 2, so taking the unused address 4 we set g(2) to 4−g(1) = 4, as shown in

Figure 2.5(c). This process is repeated until the UnAssignedAddresses list becomes empty.

0 4 4

g:0

UnAssignedAddresses

g:0

0

UnAssignedAddresses

g:0

0

UnAssignedAddresses

g:0 g:4

g:0g:0c)g:0b)a)

4

6

5

8

2

1 6

5

8

2

1 6

5

8

2

1

Figure 2.5: Example of the assignment of values to non-critical vertices

Analysis of the Searching Step

We shall demonstrate that (i) the maximum value assigned to an edge is at most n − 1

(that is, we generate a minimal perfect hash function), and (ii) the perfect assignment

problem (determination of g) can be solved in expected time O(n) if the number of edges

in Gcrit is at most 1
2
|E(G)|.

We focus on the analysis of the assignment of values to critical vertices because the

assignment of values to non-critical vertices can be solved in linear time by a depth first

search algorithm.

We now define certain complexity measures. Let I(v) be the number of times a

candidate value x for g(v) is incremented. Let Nt be the total number of times that

2.2. OUR ALGORITHM 23

candidate values x are incremented. Thus, we have Nt =
∑

I(v), where the sum is over

all v ∈ V (Gcrit).

For simplicity, we shall suppose that Gcrit, the 2-core of G, is connected.3 The fact that

every edge is either a tree edge or a back edge (see, e.g., [17]) then implies the following.

Theorem 3 The number of back edges Nbedges of G = Gcrit ∪ Gncrit is given by Nbedges =

|E(Gcrit)| − |V (Gcrit)| + 1.

Our next result concerns the maximal value Amax assigned to an edge e ∈ E(Gcrit) after

the assignment of g values to critical vertices.

Theorem 4 We have Amax ≤ 2|V (Gcrit)| − 3 + 2Nt.

Proof: The assignment of g values to critical vertices starts from 0, and each edge e

receives the label mphf(e) as given by Eq. (3.1). The g value for each vertex v in V (Gcrit)

is assigned only once. Consider now two possibilities: (i) If Nt = 0, (that is, no increment

for a candidate value was necessary) then the g values will be assigned to the vertices

sequentially. Therefore, the greatest and the second greatest values assigned to two vertices

v and u are g(v) = |V (Gcrit)| − 1 and g(u) = |V (Gcrit)| − 2, respectively. Thus, Amax ≤
(|V (Gcrit)| − 1) + (|V (Gcrit)| − 2) in the worst case. (ii) If Nt > 0 then a candidate

value x is incremented by one each time the value is forbidden. Thus, in the worst case,

Amax ≤ |V (Gcrit)| − 1 + Nt + |V (Gcrit)| − 2 + Nt ≤ 2|V (Gcrit)| − 3 + 2Nt. �

Maximal Value Assigned to an Edge

In this section we present the following conjecture.

Conjecture 1 For a random graph G with |E(Gcrit)| ≤ n/2 and |V (G)| = 1.15n, it is

always possible to generate a minimal perfect hash function because the maximal value

Amax assigned to an edge e ∈ E(Gcrit) is at most n − 1.

Let us assume for the moment that Nt ≤ Nbedges. Then, from Theorems 3 and 4,

we have Amax ≤ 2|V (Gcrit)| − 3 + 2Nt ≤ 2|V (Gcrit)| − 3 + 2Nbedges ≤ 2|V (Gcrit)| − 3 +

2(|E(Gcrit)| − |V (Gcrit)|+ 1) ≤ 2|E(Gcrit)| − 1. As by hypothesis |E(Gcrit)| ≤ n/2, we have

Amax ≤ n − 1, as required.

3The number of vertices in Gcrit outside the giant component is provably very small for c = 1.15;

see [4, 36, 49].

24 CHAPTER 2. A PRACTICAL MINIMAL PERFECT HASHING METHOD

In the mathematical analysis of our algorithm, what is left open is a single problem:

prove that Nt ≤ Nbedges.
4

We now show experimental evidence that Nt ≤ Nbedges. Considering Eqs (2.4) and (2.5),

the expected values for |V (Gcrit)| and |E(Gcrit)| for c = 1.15 are 0.401n and 0.501n,

respectively. From Theorem 3, Nbedges = 0.501n − 0.401n + 1 = 0.1n + 1. Table 2.3

presents the maximal value of Nt obtained during 10,000 executions of the algorithm for

different sizes of S. The maximal value of Nt was always smaller than Nbedges = 0.1n + 1

and tends to 0.059n for n ≥ 1,000,000.

n Maximal value of Nt

10,000 0.067n

100,000 0.061n

1,000,000 0.059n

2,000,000 0.059n

Table 2.3: The maximal value of Nt for different number of URLs

Time Complexity

We now show that the time complexity of determining g(v) for all critical vertices x ∈
V (Gcrit) is O(|V (Gcrit)|) = O(n). For each unassigned vertex v, the adjacency list of v,

which we call Adj(v), must be traversed to collect the set Y of adjacent vertices that have

already been assigned a value. Then, for each vertex in Y , we check if the current candidate

value x is forbidden because setting g(v) = x would create two edges with the same

endpoint sum. Finally, the edge linking v and u, for all u ∈ Y , is associated with the address

that corresponds to the sum of its endpoints. Let dcrit = 2|E(Gcrit)|/|V (Gcrit)| be the

average degree of Gcrit, note that |Y | ≤ |Adj(v)|, and suppose for simplicity that |Adj(v)| =

O(dcrit). Then, putting all these together, we see that the time complexity of this procedure

is

C(|V (Gcrit)|) =
∑

v∈V (Gcrit)

[

|Adj(v)| + (I(v) × |Y |) + |Y |
]

≤ ∑

v∈V (Gcrit)
(2 + I(v))|Adj(v)| = 4|E(Gcrit)| + O(Ntdcrit).

As dcrit = 2 × 0.501n/0.401n ≃ 2.499 (a constant) we have O(|E(Gcrit)|) = O(|V (Gcrit)|).
Supposing that Nt ≤ Nbedges, we have, from Theorem 3, that Nt ≤ |E(Gcrit)|− |V (Gcrit)|+

4Bollobás and Pikhurko [5] have investigated a very close vertex labelling problem for random graphs.

However, their interest was on denser random graphs, and it seems that different methods will have to be

used to attack the sparser case that we are interested in here.

2.3. EXPERIMENTAL RESULTS 25

1 = O(|E(Gcrit)|). We conclude that C(|V (Gcrit)|) = O(|E(Gcrit)|) = O(|V (Gcrit)|). As

|V (Gcrit)| ≤ |V (G)| and |V (G)| = cn, the time required to determine g on the critical

vertices is O(n).

2.3 Experimental Results

We now present some experimental results. The same experiments were run with

our algorithm and the CHM algorithm. The two algorithms were implemented in

the C language and are available in the C Minimal Perfect Hashing Library at

http://cmph.sf.net. Our data consists of a collection of 100 million universe resource

locations (URLs) collected from the Web. The average length of a URL in the collection

is 63 bytes. All experiments were carried out on a computer running the Linux operating

system, version 2.6.7, with a 2.4 gigahertz processor and 4 gigabytes of main memory.

Table 2.4 presents the main characteristics of the two algorithms. The number of

edges in the graph G = (V, E) is |S| = n, the number of keys in the input set S. The

number of vertices of G is equal to 1.15n and 2.09n for our algorithm and the CHM

algorithm, respectively. This measure is related to the amount of space to store the array

g. This improves the space required to store a function in our algorithm to 55% of the

space required by the CHM algorithm. The number of critical edges is 1
2
|E(G)| and 0

for our algorithm and the CHM algorithm, respectively. Our algorithm generates random

graphs that contain cycles with high probability and the CHM algorithm generates acyclic

random graphs. Finally, the CHM algorithm generates order preserving functions while

our algorithm does not preserve order.

c |E(G)| |V (G)| = |g| |E(Gcrit)| G Order preserving

Our algorithm 1.15 n cn 0.5|E(G)| cyclic no

CHM algorithm 2.09 n cn 0 acyclic yes

Table 2.4: Main characteristics of the algorithms

Table 2.5 presents time measurements. All times are in seconds. The table entries are

averages over 50 trials. The column labelled Ni gives the number of iterations to generate

the random graph G in the mapping step of the algorithms. The next columns give the

running times for the mapping plus ordering steps together and the searching step for each

algorithm. The last column gives the percentage gain of our algorithm over the CHM

algorithm.

26 CHAPTER 2. A PRACTICAL MINIMAL PERFECT HASHING METHOD

n Our algorithm CHM algorithm Gain

Ni Map+Ord Search Total Ni Map+Ord Search Total (%)

1,562,500 2.28 8.54 2.37 10.91 2.70 14.56 1.57 16.13 48

3,125,000 2.16 15.92 4.88 20.80 2.85 30.36 3.20 33.56 61

6,250,000 2.20 33.09 10.48 43.57 2.90 62.26 6.76 69.02 58

12,500,000 2.00 63.26 23.04 86.30 2.60 117.99 14.94 132.92 54

25,000,000 2.00 130.79 51.55 182.34 2.80 262.05 33.68 295.73 62

50,000,000 2.07 273.75 114.12 387.87 2.90 577.59 73.97 651.56 68

100,000,000 2.07 567.47 243.13 810.60 2.80 1,131.06 157.23 1,288.29 59

Table 2.5: Time measurements for our algorithm and the CHM algorithm

The mapping step of the new algorithm is faster because the expected number of

iterations in the mapping step to generate G are 2.13 and 2.92 for our algorithm and the

CHM algorithm, respectively. The graph G generated by our algorithm has 1.15n vertices,

against 2.09n for the CHM algorithm. These two facts make our algorithm faster in the

mapping step. The ordering step of our algorithm is approximately equal to the time to

check if G is acyclic for the CHM algorithm. The searching step of the CHM algorithm is

faster, but the total time of our algorithm is, on average, approximately 58% faster than

the CHM algorithm.

The experimental results fully backs the theoretical results. It is important to notice

the times for the searching step: for both algorithms they are not the dominant times, and

the experimental results clearly show a linear behavior for the searching step.

We now present a heuristic that reduces the space requirement to any given value

between 1.15n words and 0.93n words. The heuristic reuses, when possible, the set of x

values that caused reassignments, just before trying x + 1 (see Section 2.2.3). The lower

limit c = 0.93 was obtained experimentally. We generate 10,000 random graphs for each

size n (n = 105, 5 × 105, 106, 2 × 106). With c = 0.93 we were always able to generate

a MPHF, but with c = 0.92 we never succeeded. Decreasing the value of c leads to an

increase in the number of iterations to generate G. For example, for c = 1 and c = 0.93, the

analytical expected number of iterations are 2.72 and 3.17, respectively (for n = 12,500,000,

the number of iterations are 2.78 for c = 1 and 3.04 for c = 0.93). Table 2.6 presents the

total times to construct a function for n = 12,500,000, with an increase from 86.31 seconds

for c = 1.15 (see Table 2.5) to 101.74 seconds for c = 1 and to 102.19 seconds for c = 0.93.

We compared our algorithm with the ones proposed by Pagh [46] and Dietzfelbinger

and Hagerup [21], respectively. The authors sent to us their source code. In their

2.4. CONCLUSION 27

n Our algorithm c = 1.00 Our algorithm c = 0.93

Ni Map+Ord Search Total Ni Map+Ord Search Total

12,500,000 2.78 76.68 25.06 101.74 3.04 76.39 25.80 102.19

Table 2.6: Time measurements for our tuned algorithm with c = 1.00 and c = 0.93

implementation the set of keys is a set of random integers. We modified our implementation

to generate our MPHF from a set of random integers in order to make a fair comparison.

For a set of 106 random integers, the times to generate a minimal perfect hash function were

2.7s, 4s and 4.5s for our algorithm, Pagh’s algorithm and Dietzfelbinger and Hagerup’s

algorithm, respectively. Thus, our algorithm was 48% faster than Pagh’s algorithm and

67% faster than Dietzfelbinger and Hagerup’s algorithm, on average. This gain was

maintained for sets with different sizes. Our algorithm needs kn (k ∈ [0.93, 1.15]) words

to store the resulting function, while Pagh’s algorithm needs kn (k > 2) words and

Dietzfelbinger and Hagerup’s algorithm needs kn (k ∈ [1.13, 1.15]) words. The time to

generate the functions is inversely proportional to the value of k.

2.4 Conclusion

We have presented a practical method for constructing minimal perfect hash functions for

static sets that is efficient and may be tuned to yield a function with a very economical

description. The algorithm improves the space requirement of the algorithm proposed by

Czech, Havas and Majewski from cn log n bits, for c > 2 to c′n log n, where c′ ∈ [0.93, 1.15].

That is, our resulting functions are stored in approximately 55% of the space required

to store the ones generated by the CHM algorithm. However, the resulting MPHFs still

requires O(n log n) bits to be stored, that is a factor log n from the optimal. Our next

result presented in Chapter 3 shows how to generate simple and space-optimal MPHFs.

28 CHAPTER 2. A PRACTICAL MINIMAL PERFECT HASHING METHOD

Chapter 3

A family of near space-optimal

algorithms

In this chapter we describe a simple and near space-optimal family F of algorithms for

generating minimal perfect hash functions for a set S of n elements1. The algorithms from

F use acyclic hypergraphs given by function values of r uniform random hash functions

on S, also called r−graphs, for constructing PHFs and MPHFs that can be stored in near

optimal space (i.e., O(n) bits.) A r−graph is a generalization of a standard graph where

each edge connects r vertices instead of only two. Indeed, acyclic random hypergraphs has

been used in previous PHF constructions [42], but we will proceed differently to achieve a

space usage of O(n) bits rather than O(n log n) bits.

3.1 The family of algorithms

In this section we present the family F that contains three-step algorithms for constructing

near space-optimal MPHFs. Figure 4.6 gives an overview of the algorithms on a key set

S ⊆ U containing the first 4 month names abbreviated to the first three characters.

The first step, referred to as the Mapping Step, maps the key set S to a set of n = |S|
edges forming an acyclic r-partite hypergraph Gr = (V, E), where |E(Gr)| = n, |V (Gr)| =

m and r ≥ 2. In the example of Figure 4.6 (a) we used r = 2 uniform hash functions

1Chazelle et al [16] present a way of constructing PHFs that is equivalent to ours. It is explained as

a modification of the “Bloomier Filter” data structure at the end of Section 3.3, but they do not make

explicit that a PHF is constructed. Thus, the simple construction of a PHF described must be attributed

to Chazelle et al. The new contribution of this chapter is to analyze and optimize the constant of the

space usage considering implementation aspects as well as a way of constructing MPHFs from that PHFs.
29

30 CHAPTER 3. A FAMILY OF NEAR SPACE-OPTIMAL ALGORITHMS

h (x)0

h (x)1

0
1
2
3
4
5
6
7

3
2
1
0

g

Hash Table

(a) (b) (c)

Mapping Assigning

0

1 3

54

S

jan

feb

mar

apr 6 7

20

1

m
ar ja

n feb

apr

mar
jan
feb
apr

1

0
r

r
r
r

Ranking

Figure 3.1: (a) Mapping step generates a bipartite 2−graph. (b) Assigning step builds a

labeling g so that each edge is uniquely assigned to a vertex. (c) Ranking step builds a

function rank : V → [0, n − 1]

h0 : U → [0, m/2 − 1] and h1 : U → [m/2, m − 1], where m = 8, to build a bipartite

random graph Gr = Gr(h0, h1) with vertex set V (Gr) = [0, m − 1] and edge set E(Gr) =

{{h0(x), h1(x)} | x ∈ S}. Note that each key in S is associated with an edge in Gr.

The second step, referred to as the Assigning Step, associates uniquely each edge with

one of its r vertices. Here, “uniquely” means that no two edges may be assigned to the

same vertex. Thus, the Assigning Step finds a PHF for S with range V (Gr). As shown

in Figure 4.6 (b), the Assigning step outputs a labeling g : V (G) → {0, 1, r = 2} so that

each edge or key is uniquely mapped to a vertex in Gr. For instance, jan is mapped to

2, feb to 6, mar to 0, and apr to 7. By construction of g we guarantee that each vertex

v ∈ V (G) assumes just two disjoint states: assigned and unassigned, and exactly n vertices

are assigned. A vertex v is defined as unassigned when g(v) = r.

Therefore, a function rank that counts how many vertices are assigned before a given

vertex v ∈ V (Gr), which is uniquely associated with a key x ∈ S, is a MPHF on S. Note

that the four keys of the example presented in Figure 4.6 (c) are placed into a hash table of

size 4 without collisions. For example, rank(v = 7) = 3 and it means that there are three

vertices assigned before vertex 7. Finally, the third step, referred to as the Ranking Step

is responsible for building the data structures used to compute function rank in constant

time.

For the analysis, we assume that we have at our disposal r hash functions hi : U →
[im

r
, (i + 1)m

r
− 1], 0 ≤ i < r, which are independent and uniformly distributed function

values. (This is the “uniform hashing” assumption, see Section 3.2 for justification.) The

r functions and the set S define, in a natural way, a random r−partite hypergraph. We

define Gr = Gr(h0, h1 . . . , hr−1) as the hypergraph with vertex set V (Gr) = [0, m− 1] and

edge set E(Gr) = {{h0(x), h1(x), . . . , hr−1(x)} | x ∈ S}. For the Mapping Step to work,

3.1. THE FAMILY OF ALGORITHMS 31

we need Gr to be simple and acyclic, i.e., Gr should not have multiple edges and cycles.

This is handled by choosing r new hash functions in the event that the Mapping Step fails.

We use an edge oriented data structure proposed by Ebert [23] to represent the

hypergraphs. A detailed description of that data structure is presented in [6].

As mentioned before, there are exactly n assigned vertices. So, if we find out a PHF

phf : S → V (Gr) that returns all the assigned vertices we will be able to build a MPHF

from it by using ranking. Let us define that PHF as

phf(x) = hi(x), where i = (g(h0(x)) + g(h1(x)) + · · · + g(hr−1(x))) mod r. (3.1)

The function g : V (Gr) → {0, 1, . . . , r} is a labeling of the vertices of V (Gr). We will show

how to choose the labeling such that phf is 1-1 on S, given that Gr is acyclic. We use

g(v) = r to represent unassigned vertices because it is equal to zero in modulo r operations.

Note that i = i(x) is used to select the vertex from the edge associated with x that uniquely

represent x. For instance, in the example of Figure 4.6, phf(apr) = 7 because i(apr) =

(g(2) + g(7)) mod 2 = 1, and phf(jan) = 2 because i(jan) = (g(2) + g(5)) mod 2 = 0.

Therefore, our problem is reduced to computing the labeling g such that the following

function is a bijection on S, i.e., a MPHF on S:

mphf(x) = rank(phf(x)) (3.2)

where rank : V (Gr) → [0, n − 1] is a function defined as:

rank(x) = |{y ∈ V (Gr) | y < x and g(y) 6= r}|. (3.3)

Figure 3.2 presents a pseudo code for our family of minimal perfect hashing algorithms.

If we strip off the third step we will build PHFs instead. The family of algorithms receives as

input the key set S and the edge size r, and produces the resulting functions represented by

the labeling g and a data structure, referred to as rankTable, used to allow the computation

of Eq. (3.3) in time O(1). We now describe each step in details.

procedure Generate (S , r , g , rankTable)

Mapping (S , Gr , L) ;
Assigning (Gr , L , g) ;
Ranking (g , rankTable) ;

Figure 3.2: Main steps of the family of algorithms

32 CHAPTER 3. A FAMILY OF NEAR SPACE-OPTIMAL ALGORITHMS

3.1.1 Mapping Step

The Mapping step takes the key set S as input, and creates the random hypergraph Gr

and a list of edges L. A sufficient condition to find the labeling g is to generate an acyclic

random hypergraph. A hypergraph is acyclic if and only if some sequence of repeated

deletions of edges containing vertices of degree 1 yields a hypergraph without edges [19,

Page 103]. The list L stores the deleted edges in the order of deletions (i.e., the first edge

in L was the first deleted edge, the second edge in L was the second deleted edge, and so

on.) Indeed, the list L is obtained whenever we test whether Gr is acyclic. This test can

be done in O(n) time by the following algorithm:

1. Traverse Gr and store in a queue Q every edge that has at least one of its vertices

with degree one.

2. Until Q is not empty, dequeue one edge from Q, remove it from Gr, store it in L,

and check if any of its vertices is now of degree one. If it is the case, enqueue the

only edge that contains that vertex.

Figure 3.3 presents one possible output of the aforementioned test when applied to the

random hypergraph G2 presented in Figure 4.6. The three edges containing vertices of

degree one were firstly deleted and stored in L. Then the only edge containing a vertex of

degree two was deleted and stored in L.

3
L{0,5} {2,6} {2,7} {2,5}

0 1 2

Figure 3.3:

Figure 3.4 presents a pseudo code for the Mapping Step.

Analysis of the Mapping Step

When a cyclic random hypergraph occurs we abort and select randomly a new tuple of

hash functions (h0, h1, . . . , hr−1) from H. Then, we can model the number of iterations

to generate an acyclic random hyperfig:mapgraph Gr as a random variable Z that follows

a geometric distribuition. Let Pra be the probability of generating an acyclic random

hypergraph. Thus, Pr(Z = i) = Pra(1 − Pra)i−1 and the mean of Z is 1/Pra, which

corresponds to the expected number of iterations to obtain Gr.

3.1. THE FAMILY OF ALGORITHMS 33

procedure Mapping (S , Gr , L)
repeat

E(Gr) = ∅ ;
select randomly h0, h1, . . . , hr−1 from H ;

for each x ∈ S do

e = {h0(x), h1(x) . . . , hr−1(x)} ;
addEdge (Gr , e) ;

L = isAcyclic (Gr) ;
until E(Gr) i s empty

Figure 3.4: Mapping step

We want to ensure that Pra = Ω(1). For that we define m = cn, where c = c(r) is a

function defined in the following. For r = 2, we can use the techniques presented in [35]

to show that Pra =
√

1 − (2/c)2. For example, when c = 2.09 we have Pra = 0.29. This

is very close to 0.294 that is the value we got experimentally by generating 1, 000 random

bipartite 2-graphs with n = 107 keys (edges). For r > 2, it seems to be technically difficult

to obtain a rigorous bound on Pra. However, the heuristic argument presented in [19,

Theorem 6.5] also holds for our r−partite random hypergraphs. Their argument suggests

that if c = c(r) is given by

c(r) =

2 + ε, ε > 0 for r = 2

r
(

minx>0

{

x
(1−e−x)r−1

})−1

for r > 2,
(3.4)

then the acyclic random r-graphs dominate the space of random r-graphs. The value

c(3) ≈ 1.23 is a minimum value for Eq. (3.4), as shown in Figure 3.5. This implies that

the acyclic r-partite hypergraphs with the smallest number of vertices happen when r = 3.

In this case, we have got experimentally Pra ≈ 1 by generating 1, 000 3-partite random

hypergraphs with n = 107 keys (hyperedges).

It is interesting to remark that the problems of generating acyclic r-partite hypergraphs

for r = 2 and for r > 2 have different natures. For r = 2, the probability Pra varies

continuously with the constant c. But for r > 2, there is a phase transition. That is, there

is a value c(r) such that if c ≤ c(r) then Pra tends to 0 when n tends to ∞ and if c > c(r)

then Pra tends to 1. This phenomenon has also been reported by Majewski et al [42] for

general hypergraphs.

Finally, as Pra is Ω(1), the expected number of iterations is O(1), and therefore it is

safe to conclude that the mapping step takes O(n) expected time because the acyclicity

34 CHAPTER 3. A FAMILY OF NEAR SPACE-OPTIMAL ALGORITHMS

1.8

1.4

r

1.2
1098765432

c(r)

2.0

1.6

Figure 3.5: Values of c(r) for r ∈ {2, 3, . . . , 10}, previously reported in [42]

test also runs in O(n) time.

3.1.2 Assigning Step

The Assigning step takes the acyclic random hypergraph Gr and the list of edges L as

input, and produces the labeling g. To assign values to the vertices of Gr we traverse the

edges in L from tail to head. The reason to traverse the edges in the reverse order they

were deleted is to assure that each edge will contain at least one vertex that is traversed

for the first time. For example, if the deleted edges were stored in L in the following order:

e1, e2, . . . , ei, ei+1, . . . , en and we consider the edge ei, then we know that ei will have at

least one of its vertices of degree one by removing the edges e1, e2, . . . , ei−1. Let us refer

to that vertice as v. Thus, by removing ei, v will become of degree 0. Therefore, v is not

contained in any of the edges ei+1, . . . , en. So, by traversing from en to e1, at least one of

the vertices in the edges will be traversed for the first time and such a vertex can be used

to uniquely represent the edge.

The assignment is created as follows. Let Visited be a boolean vector of size m that

indicates whether a vertex has been visited. We first initialize g[i] = r (i.e., each vertex is

unassigned) and Visited [i] = false, 0 ≤ i ≤ m − 1. Then, for each edge e ∈ L from tail to

head, we look for the first vertex u belonging tfig:mapo e not yet visited. Let j, 0 ≤ j ≤ r−1

be the index of u in e. Then, we set g[u] = (j − ∑

v∈e∧Visited [v]=true g[v]) mod r. Whenever

we pass through a vertex u from e, if it has not yet been visited, we set Visited [u] = true.

Figure 3.6 presents a step by step example for the list of edges of our example presented

in Figure 3.3. The initial state is shown in Figure 3.6 (a). In Figure 3.6 (b), the vertices 2

and 5 of edge L[3] are marked as visited and g[2] = (0−g[5]) mod 2 = 0. In Figure 3.6 (c),

3.1. THE FAMILY OF ALGORITHMS 35

the vertex 7 of edge L[2] is marked as visited and g[7] = (1−g[2]) mod 2 = 1. In Figure 3.6

(d), the vertex 6 of edge L[1] is marked as visited and g[6] = (1−g[2]) mod 2 = 1. Finally,

in Figure 3.6 (e), the vertices 0 and 5 of edge L[0] are marked as visited and g[0] = (0−g[5])

mod 2 = 0. Therefore, Eq. (3.1) will return the vertices 2, 6, 0 and 7 for the keys jan, feb,

mar and apr, respectively.

r r rr r r r r
2 3 4 5 6 7

g
0 1

r r r r r
2 3 4 5 6 7

g
0 1

r0 r

r r r r
2 3 4 5 6 7

g
0 1

r0 r 1 r r r
2 3 4 5 6 7

g
0 1

r0 r 11 r r

d)

3210
L

e)

321
L

0

a)
L{0,5} {2,6} {2,7} {2,5}

0 1 2 3

b)

321
L

0

c)

321
L

0

2 3 4 5 6 7
g

0 1
r0 r 110

{2,6} {2,7} {2,5}{0,5} {0,5} {2,6} {2,7} {2,5}

{2,6} {2,7} {2,5}{0,5}

{2,6} {2,7} {2,5}{0,5}

Figure 3.6: Example of the assigning step

Figure 3.7 presents a pseudo code for the Assigning step.

procedure Assigning (Gr , L , g)
for u = 0 to m − 1 do

visited [u] = false ;

g[u] = r ;
for i = |L| − 1 to 0 do

e = L[i] ; sum = 0;
for k = r − 1 to 0 do

if (not visited [e[k]])

visited [e[k]] = true ;
u = e[k] ;
j = k ;

else sum += g(e[k]) ;

g(u) = (j − sum) mod r ;

Figure 3.7: Assigning step

Analysis of the Assigning Step

As each edge is handled once, the number of vertices in Gr is a linear function of n (i.e.,

the number of edges), and the involved operations have cost O(1), then the Assigning step

also runs in O(n) time.

36 CHAPTER 3. A FAMILY OF NEAR SPACE-OPTIMAL ALGORITHMS

3.1.3 Ranking Step

The Ranking Step obtains MPHFs from the PHFs presented in Eq. (3.1). It receives the

labeling g as input and produces the data structure rankTable as output. It is possible

to build a data structure that allows the computation in constant time of function rank

presented in Eq. (3.3) by using o(m) additional bits of space. This is a well-studied primitive

in succinct data structures (see e.g. [47]).

Implementation

We now describe a practical variant that uses ǫ m additional bits of space, where ǫ can be

chosen as any positive number, to compute the data structure rankTable in linear time.

Conceptually, the scheme is very simple: store explicitly the rank of every kth index in a

rankTable, where k = ⌊log(m)/ǫ⌋. In the implementation we let the parameter k to be set

by the users so that they can trade off space for evaluation time and vice-versa. In the

experiments we set k to 256 in order to spend less space to store the resulting MPHFs.

This means that we store in the rankTable the number of assigned vertices before every

256th entry in the labeling g. Figure 3.8 presents a pseudo code for the Ranking step.

procedure Ranking (g , rankTable)
sum = 0;
for i = 0 to |g| − 1 do

if (i mod k == 0) rankTable [i/k] = sum;
i f (g(i) 6= r) sum++;

Figure 3.8: Ranking step

Figure 3.9 illustrates the Ranking step on the labeling g of Figure 3.6 considering k = 3.

It means that there is no assigned vertex before g[0], there are two assigned vertices before

g[3], and two before g[6].

1 2 3 4 5 6 7
g

0

0 1 2
rankTable for k=3

0 110 r r r r

20 2

Figure 3.9: Example of the Ranking step

3.1. THE FAMILY OF ALGORITHMS 37

Analysis of the Ranking Step

The Ranking step also runs in time O(n). This comes from the fact that it just loops over

the m = c(r)n entries of labeling g and c(r) is a constant fixed a priori.

3.1.4 Evaluating the Resulting Functions

To compute rank(u), where u is given by Eq. (3.1), we look up in the rankTable the rank

of the largest precomputed index v ≤ u, and count the number of assigned vertices from

position v to u − 1. To do this in time O(1/ǫ) we use a lookup table Tr that allows us to

count the number of assigned vertices in b = ǫ log m bits in constant time for any 0 < ǫ < 1.

For simplicity and without loss of generality we let b be a multiple of the number of bits β

used to encode each entry of g. Then, the lookup table Tr can be generated a priori by the

pseudo code presented in Figure 3.10, where LS(i′,β) stands for the value of the β least

significant bits of i′ and >> is the right shift of bits operation.

procedure GenLookupTable (β , b , Tr)

for i = 0 to 2b − 1 do

sum = 0; i′ = i ;
for j = 0 to b/β − 1 do

if (LS(i′, β) 6= r) sum++;

i′ = i′ >> β ;
Tr[i] = sum;

Figure 3.10: Generation of the lookup table Tr

In the experiments, we have used a lookup table that allows us to count the number of

assigned vertices in 8 bits in constant time. Therefore, to compute the number of assigned

vertices in 256 bits we need 32 lookups. Such a lookup table fits entirely in the cache

because it takes 28 bytes of space.

We use the implementation just described because the smallest hypergraphs are

obtained when r = 3 (see Section 3.1.1). Therefore, the most compact and efficient

functions are generated when r = 2 and r = 3. That is why we have chosen these two

instances of the family to be discussed in Sections 3.3.1 and 3.3.2.

Figure 3.11 presents the pseudo code for the resulting PHFs. Note that it is quite

simple to be computed, an important characteristic at retrieval time.

Figure 3.12 presents the pseudo code for the resulting MPHFs. The variable Tr counts

the number of assigned vertices in E entries of g or in b = βE bits. We use the notation

38 CHAPTER 3. A FAMILY OF NEAR SPACE-OPTIMAL ALGORITHMS

function phf (x , g , r)
e = {h0(x), h1(x), . . . , hr−1(x)} ;
sum = 0;
for i = 0 to r − 1 do sum += g(e[i]) ;

return e[sum mod r] ;

Figure 3.11: Pseudo code for the PHF presented in Eq. (3.1)

g(i → j) to represent the values stored in the entries from g(i) to g(j) for i ≤ j. If j ≥ |g|
or (j − i + 1) < E , then the value r, which is used to represent unassigned vertices, is

appended to fulfill the entries to be looked up in Tr.

function mphf (x , g , r , rankTable , k)
u = phf(x , g , r) ;

j = u/k ;
rank = rankTable [j] ;
for i = j ∗ k to u − 1 step E do

rank += Tr[g(i → i + E)] ;
return rank;

Figure 3.12: Pseudo code for the MPHF presented in Eq. (3.2)

3.2 The Uniform Hashing Assumption

The uniform hashing assumption is not feasible because each hash function hi : U →
[im

r
, (i + 1)m

r
− 1] for 0 ≤ i < r would require at least n log m

r
bits to be stored, exceeding

the space for the MPHFs. From a theoretical perspective, the full randomness assumption

is not too harmful, as we can use the “split and share” approach of Dietzfelbinger and

Weidling [22]. The additional space usage is then a lower order term of O(n1−Ω(1)).

Specifically, the algorithm would split S into O(n1−δ) buckets of size nδ, where δ < 1/3,

say, and create a perfect hash function for each bucket using a pool of O(r) simple hash

functions of size O(n2δ), where each acts like uniform random functions on each bucket,

with high probability. From this pool, we can find r suitable functions for each bucket,

with high probability. Putting everything together to form a perfect hash function for S

can be done using an offset table of size O(n1−δ). This is the main idea supporting the

analysis of the algorithm presented in Chapter 4.

3.3. STORAGE REQUIREMENTS FOR THE RESULTING FUNCTIONS 39

Implementation

In practice, limited randomness is often as good as total randomness [52]. For our

experiments we choose hi from a family H of universal hash functions presented in [18], and

we verify experimentally that the schemes behave well (see Section 3.4). The functions hi,

for i ∈ [0, r−1], are constructed as follows. We impose some upper bound L on the lengths

of the keys in S that are generated from an alphabet of size |Σ|. To define hi, we generate

an L × |Σ| table of random integers tablei in the range [0, m − 1]. For a key x ∈ S of

length |x| ≤ L, we let

hi(x) =
(

∑|x|−1
j=0 tablei[j, x[j]]

)

mod m
r

+ im
r
.

Each different table tablei corresponds to a different hash function. Thus, the storage space

requirement for each hash function hi is L × |Σ| × log m bits.

There are other heuristic hash functions with very good performance in practice but

with no theoretical foundation. For instance, the one proposed by Jenkins [37], where

there is no upper bound for the key sizes and its description requires just the storage of

an integer that is used as seed for a pseudo random number generator. The function just

loops around the key doing bitwise operations on blocks of 12 bytes and, in the end, a 12

byte long integer is generated, which can be partially or integrally taken module m
r

. In

Chapter 4 we show experiments illustrating the practicality of the Jenkins function.

3.3 Storage Requirements for the Resulting Functions

In this section we present the space required to store the resulting MPHFs disregarding

the space for storing the r uniform hash functions, which was discussed in Section 3.2.

The description of the resulting MPHFs is compounded by the function g, the rankTable

and the lookup table Tr. The resulting labeling g contains values in the range [0, r] and

its domain size is equal to the number of vertices in Gr, i.e., m = c(r)n. Then, we can use

β = ⌊log(r)⌋ + 1 bits to encode each value in g. Therefore, g requires βm bits of storage

space. The rankTable is stored in ǫm bits because it has m/k entries of size log m bits and

k = ⌊log(m)/ǫ⌋ for 0 < ǫ < 1. The lookup table Tr is stored in o(m) bits because it has mǫ

entries of size log log m bits. Putting all together we have that the number of bits required

to store the resulting PHFs and MPHFs are βm and (β + ǫ)m + o(m) bits, respectively.

40 CHAPTER 3. A FAMILY OF NEAR SPACE-OPTIMAL ALGORITHMS

3.3.1 The 2-Graph Instance

The use of 2-graphs allows us to generate the PHFs of Eq.(3.1) that give values in the

range [0, m − 1], where m = (2 + ε)n for ε > 0 (see Section 3.1.1). The significant values

in the labeling g for a PHF are {0, 1}, because we do not need to represent information to

calculate the ranking (i.e., r = 2). Then, we can use just one bit to represent the value

assigned to each vertex, i.e., β = 1. Therefore, the resulting PHF requires m bits to be

stored. For ε = 0.09, the resulting PHFs are stored in approximately 2.09n bits.

To generate the MPHFs of Eq. (3.2) we need to include the ranking information. Thus,

we must use the value r = 2 to represent unassigned vertices and now two bits are required

to encode each value assigned to the vertices, i.e., β = 2. Then, the resulting MPHFs

require (2+ǫ)m+o(m) bits to be stored (remember that the ranking information requires ǫm

bits and the lookup table T2 requires o(m) bits), which corresponds to (2+ǫ)(2+ε)n+o(n)

bits for any ǫ > 0 and ε > 0. In the experiments, for ǫ = 0.125 and ε = 0.09 the resulting

functions are stored in approximately 4.44n bits.

Improving the space

The range of significant values assigned to the vertices is clearly [0,2]. Hence we need log(3)

bits to encode the value assigned to each vertex. Theoretically we use arithmetic coding

as block of values. Therefore, we can compress the resulting MPHF to use (log(3) + ǫ)(2 +

ε)n + o(n) bits of storage space by using a simple packing technique. In practice, we can

pack the values assigned to every group of 5 vertices into one byte because each assigned

value comes from a range of size 3 and 35 = 243 < 256. At construction time we should

use a small lookup table of size 5 containing: pow3 table[5] = {1, 3, 9, 27, 81}. To assign a

value x ∈ [0, 2] to a vertex u ∈ V (Gr) we use:

byte = g(u/5) ;
byte += x ∗ pow3 table [u mod 5] ;
g(u/5) = byte ;

At retrieval time we should use a lookup table Tlookup of size 5*256=1280 bytes to speed

up the recovery of the value x assigned to a given vertex u, as shown below.

byte = g(u/5) ;
x = Tlookup[u mod 5][byte] ;

Each entry of the lookup table Tlookup is computed by Tlookup[i][j] =

(j/pow3 table[i]) mod 3, where 0 ≤ i < 5 and 0 ≤ j < 256. In the experiments, for

3.4. EXPERIMENTAL RESULTS 41

ǫ = 0.125 and ε = 0.09, the resulting functions are stored in approximately 3.6n bits.

3.3.2 The 3-Graph Instance

The use of 3−graphs allows us to generate more compact PHFs and MPHFs at the expense

of one more hash function h2. An acyclic random 3−graph is generated with probability

Ω(1) for m ≥ c(3)n, where c(3) ≈ 1.23 is the minimum value for c(r) (see Section 3.1.1).

Therefore, we will be able to generate the PHFs of Eq. (3.1) so that they will produce

values in the range [0, (1.23+ε)n−1] for any ε ≥ 0. The values assigned to the vertices are

drawn from {0, 1, 2, 3} and, consequently, each value requires β = 2 bits to be represented.

Thus, based on the fact that for PHFs no ranking information is needed (i.e., ǫ = 0), the

resulting PHFs require 2(1.23 + ε)n bits to be stored, which corresponds to 2.46n bits for

ε = 0.

We can generate the MPHFs of Eq. (3.2) from the PHFs that take into account the

special value r = 3. The resulting MPHFs require (2 + ǫ)(1.23 + ε)n + o(n) bits to be

stored for any ǫ > 0 and ε ≥ 0, once the ranking information must be included. In the

experiments, for ǫ = 0.125 and ε = 0, we have got MPHFs that are stored in approximately

2.62n bits (see Section 3.4).

Improving the space

For PHFs that map to the range [0, (1.23+ε)n−1] we can get still more compact functions.

This comes from the fact that the only significant values assigned to the vertices that are

used to compute Eq. (3.1) are {0, 1, 2}. Then, we can apply the arithmetic coding technique

presented in Section 3.3.1 to get PHFs that require log(3)(1.23+ε)n bits to be stored, which

is approximately 1.95n bits for ε = 0. For this we must replace the special value r = 3 to

0.

3.4 Experimental Results

In this section we evaluate the performance of our algorithms. We compare them with

the main practical minimal perfect hashing algorithms we found in the literature. They

are: Botelho, Kohayakawa and Ziviani [8] (referred to as BKZ), Fox, Chen and Heath [28]

(referred to as FCH), Majewski, Wormald, Havas and Czech [42] (referred to as MWHC),

and Pagh [46] (referred to as PAGH). For the MWHC algorithm we used the version based

42 CHAPTER 3. A FAMILY OF NEAR SPACE-OPTIMAL ALGORITHMS

on 3-graphs. We did not consider the one that uses 2-graphs because it is shown in [8]

and in Chapter 2 that the BKZ algorithm outperforms it. We used the hash functions

presented in Section 3.2 for all the algorithms.

The algorithms were implemented in the C language and are available at

http://cmph.sf.net under the GNU Lesser General Public License (LGPL). The

experiments were carried out on a computer running the Linux operating system, version

2.6, with a 3.2 gigahertz Intel Xeon Processor with a 2 megabytes L2 cache and 1 gigabyte

of main memory. Each experiment was run for 100 trials. For the experiments we used

two collections: (i) a set of randomly generated 4 bytes long IP addresses, and (ii) a set of

64 bytes long (on average) URLs collected from the Web.

To compare the algorithms we used the following metrics: (i) The amount of time

to generate MPHFs, referred to as Generation Time. (ii) The space requirement for the

description of the resulting MPHFs to be used at retrieval time, referred to as Storage

Space. (iii) The amount of time required by a MPHF for each retrieval, referred to

as Evaluation Time. For all the experiments we used n = 3, 541, 615 keys for the two

collections. The reason to choose a small value for n is because the FCH algorithm has

exponential time on n for the generation phase, and the times explode even for number of

keys a little over.

We now compare our algorithms for constructing MPHFs with the other algorithms

considering generation time and storage space. Table 3.1 shows that our algorithm for

r = 3 and the MWHC algorithm are faster than the others to generate MPHFs. The

storage space requirements for our algorithms with r = 2, r = 3 and the FCH algorithm are

3.6, 2.62 and 3.66 bits per key, respectively. For the BKZ, MWHC and PAGH algorithms

they are log n, 1.23 log n and 2.03 log n bits per key, respectively.

Algorithms Generation Time (sec) Storage Space

URLs IPs Bits/Key Size (MB)

Our
r = 2 19.49 ± 3.750 18.37 ± 4.416 3.60 1.52

r = 3 9.80 ± 0.007 8.74 ± 0.005 2.62 1.11

BKZ 16.85± 1.85 15.50 ± 1.19 21.76 9.19

FCH 5901.9± 1489.6 4981.7± 2825.4 3.66 1.55

MWHC 10.63± 0.09 9.36 ± 0.02 26.76 11.30

PAGH 52.55± 2.66 47.58 ± 2.14 44.16 18.65

Table 3.1: Comparison of the algorithms for constructing MPHFs considering generation

time and storage space, and using n = 3, 541, 615 for the two collections

3.5. CONCLUSIONS 43

Now we compare the algorithms considering evaluation time. Table 4.5 shows the

evaluation time for a random permutation of the n keys. Although the number of memory

probes at retrieval time of the MPHF generated by the PAGH algorithm is optimal [46]

(it performs only 1 memory probe), it is important to note in this experiment that the

evaluation time is smaller for the FCH and our algorithms because the generated functions

fit entirely in the L2 cache of the machine (see the storage space size for our algorithms

and the FCH algorithm in Table 3.1). Therefore, the more compact a MPHF is, the more

efficient it is if its description fits in the cache. For example, for sets of size up to 6.5

million keys of any type the resulting functions generated by our algorithms will entirely

fit in a 2 megabyte L2 cache.

Algorithms Our BKZ FCH MWHC PAGH
r = 2 r = 3

Evaluation IPs 1.35 1.36 1.45 1.01 1.46 1.43

Time (sec) URLs 2.63 2.73 2.81 2.14 2.85 2.78

Table 3.2: Comparison of the algorithms considering evaluation time and using the

collections IPs and URLs with n = 3, 541, 615

Now, we compare the PHFs and MPHFs generated by our family of algorithms

considering generation time, storage space and evaluation time. Table 3.3 shows that

the generation times for PHFs and MPHFs are almost the same, being the algorithms

for r = 3 more than twice faster because the probability to obtain an acyclic 3-graph for

c(3) = 1.23 tends to one while the probability for a 2 − graph where c(2) = 2.09 tends

to 0.29 (see Section 3.1.1). For PHFs with m = 1.23n instead of MPHFs with m = n,

then the space storage requirement drops from 2.62 to 1.95 bits per key. The PHFs with

m = 2.09n and m = 1.23n are the fastest ones at evaluation time because no ranking or

packing information needs to be computed.

Finally, In a conversely situation where the functions do not fit in the cache, the MPHFs

generated by the PAGH algorithm are the most efficient, as shown in Table 3.4.

3.5 Conclusions

We have presented an efficient family of algorithms to generate near space-optimal PHFs

and MPHFs. The algorithms are simpler and has much lower constant factors than existing

theoretical results for n < 2300. In addition, it outperforms the main practical general

44 CHAPTER 3. A FAMILY OF NEAR SPACE-OPTIMAL ALGORITHMS

r Packed m
Generation Time (sec) Eval. Time (sec) Storage Space

IPs URLs IPs URLs Bits/Key Size (MB)

2 no 2.09n 18.32± 3.352 19.41 ± 3.736 0.68 1.83 2.09 0.88

2 yes n 18.37± 4.416 19.49 ± 3.750 1.35 2.63 3.60 1.52

3 no 1.23n 8.72 ± 0.009 9.73 ± 0.009 0.96 2.16 2.46 1.04

3 yes 1.23n 8.75 ± 0.007 9.95 ± 0.009 0.94 2.14 1.95 0.82

3 no n 8.74 ± 0.005 9.80 ± 0.007 1.36 2.73 2.62 1.11

Table 3.3: Comparison of the PHFs and MPHFs generated by our algorithms, considering

generation time, evaluation time and storage space metrics using n = 3, 541, 615 for the

two collections. For packed schemes see Sections 3.3.1 and 3.3.2

Algorithms Our BKZ FCH MWHC PAGH

Function Type Comp. PHF PHF MPHF MPHF MPHF MPHF MPHF

Size (megabytes) 3.52 4.40 4.95 42.63 - 52.44 86.54

Evaluation IPs 5.94 5.75 8.02 4.86 - 6.29 4.60

Time (sec) URLs 9.41 9.30 11.49 9.29 - 9.61 9.25

Table 3.4: Comparison of the algorithms considering evaluation time and using the

collections IPs and URLs with n = 15, 000, 000

purpose algorithms found in the literature considering generation time and storage space

as metrics. However, the resulting MPHFs still assume uniform hashing. Our next result

presented in Chapter 4 shows how to generate simple and near space-optimal MPHFs

without assuming uniform hashing.

Chapter 4

A scalable minimal perfect hashing

method

In this chapter we use a number of techniques from the literature to obtain a novel

external memory based perfect hashing algorithm, referred to as EPH algorithm. The

EPH algorithm produces MPHFs using approximately 3.8 bits per key. Also, for PHFs

with range {0, . . . , 2n − 1} the space usage drops to approximately 2.7 bits per key. The

main insight supporting the EPH algorithm is that it splits the incoming key set S into

small buckets containing at most 256 keys. Then, a MPHF is generated for each bucket

and using an offset array we obtain a MPHF for S. Therefore, the EPH algorithm works

on subsets of size lower than 256 and this increases the probability of cache hits. That

is why the EPH algorithm generates the functions as fast as the algorithms that operates

only on data structures stored in internal memory.

The EPH algorithm increases one order of magnitude in the size of the greatest key

set for which a MPHF was obtained in the literature [8]. This improvement comes from

a combination of a novel perfect hashing scheme that greatly simplifies previous methods,

and the fact that the EPH algorithm is designed to make good use of memory hierachy

(see Section 4.3.2 for details). Also, the algorithm is theoretically sound because with the

help of Rasmus Pagh [7] we have completely analyzed it’s time and space usage without

unrealistic assumptions.

We demonstrate the scalability of the EPH algorithm by considering a set of 1.024 billion

strings (URLs from the world wide web of average length 64), for which we construct a

MPHF on a commodity PC in approximately 62 minutes. If we use the range {0, . . . , 2n−
1}, the space for the PHF is less than 324 MB, and we still get hash values that can be

45

46 CHAPTER 4. A SCALABLE MINIMAL PERFECT HASHING METHOD

represented in a 32 bit word. Thus we believe our MPHF method might be quite useful

for a number of current and practical data management problems.

4.1 The EPH algorithm

Our algorithm uses the well-known idea of partitioning the key set into a number of small

sets1 (called “buckets”) using a hash function h0. Let Bi = {x ∈ S | h0(x) = i} denote the

ith bucket. If we define offset[i] =
∑i−1

j=0 |Bi| and let mphfi denote a MPHF for Bi then

clearly

mphf(x) = mphfi(x) + offset[h0(x)] (4.1)

is a MPHF for the whole set S. Thus, the problem is reduced to computing and storing

the offset array, as well as the MPHF for each bucket.

Figure 4.1 illustrates the two steps of the EPH algorithm: the partitioning step and

the searching step. The partitioning step takes a key set S and uses a hash function h0 to

partition S into 2b buckets. The searching step generates a MPHF mphfi for each bucket

i, 0 ≤ i ≤ 2b − 1 and computes the offset array. To compute the MPHF of each bucket we

used one algorithm from the family of algorithms presented in Chapter 3. We will describe

the algorithm in more details in Section 4.1.2 because we have tuned it to generate more

compact and faster functions at retrieval time.

...

...

...

Key Set S

0 1 n-1

0 1 n-1

Hash Table

MPHF0 MPHF1 MPHF2 MPHF
2b

−1

Partitioning

Searching

0 1 2

Buckets

2b
− 1

Figure 4.1: Main steps of the EPH algorithm

We will choose h0 such that it has values in {0, 1}b, for some integer b. Since the offset

array holds 2b entries of at least log n bits we want 2b to be less than around n/ log n,

making the space used for the offset array negligible. On the other hand, to allow efficient

1Used in e.g. the perfect hash function constructions of Schmidt and Siegel [52] and Hagerup and

Tholey [32], for suitable definition of “small”.

4.1. THE EPH ALGORITHM 47

implementation of the functions mphfi we impose an upper bound ℓ on the size of any

bucket. We will describe later how to choose h0 such that this upper bound holds.

To create the MPHFs mphfi we could choose from a number of alternatives, emphasizing

either space usage, construction time, or evaluation time. We show that all methods based

on the assumption of uniform hash functions can be made to work, with explicit and

provably good hash functions. For the experiments we have implemented the algorithm

described in Section 4.1.2. Since this computation is done on a small set, we can expect

nearly all memory accesses to be “cache hits”. We believe that this is the main reason why

our method performs better than previous ones that access memory in a more “random”

fashion.

We consider the situation in which the set of all keys may not fit in the internal memory

and has to be written on disk. The EPH algorithm first scans the list of keys and computes

the hash function values that will be needed later on in the algorithm. These values will

(with high probability) distinguish all keys, so we can discard the original keys. It is well

known that hash values of at least 2 log n bits are required to make this work. Thus, for

sets of a billion keys or more we cannot expect the list of hash values to fit in the internal

memory of a standard PC.

To form the buckets we sort the hash values of the keys according to the value of h0.

Since we are interested in scalability to large key sets, this is done using an implementation

of an external memory mergesort [40]. If the merge sort works in two phases, which is the

case for all reasonable parameters, the total work on the disk consists of reading the

keys, plus writing and reading the hash function values once. Since the h0 hash values

are relatively small (less than 15 decimal digits) we can use radix sort to do the internal

memory sorting.

The detailed description of the EPH algorithm is presented in Section 4.1.1. The

internal algorithm used to compute the MPHF of each bucket is presented in Section 4.1.2.

The internal algorithm uses two hash functions hi1 and hi2 to compute a MPHF mphfi.

These hash functions as well as the hash function h0 used in the partitioning step of the

EPH algorithm are described in Section 4.1.3.

4.1.1 Implementation of the EPH algorithm

In this section we are going to present the implementation of the two-step external memory

based algorithm and the values of the parameters related to the algorithm. The EPH

algorithm is essentially a two-phase multi-way merge sort with some nuances to make it

48 CHAPTER 4. A SCALABLE MINIMAL PERFECT HASHING METHOD

work in linear time.

The partitioning step performs two important tasks. First, the variable-length keys are

mapped to 128-bit strings by using the linear hash function h′ presented in Section 4.1.3.

That is, the variable-length key set S is mapped to a fixed-length key set F . Second, the

set S of n keys is partitioned into 2b buckets, where b is a suitable parameter chosen

to guarantee that each bucket has at most ℓ = 256 keys with high probability (see

Section 4.1.3). We have two reasons for choosing ℓ = 256. The first one is to keep

the buckets size small enough to be represented by 8-bit integers. The second one is to

allow the memory accesses during the MPHF evaluation to be done in the cache most of

the time. Figure 4.2 presents the partitioning step algorithm.

◮ Let β be the size in bytes of the fixed-length key set F

◮ Let µ be the size in bytes of an a priori reserved internal memory area

◮ Let N = ⌈β/µ⌉ be the number of key blocks that will be read from disk into an

internal memory area

1. for j = 1 to N do

1.1 Read a key block Sj from disk (one at a time) and store h′(x), for each x ∈ Sj ,

into Bj , where |Bj | = µ

1.2 Cluster Bj into 2b buckets using an indirect radix sort algorithm that takes

h0(x) for x ∈ Sj as sorting key(i.e, the b most significant bits of h′(x))

1.3 Dump Bj to the disk into File j

Figure 4.2: Partitioning step

The critical point in Figure 4.2 that allows the partitioning step to work in linear time

is the internal sorting algorithm. We have two reasons to choose radix sort. First, it sorts

each key block Bj in linear time, since keys are short integer numbers (less than 15 decimal

digits). Second, it just needs O(|Bj|) words of extra memory so that we can control the

memory usage independently of the number of keys in S.

At this point one could ask: why not to use the well known replacement selection

algorithm to build files larger than the internal memory area size? The reason is that

the radix sort algorithm sorts a block Bj in time O(|Bj|) while the replacement selection

algorithm requires O(|Bj| log |Bj |). We have tried out both versions and the one using the

radix sort algorithm outperforms the other. A worthwhile optimization we have used is

the last run optimization proposed by Larson and Graefe [40]. That is, the last block is

4.1. THE EPH ALGORITHM 49

kept in memory instead of dumping it to disk to be read again in the second step of the

algorithm.

Figure 4.3(a) shows a logical view of the 2b buckets generated in the partitioning step.

In reality, the 128-bit strings belonging to each bucket are distributed among many files,

as depicted in Figure 4.3(b). In the example of Figure 4.3(b), the 128-bit strings in bucket

0 appear in files 1 and N , the 128-bit strings in bucket 1 appear in files 1, 2 and N , and

so on.

a)

...

...

b)

...
... ...

Buckets Physical View

File 1 File 2 File N

0 1 2

Buckets Logical View

2b
− 1

Figure 4.3: Situation of the buckets at the end of the partitioning step: (a) Logical view

(b) Physical view

This scattering of the 128-bit strings in the buckets could generate a performance

problem because of the potential number of seeks needed to read the 128-bit strings in

each bucket from the N files on disk during the second step. But, as we show later on in

Section 4.3.3, the number of seeks can be kept small using buffering techniques.

The searching step is responsible for generating a MPHF for each bucket and for

computing the offset array. Figure 4.4 presents the searching step algorithm. Statement

1 of Figure 4.4 constructs the heap H of size N . This is well known to be linear on N .

The order relation in H is given by the bucket address i (i.e., the b most significant bits

of x ∈ F). Statement 2 has two important steps. In statement 2.1, a bucket is read from

disk, as described below. In statement 2.2, a MPHF is generated for each bucket Bi using

the internal memory based algorithm presented in Section 4.1.2. In statement 2.3, the

next entry of the offset array is computed. Finally, statement 2.4 writes the description of

MPHFi and offset [i] to disk. Note that to compute offset [i + 1] we just need the current

bucket size and offset [i]. So, we just need to maintain two entries of vector offset in memory

all the time.

The algorithm to read bucket Bi from disk is presented in Figure 4.5. Bucket Bi is

distributed among many files and the heap H is used to drive a multiway merge operation.

50 CHAPTER 4. A SCALABLE MINIMAL PERFECT HASHING METHOD

◮ Let H be a minimum heap of size N , where the

order relation in H is given by

i = x[96, 127] >> (32 − b) for x ∈ F

1. for j = 1 to N do { Heap construction }
1.1 Read the first 128-bit string x from File j on disk

1.2 Insert (i, j, x) in H

2. for i = 0 to 2b − 1 do

2.1 Read bucket Bi from disk driven by heap H

2.2 Generate a MPHF for bucket Bi

2.3 offset [i + 1] = offset [i] + |Bi|
2.4 Write the description of MPHFi and offset [i]

to the disk

Figure 4.4: Searching step

Statement 1.1 extracts and removes triple (i, j, x) from H , where i is a minimum value in

H . Statement 1.2 inserts x in bucket Bi. Statement 1.3 performs a seek operation in File

j on disk for the first read operation and reads sequentially all 128-bit strings x ∈ F that

have the same index i and inserts them all in bucket Bi. Finally, statement 1.4 inserts in

H the triple (i′, j, x′), where x′ ∈ F is the first 128-bit string read from File j (in statement

1.3) that does not have the same bucket address as the previous keys.

1. while bucket Bi is not full do

1.1 Remove (i, j, x) from H

1.2 Insert x into bucket Bi

1.3 Read sequentially all 128-bit strings from File j

that have the same i and insert them into Bi

1.4 Insert the triple (i′, j, x′) in H , where x′ is

the first 128-bit string read from File j that

does not have the same bucket index i

Figure 4.5: Reading a bucket

4.1. THE EPH ALGORITHM 51

4.1.2 The algorithm used for the buckets

For the buckets we decided to use one of the algorithms from the family F of algorithms2

presented in Chapter 3, because it outperforms the main practical algorithms we found

in the literature (see Section 1.3), and also is a simple and near space-optimal way of

constructing a minimal perfect hash function for a set S of n elements. The functions are

constructed under the assumption that it is possible to create and access two truly random

hash functions f0 : U → [0, m
2
− 1] and f1 : U → [m

2
, m − 1], where m = cn for c > 2. The

Functions f0 and f1 are used to map the keys in S to a bipartite graph G = (V, E), where

V = [0, m − 1] and E = {{f0(x), f1(x)} | x ∈ S} (i.e, |E| = |S| = n). Hence, each key in

S is associated with only one edge from E. Figure 4.6(a) illustrates this step, referred to

as mapping step, for a set S with three keys.

0
1
2
3
4
5
6
7

3
2

1
0

g

Hash Table

f (x)

(a)

f (x)

(b) (c)

1

0

RankingAssigning

0

1

Mapping

1 3

54

S

jan

feb

mar

apr 6

20

m
ar ja

n feb

apr

7

mar
jan
feb
apr

1

0
r

r
r
r

Figure 4.6: (a) Mapping step generates a bipartite graph (b) Assigning step generates a

labeling g so that each edge is uniquely associated with one of its vertices (c) Ranking step

builds a function rank : V → [0, n − 1]

In the following step, referred to as assigning step, a function g : V → {0, 1, 2} is

computed so that each edge is uniquely represented by one of its vertices. For instance,

in Figure 4.6(b), edge {0, 3} is associated with vertex 0, edge {0, 4} with vertex 4 and

edge {2, 4} with vertex 2. Then, a function phf : S → V defined as phf(x) = fi(x), where

i = i(x) = (g(f0(x)) + g(f1(x))) mod 2 is a perfect hash function on S. Note that i = i(x)

is used to select the vertex from the edge associated with x that uniquely represent x

The assigning step splits the set of vertices into two subsets: (i) the assigned ones and

(ii) the unassigned ones. A vertex v is defined as assigned if g(v) 6= 2 and unassigned

otherwise. Also, the number of assigned vertices is guaranteed by construction to be equal

2The algorithms in F use r-uniform random hypergraphs given by function values of r hash functions

on the keys of S. An r-graph is a generalization of a standard graph where each edge connects r ≥ 2

vertices. For the buckets in the EPH algorithm we used the 2-uniform hypergraph instance.

52 CHAPTER 4. A SCALABLE MINIMAL PERFECT HASHING METHOD

to |S| = n. Therefore, a function rank : V → [0, n − 1] that counts how many vertices

are assigned before a given assigned vertex v ∈ V is a MPHF on V . For example, in

Figure 4.6(c), rank(0) = 0, rank(2) = 1 and rank(4) = 2, which means that there is no

assigned vertex before vertex 0, one before vertex 2, and there are two before vertex 4.

This implies that a function h : S → [0, n − 1] defined as mphf(x) = rank(phf(x)) is a

MPHF on S. The last step of the algorithm, referred to as ranking step, is responsible for

computing the data structures used to compute function rank in time O(1).

In Chapter 3 we have shown that g can be generated in linear time if the bipartite

graph G = G(f0, f1) is acyclic. When a cyclic graph is generated a new pair (f0, f1) is

randomly selected so that the values of f0 and f1 are truly random and independent. Hence

the number of iterations to get an acyclic random graph must be bounded by a constant

to finish the algorithm in linear time. They have shown that if |V | = m = cn, for c > 2,

the probability of generating an acyclic bipartite random graph is Pra =
√

1 − (2/c)2 and

the number of iterations is on average Ni = 1/Pra. For c = 2.09 we have Pra ≈ 0.29 and

Ni ≈ 3.4. Finally, we have used arithmetic coding to compress g and the data structures

used to compute function rank in time O(1) so that the resulting MPHFs are stored in

(3 + ǫ)n, where ǫ ≈ 0.6.

Improving the space

We now present other technique that will produce MPHFs slightly more compact. The

first observation is that to compute phf(x) we do not need the value r used to represent

unassigned vertices. Then, we replace it to 0 and now each entry of vector g is encoded

with one bit. To compute mphf(x) we need to know what are the assigned vertices. Then,

we use other bit vector T of size m to indicate the assigned vertices. That is, T [v] = 1 if

v ∈ V is assigned and T [v] = 0 otherwise. In this case we would require 2m + o(n) bits

to store the resulting MPHFs. The o(n) part comes from the fact that we need to store

information to compute the rank (see Section 3.3 for details).

Now we can create a compressed representation g′ that uses only n bits and enables

us to compute any bit of g in constant time by using rank on the set of assigned vertices

represented by T . That is, g′[rank(v)] = g[v]. This is possible since rank(v) is 1-1 on

elements in V (G), which are mapped into the range [0, n − 1]. In conclusion, we can

replace g by g′ and reduce the space usage to n + m + o(n) bits. As m = (2 + ǫ)n for any

ǫ > 0, then the resulting MPHFs are now stored in (3 + ǫ)n + o(n) bits, for any ǫ > 0. In

the experiments we have got functions that are stored in approximately 3.3n bits.

4.1. THE EPH ALGORITHM 53

The parameters choice for the algorithm used for the buckets

The first parameter we are going to discuss is that c responsible for allowing us to construct

an acyclic bipartite random graph with high probability. We have set c to 2.09 in order to

get a probability of approximately 0.29 of generating a random graph with no cycles.

As a consequence the expected number of iterations to generate an acyclic graph is

approximately 3 (see Section 3.1.1 for details).

The larger is the value of c, the sparser is the random graph used and, consequently, the

larger is the storage requirements of the resulting MPHFs and the faster is the algorithm

because of the greater probability of getting an acyclic random graph. We have chosen a

small value for c because we are interested in more compact functions and the runtime of

the internal algorithm is dominated by the time spent with I/Os.

4.1.3 Hash functions used by the EPH algorithm

The aim of this section is threefold. First, in Section 4.1.3, we define the hash function

h0 used to split the key set S into 2b buckets and the hash functions hi1 and hi2 used by

the algorithm to generate the MPHF of each bucket, where 0 ≤ i ≤ 2b − 1. Second, in

Section 4.1.3, we present the implementation details of those hash functions. Third, in

Section 4.2.3, we show the conditions that parameter b must meet so that no bucket with

more than ℓ keys is created by h0. We also show that hi1 and hi2 are truly random hash

functions for the buckets.

Definitions

We have made the design decision to make use of tabulation based hash functions, which

seem to be a more practical alternative than hash functions based on integer multiplication

of keys.3 We will make extensive use of the linear hash functions analyzed by Alon,

Dietzfelbinger, Miltersen and Petrank [1]. To do so we consider a key as a 0-1 vector of

length L. The variable-length strings that we consider are conceptually made fixed length

by padding with zeros at the end, which results in a unique vector since ascii character 0

does not appear in any string.

3For example, as far as we know the best way of implementing multiplication of two 64-bit integers on

contemporary machines is by “school method” reduction to 4 multiplications of 32-bit integers. Similarly,

a “ mod p” operation on the resulting 128-bit integer, where p is a 32-bit integer, seems to require 3

multiplications of 32-bit integers and 4 modulo operations on 64-bit integers.

54 CHAPTER 4. A SCALABLE MINIMAL PERFECT HASHING METHOD

Mathematically, h0 is a randomly chosen linear map over Galois field 2 (or simply

GF(2)) from {0, 1}L to {0, 1}b. To get an efficient implementation, we use a tabulation idea

from [2] where we can get evaluation time O(L/ log σ) by using space Lσ – see Section 4.1.3

for implementation details. Choosing σ = nΩ(1) we obtain evaluation time O(L/ log n). (In

theory we could get evaluation time O(L/w), where w ≥ log n is the word length of the

computer, by first hashing down to O(log n) bits using universal hashing; however, this

does not seem to give an improvement in practice.) We choose b as small as possible such

that the maximum bucket size is bounded by ℓ with reasonable probability (some constant

close to 1). By a result of [1] we know that

b ≤ log n − log(ℓ/ log ℓ) + O(1). (4.2)

For the implementation, we will experimentally determine the smallest possible choices of

b.

To define hi1 and hi2 we proceed as follows. Again use the linear hash function of [1] to

implement hash functions y1, . . . , yk from {0, 1}L to {0, 1}r−10, where r ≫ log ℓ and k are

parameters to be determined later. Note that the range is the set of r-bit strings ending

with a 0. The purpose of the last 0 is to ensure that we can have no collision between

yj(x1) and yj(x2) ⊕ 1, 1 ≤ j ≤ k, for any pair of elements x1 and x2. Let p be a prime

number much larger than the size of the desired range of hi1 and hi2, which in our case is

|Bi|, and let t1, . . . , t2k be tables of 2r random values in {0, . . . , p − 1}. We then define:

ρ(x, s,∆) =

k
∑

j=1

tj[yj(x) ⊕ ∆] + s

2k
∑

j=k+1

tj[yj(x) ⊕ ∆]

 mod p

hi1(x) = ρ(x, si, 0) mod |Bi|
hi2(x) = ρ(x, si, 1) mod |Bi| (4.3)

where s is a random integer seed number and the symbol ⊕ denotes exclusive-or and the

variable si is specific to bucket i. To find si we choose random values from {1, . . . , p − 1}
until the functions hi1 and hi2 work with the internal algorithm of Section 4.1.2. It is

known that a constant fraction of the set of all functions work; in Section 4.2.3 we will

argue that this will also be the case when the hash functions are chosen as above.

Implementation details

In order to implement the functions h0, y1, y2, y3, . . . , yk to be computed at once we

use a function h′ from a family of linear hash functions over GF(2) proposed by Alon,

4.1. THE EPH ALGORITHM 55

Dietzfelbinger, Miltersen and Petrank [1]. The function has the following form: h′(x) = Ax,

where x ∈ S and A is a γ × L matrix in which the elements are randomly chosen from

{0, 1}. The output is a bit string of an a priori defined size γ. In our implementation

γ = 128 bits. It is important to realize that this is a matrix multiplication over GF

(2). The implementation can be done using a bitwise-and operator (&) and a function

f : {0, 1}γ → {0, 1} to compute parity instead of multiplying numbers. The parity function

f(a) produces 1 as a result if a ∈ {0, 1}γ has an odd number of bits set to 1, otherwise the

result is 0. For example, let us consider L = 3 bits, γ = 3 bits, x = 110 and

A =

1 0 1

0 0 1

1 1 0

·

The number of rows gives the required number of bits in the output, i.e., γ = 3. The

number of columns corresponds to the value of L. Then,

h′(x) =

1 0 1

0 0 1

1 1 0

1

1

0

=

b1

b2

b3

where b1 = f(101 & 110) = 1, b2 = f(001 & 110) = 0 and b3 = f(110 & 110) = 0.

To get a fast evaluation time, some tabulation is required. Note that if x is short, e.g.

8 bits, we can simply tabulate all the function values and compute h′(x) by looking up the

value h′[x] in an array h′. To make the same thing work for longer keys, split the matrix

A into parts of 8 columns each: A = A1|A2| . . . |A⌈L/8⌉, and create a lookup table h′
i for

each submatrix. Similarly split x into parts of 8 bits, x = x1x2 . . . x⌈L/8⌉. Now h′(x) is the

exclusive-or of h′
i[xi], for i = 1, . . . , ⌈L/8⌉. Therefore, we have set σ to 256 so that keys of

size L can be processed in chunks of log σ = 8 bits. In our URL collection the largest key

has 65 bytes, i.e., L = 520 bits.

The 32 most significant bits of h′(x), where x ∈ S, are used to compute the bucket

address of x, i.e., h0(x) = h′(x)[96, 127] >> (32− b). We use the symbol >> to denote the

right shift of bits. The other 96 bits correspond to y1(x), y2(x), . . . y6(x), taking k = 6. This

would give r = 16, however, to save space for storing the tables used for computing hi1 and

hi2, we hard coded the linear hash function to make the most and the least significant bit

of each chunk of 16 bits equal to zero. Therefore, r = 15. This setup enable us to solving

problems of up to 500 billion keys, which is plenty of for all the applications we know of. If

our algorithm fails in any phase, we just restart it. As the parameters are chosen to have

success with high probability, the number of reinitializations is O(1).

56 CHAPTER 4. A SCALABLE MINIMAL PERFECT HASHING METHOD

Finally, the last parameter related to the hash functions we need to talk about is the

prime number p. As p must be much larger than the range of hi1 and hi2, then we set it

to the largest 32-bit integer that is a prime, i.e, p = 4294967291.

4.2 Analytical results

The purpose of this section is threefold. First, we show that our algorithm runs in expected

time O(n). Second, we present the main memory requirements for constructing the MPHF.

Third, we sketch the analysis of the hash functions used by the EPH algorithm.

4.2.1 The linear time complexity

First, we show that the partitioning step presented in Figure 4.2 runs in O(n) time. Each

iteration of the loop for in statement 1 runs in O(|Bj|) time, 1 ≤ j ≤ N , where |Bj | is

the number of 128-bit strings that fit in block Bj of size µ. This is because statement 1.1

just reads |Bj| keys from disk and stores them all into the internal memory area of size µ,

statement 1.2 runs a radix sort algorithm that is well known to be linear in the number of

keys it sorts (i.e., |Bj| 128-bit strings), and statement 1.3 just dumps |Bj | 128-bit strings

to the disk into File j. Thus, the loop for runs in
∑N

j=1 O(|Bj|) time. As
∑N

j=1 |Bj | = n,

then the partitioning step runs in O(n) time.

Second, we show that the searching step presented in Figure 4.4 also runs in O(n)

time. Let us firstly analyse the number of heap operations performed in statement 2.1 that

reads |Bi| 128-bit strings of bucket Bi and is detailed in Figure 4.5. It’s well known that

the heap construction of statement 1 runs in O(N) time. Each iteration of statement 2

performs two heap operations in statement 2.1 (see statements 1.1 and 1.4 in Figure 4.5)

and each one costs O(log N). So, the total cost of statement 2 in terms of heap operations

is 2 × 2b × O(log N). Based on two observations: (i) 2b < n
log n

and (ii) N ≪ n, we can

conclude that the number of heap operations is O(n). However, the 128-bit strings of

bucket i are distributed in at most ℓ files on disk in the worst case (recall that ℓ is the

maximum number of keys found in any bucket). Therefore, we need to take into account

that the critical step in reading a bucket is in statement 1.3 of Figure 4.5, where a seek

operation in File j may be performed by the first read operation.

In order to amortize the number of seeks performed we use a buffering technique [38].

We create a buffer j of size � = µ/N for each file j, where 1 ≤ j ≤ N (recall that µ

is the size in bytes of an a priori reserved internal memory area). Every time a read

4.2. ANALYTICAL RESULTS 57

operation is requested to file j and the data is not found in the jth buffer, � bytes are

read from file j to buffer j. Hence, the number of seeks performed in the worst case is

given by β/� (remember that β is the size in bytes of the fixed-length key set F). For

that we have made the pessimistic assumption that one seek happens every time buffer j

is filled in. Thus, the number of seeks performed in the worst case is 16n/�, since after the

partitioning step we are dealing with 128-bit (16-byte) strings instead of 64-byte URLs, on

average. Therefore, the number of seeks is linear on n and amortized by �.

It is important to emphasize two things. First, the operating system uses techniques

to diminish the number of seeks and the average seek time. This makes the amortization

factor to be greater than � in practice. Second, almost all main memory is available to

be used as file buffers because just the 128-bit strings of the bucket being processed and

O(N) words for the heap must be kept in main memory during the searching step, as we

show in Section 4.2.2.

To conclude the searching step analysis we need to show that statements 2.2 and 2.4

perform a number of operations proportional to |Bi|. If it’s true, then the rest of statement

2 runs in δ
∑2b−1

i=0 |Bi| time, where δ is a machine-dependent constant.

Statement 2.2 runs the algorithm used to generate a MPHF for each bucket. That

algorithm is linear in the number of keys it is applied to, as we have shown in Chapter 3. As

it is applied to buckets with |Bi| keys, then statement 2.2 performs a number of operations

proportional to |Bi|.
Statement 2.4 has time complexity proportional to |Bi| because it writes to disk the

description of each generated MPHF and each description is stored in O(|Bi|) bits (see

Chapter 3 for details). As
∑2b−1

i=0 |Bi| = n, then statement 2 runs in O(n) time. In

conclusion, our algorithm takes O(n) time because both the partitioning and the searching

steps run in O(n) time.

4.2.2 Space used for constructing a MPHF

We need an internal memory area of size µ bytes to be used in the partitioning step and

in the searching step. The size µ is fixed a priori and depends only on the amount of

internal memory available to run the algorithm (i.e., it does not depend on the size n of

the problem). One could argue about the main memory required to run the indirect radix

sort algorithm. It just needs O(|Bj|) words of extra memory so that we can control the

memory usage independently of the size of the problem (i.e., the number of keys being

hashed) and can be fixed a priori.

58 CHAPTER 4. A SCALABLE MINIMAL PERFECT HASHING METHOD

The additional space required is O(N) computer words that corresponds to the size of

the heap used to drive a N -way merge operation in the searching step, which allows the

merge operation to be performed in one pass through each file. This comes from the fact

that the memory usage in the partitioning step does not depend on the number of keys in

S and, in the searching step, the internal algorithm is applied to problems of size up to

256.

4.2.3 Analysis of the hash functions

In this section we sketch the analysis of the hash functions used in the EPH algorithm.

Note that the hash functions h0, y1, y2, . . . , yk have a range of b + kr bits in total. Thus,

by universality of linear hash functions [1], the probability that there exist two keys that

have the same values under all functions is at most
(

n
2

)

/2b+kr. We will choose r such that

this probability becomes negligible. For simplicity, we assume that the zero vector 0L is

not in the set S – it is not hard to see that this assumption is insignificant.

A direct consequence of Theorem 5 in [1] is that, assuming b ≤ log n − log log n, the

expected size of the largest bucket is O(n log b/2b), i.e., a factor O(log b) from the average

bucket size. This justifies the choice of b in Eq. (4.2), imposing the requirement that

ℓ ≥ log n log log n.

For any choice of the random seed s, we will now analyze the probability (over the

choice of y1, . . . , yk) that x 7→ ρ(x, s, 0) and x 7→ ρ(x, s, 1) map the elements of Bi

uniformly and independently to {0, . . . , p − 1}. A sufficient criterion for this is that the

sums
∑k

j=1 tj [yj(x)⊕∆] and
∑2k

j=k+1 tj[yj(x)⊕∆], ∆ ∈ {0, 1}, have values that are uniform

in {0, . . . , p−1} and independent. This is the case if for every x ∈ Bi there exists an index

jx such that neither yjx
or yjx

⊕ 1 belongs to yjx
(Bi − {x}). Since y1, . . . , yk are universal

hash functions, the probability that this is not the case for a given element x ∈ Bi is

bounded by (|Bi|/2r)k ≤ (ℓ/2r)k. If we choose, for example r = ⌈log(3
√

nℓ)⌉ and k = 4 we

have that this probability is o(1/n). Hence, the probability that this happens for any key

in S is o(1).

Finally, we need to argue that for each bucket i it is easy to find a value of s such

that the pair hi1, hi2 is good for the MPHF of the bucket. We know that with constant

probability this is the case if the functions were truly random. Now, as argued above,

with probability 1 − o(1) the functions x 7→ ρ(x, s, 0) and x 7→ ρ(x, s, 1) are random and

independent on each bucket, for every value of s. Then, for a given bucket and a given

value of s there is a probability Ω(1) that the pair of hash functions work for that bucket.

4.3. EXPERIMENTAL RESULTS 59

Now, for any ∆ ∈ {0, 1} and s 6= s′, the functions x 7→ ρ(x, s, ∆) and x 7→ ρ(x, s′, ∆) are

independent. Thus, by Chebychev’s inequality the probability that less than a constant

fraction of the values of s work for a given bucket is O(1/p). So with probability 1 − o(1)

there is a constant fraction of “good” choices of s in every bucket, which means that trying

an expected constant number of random values for s is sufficient in each bucket.

4.3 Experimental results

In this section we present the experimental results. We start presenting the experimental

setup. We then present the performance of our algorithm considering construction time,

storage space and evaluation time as metrics for the resulting functions. Finally, we discuss

how the amount of internal memory available affects the runtime of our two-step external

memory based algorithm.

4.3.1 The data and the experimental setup

The EPH algorithm was implemented in the C language and is available at

http://cmph.sf.net under the GNU Lesser General Public License (LGPL). All

experiments were carried out on a computer running the Linux operating system, version

2.6, with a 1 gigahertz AMD Athlon 64 Processor 3200+ and 1 gigabyte of main memory.

Our data consists of a collection of 1.024 billion URLs collected from the Web, each

URL 64 characters long on average. The collection is stored on disk in 60.5 gigabytes of

space.

4.3.2 Performance of the algorithms

We are firstly interested in verifying the claim that the EPH algorithm runs in linear time.

Therefore, we run the algorithm for several numbers n of keys in S.

The values chosen for n were 1, 2, 4, 8, 16, 32, 64, 128, 512 and 1024 million. We

limited the main memory in 512 megabytes for the experiments in order to show that the

algorithm does not need much internal memory to generate MPHFs. The size µ of the a

priori reserved internal memory area was set to 200 megabytes. In Section 4.3.3 we show

how µ affects the runtime of the algorithm. The parameter b (see Eq. (4.2)) was set to the

minimum value that gives us a maximum bucket size lower than ℓ = 256. For each value

chosen for n, the respective values for b are 13, 14, 15, 16, 17, 18, 19, 20, 22 and 23 bits.

60 CHAPTER 4. A SCALABLE MINIMAL PERFECT HASHING METHOD

In order to estimate the number of trials for each value of n we use a statistical method

for determining a suitable sample size (see, e.g., [34, Chapter 13]). We got that just one

trial for each n would be enough with a confidence level of 95%. However, we made 10

trials. This number of trials seems rather small, but, as shown below, the behavior of the

EPH algorithm is very stable and its runtime is almost deterministic (i.e., the standard

deviation is very small) because it is a random variable that follows a (highly concentrated)

normal distribution.

Table 4.1 presents the runtime average for each n, the respective standard deviations,

and the respective confidence intervals given by the average time ± the distance from

average time considering a confidence level of 95%. Observing the runtime averages we

noticed that the algorithm runs in expected linear time, as we have claimed. Better still,

it outputs the resulting MPHF faster than all practical algorithms we know of, because of

the following reasons. First, the memory accesses during the generation of a MPHF for a

given bucket cause cache hits, once the problem was broken down into problems of size up

to 256. Second, at searching step we are dealing with 16-byte (128-bit) strings instead of

64-byte URLs.

n (millions) 1 2 4 8 16

Average time (s) 3.34 ± 0.02 6.97 ± 0.02 14.64 ± 0.04 31.75 ± 0.49 68.98 ± 0.82

SD 0.03 0.03 0.05 0.73 1.22

n (millions) 32 64 128 512 1024

Average time (s) 142.71 ± 1.44 288.95 ± 2.65 604.70 ± 6.22 2383.08 ± 22.11 4982.97 ± 55.14

SD 2.01 3.70 8.69 28.77 51.12

Table 4.1: EPH algorithm: average time in seconds for constructing a MPHF with

confidence level of 95% in a PC using 200 megabytes of internal memory.

Figure 4.7 presents the runtime for each trial. In addition, the solid line corresponds

to a linear regression model obtained from the experimental measurements. As we were

expecting the runtime for a given n has almost no variation. The percentages of the total

time spent in the partitioning step and in the searching are approximately 49% and 51%,

respectively.

An intriguing observation is that the runtime of the algorithm is almost deterministic, in

spite of the fact that it uses as building block an algorithm with a considerable fluctuation

in its runtime. A given bucket i, 0 ≤ i < 2b, is a small set of keys (at most 256 keys) and,

the runtime of the building block algorithm is a random variable Xi with high fluctuation

(it follows a geometric distribution with mean 1/Pra ≈ 3). However, the runtime Y of the

searching step of the EPH algorithm is given by Y =
∑

0≤i<2b Xi. Under the hypothesis

4.3. EXPERIMENTAL RESULTS 61

0
10

00
20

00
30

00
40

00
50

00
T

im
e

(s
)

0 200 400 600 800 1000
Number of keys (millions)

Total time Linear regression
Partitioning time Searching time

Figure 4.7: Partitioning time and searching time versus number of keys in S for the EPH

algorithm. The solid line corresponds to a linear regression model for the total time.

that the Xi are independent and bounded, the law of large numbers (see, e.g., [34]) implies

that the random variable Y/2b converges to a constant as n → ∞. This explains why the

runtime is almost deterministic.

The next important metric on MPHFs is the space required to store the functions. In

order to apply the algorithm used for the buckets to larger sets we randomly choose f0

and f1 from the family of universal hash functions proposed by Thorup [54]. In Chapter 3

we have analyzed that algorithm under the uniform hashing assumption so that universal

hashing is not enough to guarantee that it works for every key set. But it has been the

case for every key set we have applied it to. Then, we refer to this version as heuristic BPZ

algorithm.

Table 4.2 shows how many bits per key the heuristic BPZ algorithm requires to store

the resulting MPHFs. In our setup the heuristic BPZ algorithm requires around 2.1 and

3.3 bits per key to respectively store the resulting PHFs and MPHFs. In a PC with 1

gigabyte of main memory the largest set we are able to generate a MPHF for is a set

with 30 millions of keys, because of the sparse graph required to generate the functions is

memory demanding.

The EPH algorithm is designed to be used when the key set does not fit in main

memory. Table 4.3 shows that it can be used for constructing PHFs and MPHFs that

require approximately 2.7 and 3.8 bits per key to be stored, respectively.

The lookup tables used by the hash functions of the EPH algorithm require a fixed

storage cost of 1,847,424 bytes. To avoid the space needed for lookup tables we have

implemented a version of the EPH algorithm that uses the pseudo random hash function

62 CHAPTER 4. A SCALABLE MINIMAL PERFECT HASHING METHOD

n Bits/key

PHF MPHF

104 2.13 3.37

105 2.09 3.32

106 2.09 3.32

107 2.09 3.32

Table 4.2: Heuristic BPZ algorithm: space usage to respectively store the resulting PHFs

and MPHFs.

n b Bits/key

PHF MPHF

104 6 2.93 3.71

105 9 2.73 3.57

106 13 2.65 3.82

107 16 2.51 3.70

108 20 2.80 4.02

109 23 2.65 3.83

Table 4.3: EPH algorithm: space usage to respectively store the resulting PHFs and

MPHFs.

proposed by Jenkins [37]. This function was used instead of the linear hash function

described in Section 4.1.3, and instead of the two truly random hash function of each

bucket, i.e., hi1 and hi2, where 0 ≤ i < 2b. This version is, from now on, referred to as

heuristic EPH algorithm. The Jenkins function just loops around the key doing bitwise

operations over chunks of 12 bytes. Then, it returns the last chunk. Thus, in the mapping

step, the key set S is mapped to F, which now contains 12-byte long strings instead of

16-byte long strings.

The Jenkins function needs just one random seed of 32 bits to be stored instead of quite

long lookup tables, a great improvement from the 1,847,424 bytes necessary to implement

truly random hash functions. Therefore, there is no fixed cost to store the resulting MPHFs,

but two random seeds of 32 bits are required to describe the functions hi1 and hi2 of each

bucket. As a consequence, the MPHFs generation and the MPHFs efficiency at retrieval

time are faster (see Table 4.4 and 4.5). The reasons are twofold. First, we are dealing with

12-byte strings computed by the Jenkins function instead of 16-byte strings of the truly

random functions presented in Section 4.1.3. Second, there are no large lookup tables to

cause cache misses. For example, the construction time for a set of 1024 million keys has

dropped down to 64.3 minutes in the same setup. The disadvantage of using the Jenkins

function is that there is no formal proof that it works for every key set. That is why

the hash functions we have designed in this paper are required, even being slower. In the

4.3. EXPERIMENTAL RESULTS 63

implementation available, the hash functions to be used can be chosen by the user.

Table 4.4 presents a comparison of our algorithm with the ones proposed by Botelho,

Pagh and Ziviani [9] (BPZ), by Pagh [46] (Hash-displace), by Botelho, Kohayakawa and

Ziviani [8] (BKZ), by Czech, Havas and Majewski [18] (CHM), and by Fox, Chen and

Heath [28] (FCH), considering construction time and storage space as metrics. Notice

that they are the most important practical results on MPHFs known in the literature (see

Section 1.3.) Observing the results, the heuristic BPZ algorithm is the best choice for sets

that can be handled in main memory and the EPH algorithm is the first one that can be

applied to sets that do not fit in main memory and is the fastest one at construction time.

Time in seconds to construct a MPHF for 2 × 106 keys

Algorithms Function Construction bits/key
type time (seconds)

EPH PHF 6.92 ± 0.04 2.64

Algorithm MPHF 6.98 ± 0.01 3.85

Heuristic EPH MPHF 4.75 ± 0.02 3.7
Algorithm

Heuristic BPZ PHF 12.99 ± 1.01 2.09

Algorithm MPHF 13.94 ± 1.06 3.35

Hash-displace MPHF 46.18 ± 1.06 64.00

BKZ MPHF 8.57 ± 0.31 32.00

CHM MPHF 13.80 ± 0.70 66.88

FCH MPHF 758.66 ± 126.72 5.84

Table 4.4: Construction time and storage space without considering the fixed cost to store

lookup tables.

Finally, we show how efficient is the resulting MPHFs at retrieval time for the methods

aforementioned, which is as important as construction time and storage space. Table 4.5

presents the time, in seconds, to evaluate 2 × 106 keys. We group the BKZ and CHM

methods together because the resulting MPHFs have the same form. From the results we

can conclude that the heuristic BPZ algorithm generates MPHFs that are as fast to be

computed as the ones generated by the most practical methods on MPHFs. The MPHFs

generated by the EPH algorithm are slower. Nevertheless, the difference is not so expressive

(each key can be evaluated in few microseconds) and the EPH algorithm is the first efficient

option for sets that do not fit in main memory.

It is important to emphasize that the BPZ, BKZ, CHM and FCH methods were

analyzed under the full randomness assumption. Therefore, the EPH algorithm is the

first one that has experimentally proven practicality for large key sets and has both space

usage for representing the resulting functions and the construction time carefully proven.

64 CHAPTER 4. A SCALABLE MINIMAL PERFECT HASHING METHOD

Time in seconds to evaluate 2 × 106 keys

key length (bytes) Function 8 16 32 64 128
type

EPH PHF 2.05 2.31 2.84 3.99 7.22

Algorithm MPHF 2.55 2.83 3.38 4.63 8.18

Heuristic EPH MPHF 1.19 1.35 1.59 2.11 3.34
Algorithm

Heuristic BPZ PHF 0.41 0.55 0.79 1.29 2.39

Algorithm MPHF 0.85 0.99 1.23 1.73 2.74

Hash-displace MPHF 0.56 0.69 0.93 1.44 2.54

BKZ/CHM MPHF 0.61 0.74 0.98 1.48 2.58

FCH MPHF 0.58 0.72 0.96 1.46 2.56

Table 4.5: Evaluation time.

Additionally, it is the fastest algorithm for constructing the functions and the resulting

functions are much simpler than the ones generated by previous theoretical well-founded

schemes so that they can be used in practice. Also, it considerably improves the first step

given by Pagh with his hash and displace method [46].

4.3.3 Controlling disk accesses

In order to bring down the number of seek operations on disk we benefit from the fact

that the EPH algorithm leaves almost all main memory available to be used as disk I/O

buffer. In this section we evaluate how much the parameter µ affects the runtime of the

EPH algorithm. For that we fixed n in 1.024 billion of URLs, set the main memory of the

machine used for the experiments to 1 gigabyte and used µ equal to 100, 200, 300, 400 and

500 megabytes.

Table 4.6 presents the number of files N , the buffer size used for all files, the number of

seeks in the worst case considering the pessimistic assumption that one seek happens every

time buffer j is filled in (see Section 4.2.1 for details), and the time to generate a PHF or a

MPHF for 1.024 billion of keys as a function of the amount of internal memory available.

Observing Table 4.6 we noticed that the time spent in the construction decreases as the

value of µ increases. However, for µ > 400, the variation on the time is not as significant

as for µ ≤ 400. This can be explained by the fact that the kernel 2.6 I/O scheduler of

Linux has smart policies for avoiding seeks and diminishing the average seek time (see

http://www.linuxjournal.com/article/6931).

4.4. CONCLUSIONS 65

µ (MB) 100 200 300 400 500

N (files) 245 99 63 46 36� (in KB) 418 2, 069 4, 877 8, 905 14, 223

β/� 151, 768 30, 662 13, 008 7, 124 4, 461

EPH (time) 94.8 82.2 79.8 79.2 79.2

Heuristic
71.0 63.2 62.9 62.4 62.4

EPH (time)

Table 4.6: Influence of the internal memory area size (µ) in the EPH algorithm runtime

to construct PHFs or MPHFs for 1.024 billion keys (time in minutes).

4.4 Conclusions

This chapter has presented a novel external memory based algorithm for constructing

PHFs and MPHFs. The algorithm can be used with provably good hash functions or with

heuristic hash functions that are faster to compute.

The EPH algorithm contains, as a component, a provably good implementation of the

BPZ algorithm [9] (see Chapter 3 for details). This means that the two hash functions hi1

and hi2 (see Eq. (4.3)) used instead of f0 and f1 behave as truly random hash functions

(see Section 4.2.3). The resulting PHFs and MPHFs require approximately 2.7 and 3.8

bits per key to be stored and are generated faster than the ones generated by all previous

methods. The EPH algorithm is the first one that has experimentally proven practicality

for sets in the order of billions of keys and has time and space usage carefully analyzed

without unrealistic assumptions. As a consequence, the EPH algorithm will work for every

key set.

The resulting functions of the EPH algorithm are approximately four times slower than

the ones generated by all previous practical methods (see Table 4.5). The reason is that to

compute the involved hash functions we need to access lookup tables that do not fit in the

cache. To overcome this problem, at the expense of losing the guarantee that it works for

every key set, we have proposed a heuristic version of the EPH algorithm that uses a very

efficient pseudo random hash function proposed by Jenkins [37]. The resulting functions

require the same storage space, are now less than two times slower to be computed and

are still faster to be generated.

66 CHAPTER 4. A SCALABLE MINIMAL PERFECT HASHING METHOD

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis proposal we have presented two classes of new algorithms for constructing

PHFs and MPHFs. The first class contains internal memory based algorithms that assume

uniform hashing to construct the functions. The algorithms read a key set stored in external

memory and maps it to data structures that are handled in the internal memory. Then, the

generation of the functions are done based on these internal data structures. The second

class contains an external memory based algorithm that generates the functions without

assuming uniform hashing. The algorithm uses data structures stored in both internal and

external memory, but the key set is still kept in the external memory.

The first algorithm we came up with belongs to the class of internal memory based

algorithms and assumes uniform hashing to generate MPHFs based on random graphs. The

algorithm is presented in Chapter 2. It improves the space requirement of the algorithm

by Czech, Havas and Majewski [18], referred to as CHM, at the expense of generating

functions in the same form that are not order preserving, but are computed in time O(1).

The CHM algorithm uses acyclic random graphs with n edges and cn vertices, where

c > 2. Our algorithm uses simple random graphs with n edges and cn vertices, but now

c ∈ [0.93, 1.15]. A consequence of the smaller number of vertices is that the graph may

have cycles. As the space to store the resulting functions in both algorithms is directly

related to the number of vertices in the random graph, then we have improved the space

required to store a function in our algorithm to 55% of the space required by the CHM

algorithm. The algorithm is also linear on n and runs 60% faster than the CHM algorithm.

However, the resulting MPHFs still need O(n log n) bits to be stored and the algorithm

needs O(n) computer words to construct the functions.
67

68 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

The second work, presented in Chapter 3, involves a family F of near space-optimal

internal memory based algorithms for generating PHFs and MPHFs. The algorithms in

F also assume uniform hashing and use acyclic random hypergraphs given by function

values of r uniform random hash functions on S for generating PHFs and MPHFs that

require O(n) bits to be stored. We have improved in a factor of log n the well known

result by Majewski et al [42]. They generates MPHFs based on r-graphs that are stored in

O(n log n) while the ones generated by our algorithms require O(n) bits. All the resulting

functions are evaluated in constant time. For r = 2 the resulting MPHFs are stored

in approximately 3.6n bits. For r = 3 we have got still more compact MPHFs, which

are stored in approximately 2.6n bits. This is within a factor of 2 from the information

theoretical lower bound of approximately 1.4427n bits.

For applications where a PHF of range [0, m− 1], where m = 1.23n, is sufficient, more

compact, and even simpler, representations can be achieved. For example, for m = 1.23n

we can get a space usage of 1.95n bits. This is also within a factor of 2 from the information

theoretical lower bound of around 1.17n bits. The bounds for r = 3 assume a conjecture

about the emergence of a 2-core in a random 3-partite hypergraph, whereas the bounds

for r = 2 are fully proved. Choosing r > 3 does not give any improvement of these results.

The two previous results assume uniform hashing. Therefore, theoretically speaking, it

is not guaranteed that the methods work for every key set if universal hash functions are

used instead of uniform hash functions. However, in practice, we have never found a key

set for which a PHF or MPHF could not be generated using universal hash functions. The

methods also require O(n) computer words for the construction process.

In our third work we have designed an external memory based algorithm, referred to

as EPH algorithm, that does not assume that uniform hash functions are available for free

and requires O(N) computer words, where N ≪ n, for constructing the functions in linear

time. The resulting PHFs and MPHFs require approximately 2.7 and 3.8 bits per key to

be stored and are evaluated in constant time. The main technical idea behind the EPH

algorithm is that it splits the incoming key set S into small buckets containing at most 256

keys. Then, a MPHF is generated for each bucket and using an offset array we obtain a

MPHF for S. All together makes the EPH algorithm the first one that demonstrates the

capability of generating MPHFs for sets in the order of billions of keys on a commodity

PC. Also, the algorithm is theoretically sound because with the help of Rasmus Pagh [7]

we have completely analyzed it’s time and space usage without unrealistic assumptions.

We believe that the EPH algorithm will be very useful for the information retrieval

5.2. FUTURE WORK 69

community. Search engines are nowadays indexing tens of billions of pages and the work

with huge collections is becoming a daily task. For instance, the simple assignment of

number identifiers to web pages of a collection can be a challenging task. While traditional

databases simply cannot handle more traffic once the working set of URLs does not fit in

main memory anymore [53], the EPH algorithm we propose here to construct MPHFs can

easily scale to billions of entries. Also, algorithms like PageRank [11], which uses the web

link structure to derive a measure of popularity for Web pages, operates on the web graph.

At construction time of the graph, the URLs must be mapped to integers that will be used

to label the vertices. For the same reason, the WebGraph research group [3] would also

benefit from a MPHF for sets in the order of billions of URLs to scale and to improve the

storage requirements of their algorithms on graph compression.

5.2 Future Work

The future work is as follows:

1. In Chapter 3, the bounds for the algorithms based on r-graphs for r ≥ 3 have not

been completely proved. The problems for r < 3 and for r ≥ 3 have different natures

and involve a phase transition, as reported to us by Kohayakawa [39]. Then, we aim

to study the problem and to try to obtain a fully proof of the bounds for r ≥ 3. In

the following, the proof presented in Section 4.2.3 is too sketchy. Then we aim to

provide an expanded version of that proof.

2. The main technical ingredient of the family of algorithms presented in Chapter 3

is the use of acyclic r-partite random hypergraphs. We believe that we can make

use of the fact that our hypergraphs are r-partite to speed up the evaluation of the

resulting functions in modern processors with various cores. The r memory probes

done in function g (represented by an array) can be done in parallel if the portion

of g corresponding to each partition fits in the cache of each core. Pagh [46] have

shown that optimal number of memory probes required to evaluate any MPHF is

one. Then, we believe that our functions will behave as the optimal ones in modern

processors.

3. The EPH algorithm presents intrinsically a high degree of parallelism. Therefore,

a distributed implementation of the EPH algorithm will allow the construction

and the evaluation of the resulting function in a distributed way. Therefore, the

70 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

description of the resulting MPHFs will be distributed in the parallel computer

allowing the scalability to sets of hundreds of billions of keys. This will be an

important contribution, mainly for applications related to the Web, as mentioned

in Section 5.1.

4. We aim to study the application of the EPH algorithm to load balancing for a scalable

run-time environment for data mining applications, which is called Anthill [27].

5. We want to investigate the use of the new algorithms for representing very large

vocabularies in text compression techniques and web search engines.

6. A problem with all the algorithms we have designed is that we need to know the key

set a priori. That is, they are designed to work with static sets. Then, we aim to

study how to extend the algorithms to work with dynamic key sets to build dynamic

minimal perfect hash functions.

Bibliography

[1] N. Alon, M. Dietzfelbinger, P.B. Miltersen, E. Petrank, and G. Tardos. Linear hash

functions. Journal of the ACM, 46(5):667–683, 1999.

[2] N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multiplication

and construction of perfect hash functions. Algorithmica, 16(4-5):434–449, 1996.

[3] P. Boldi and S. Vigna. The webgraph framework i: Compression techniques. In Proc.

of the 13th International World Wide Web Conference (WWW’04), pages 595–602,

2004.

[4] B. Bollobás. Random graphs, volume 73 of Cambridge Studies in Advanced

Mathematics. Cambridge University Press, Cambridge, second edition, 2001.

[5] B. Bollobás and O. Pikhurko. Integer sets with prescribed pairwise differences being

distinct. European Journal of Combinatorics. To Appear.

[6] F. C. Botelho. Estudo comparativo do uso de hashing perfeito mı́nimo. Master’s thesis,

Departamento de Ciência da Computação, Universidade Federal de Minas Gerais,

Novembro 2004.

[7] F. C. Botelho, R. Pagh, and N. Ziviani. Perfect hashing for data management

applications. Technical Report TR002/07, Federal University of Minas Gerais, 2007.

Available at http://arxiv.org/pdf/cs/0702159.

[8] F.C. Botelho, Y. Kohayakawa, and N. Ziviani. A practical minimal perfect

hashing method. In Proceedings of the 4th International Workshop on Efficient and

Experimental Algorithms (WEA’05), pages 488–500. Springer LNCS vol. 3503, 2005.

[9] F.C. Botelho, R. Pagh, and N. Ziviani. Simple and space-efficient minimal perfect hash

functions. In Proceedings of the 10th Workshop on Algorithms and Data Structures

(WADs’07), pages 139–150. Springer LNCS vol. 4619, 2007. To appear.

71

72 BIBLIOGRAPHY

[10] F.C. Botelho and N. Ziviani. External perfect hashing for very large key sets. In

Submitted to 16th Conference on Information and Knowledge Management, 2007.

[11] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.

In Proc. of the 7th International World Wide Web Conference (WWW’98), pages

107–117, April 1998.

[12] A. Z. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent

permutations. In Proceedings of the Thirtieth Annual ACM Symposium on the Theory

of Computing (STOC’98), pages 327–336, 1998.

[13] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of

Computer and System Sciences, 18(2):143–154, 1979.

[14] Chin-Chen Chang and Chih-Yang Lin. A perfect hashing schemes for mining

association rules. The Computer Journal, 48(2):168–179, 2005.

[15] Chin-Chen Chang, Chih-Yang Lin, and Henry Chou. Perfect hashing schemes for

mining traversal patterns. Journal of Fundamenta Informaticae, 70(3):185–202, 2006.

[16] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The bloomier filter: An efficient

data structure for static support lookup tables. In Proceedings of the 15th annual

ACM-SIAM symposium on Discrete algorithms (SODA’04), 2004.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.

MIT Press, second edition, 2001.

[18] Z.J. Czech, G. Havas, and B.S. Majewski. An optimal algorithm for generating

minimal perfect hash functions. Information Processing Letters, 43(5):257–264, 1992.

[19] Z.J. Czech, G. Havas, and B.S. Majewski. Fundamental study perfect hashing.

Theoretical Computer Science, 182:1–143, 1997.

[20] E. Demaine, F. Meyer auf der Heide, R. Pagh, and M. Pǎtraşcu. De dictionariis

dynamicis pauco spatio utentibus. In Proc. of the Latin American Symposium on

Theoretical Informatics (LATIN’06), pages 349–361, 2006.

[21] M. Dietzfelbinger and T. Hagerup. Simple minimal perfect hashing in less space.

In Proc. of the 9th European Symposium on Algorithms (ESA’01), pages 109–120.

Springer LNCS vol. 2161, 2001.

BIBLIOGRAPHY 73

[22] M. Dietzfelbinger and C. Weidling. Balanced allocation and dictionaries with tightly

packed constant size bins. In Proc. of 32nd International Colloquium on Automata,

Languages and Programming (ICALP), pages 166–178, 2005.

[23] J. Ebert. A versatile data structure for edges oriented graph algorithms.

Communication of The ACM, (30):513–519, 1987.

[24] P. Erdős and A. Rényi. On random graphs I. Pub. Math. Debrecen, 6:290–297, 1959.

[25] P. Erdős and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat.

Kutató Int. Közl., 5:17–61, 1960.

[26] P. Erdős and A. Rényi. On the strength of connectedness of a random graph. Acta

Mathematica Scientia Hungary, 12:261–267, 1961.

[27] R. A. Ferreira, W. Meira Jr., D. Guedes, L. M. A. Drummond, B. Coutinho,

G. Teodoro, T. Tavares, R. Araujo, and G. T. Ferreira. Anthill: A scalable run-

time environment for data mining applications. In SBAC-PAD ’05: Proceedings of

the 17th International Symposium on Computer Architecture on High Performance

Computing, pages 159–167, Washington, DC, USA, 2005. IEEE Computer Society.

[28] E.A. Fox, Q.F. Chen, and L.S. Heath. A faster algorithm for constructing minimal

perfect hash functions. In Proc. of the 15th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, pages 266–273,

1992.

[29] E.A. Fox, L. S. Heath, Q. Chen, and A.M. Daoud. Practical minimal perfect hash

functions for large databases. Communications of the ACM, 35(1):105–121, 1992.

[30] M. L. Fredman, J. Komlós, and E. Szemerédi. On the size of separating systems

and families of perfect hashing functions. SIAM Journal on Algebraic and Discrete

Methods, 5:61–68, 1984.

[31] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst

case access time. Journal of the ACM, 31(3):538–544, July 1984.

[32] T. Hagerup and T. Tholey. Efficient minimal perfect hashing in nearly minimal

space. In Proc. of the 18th Symposium on Theoretical Aspects of Computer Science

(STACS’01), pages 317–326. Springer LNCS vol. 2010, 2001.

74 BIBLIOGRAPHY

[33] G. Havas, B.S. Majewski, N.C. Wormald, and Z.J. Czech. Graphs, hypergraphs and

hashing. In Proc. of the 19th International Workshop on Graph-Theoretic Concepts

in Computer Science, pages 153–165. Springer LNCS vol. 790, 1993.

[34] R. Jain. The art of computer systems performance analysis: techniques for

experimental design, measurement, simulation, and modeling. John Wiley, first

edition, 1991.

[35] S. Janson. Poisson convergence and poisson processes with applications to random

graphs. Stochastic Processes and their Applications, 26:1–30, 1987.

[36] S. Janson, T. Luczak, and A. Ruciński. Random graphs. Wiley-Inter., 2000.

[37] B. Jenkins. Algorithm alley: Hash functions. Dr. Dobb’s Journal of Software Tools,

22(9), september 1997.

[38] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.

Addison-Wesley, second edition, 1973.

[39] Yoshihary Kohayakawa. Private communication, 2007.

[40] P. Larson and G. Graefe. Memory management during run generation in external

sorting. In Proc. of the 1998 ACM SIGMOD international conference on Management

of data, pages 472–483. ACM Press, 1998.

[41] S. Lefebvre and H. Hoppe. Perfect spatial hashing. ACM Transactions on Graphics,

25(3):579–588, 2006.

[42] B.S. Majewski, N.C. Wormald, G. Havas, and Z.J. Czech. A family of perfect hashing

methods. The Computer Journal, 39(6):547–554, 1996.

[43] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing database architecture for

the new bottleneck: Memory access. The VLDB journal, 9:231–246, 2000.

[44] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Springer-

Verlag, 1984.

[45] A. Pagh, R. Pagh, and S. S. Rao. An optimal bloom filter replacement. In Proceedings

of the 16th annual ACM-SIAM symposium on Discrete algorithms (SODA’05), pages

823–829, Philadelphia, PA, USA, 2005.

BIBLIOGRAPHY 75

[46] R. Pagh. Hash and displace: Efficient evaluation of minimal perfect hash functions.

In Workshop on Algorithms and Data Structures (WADS’99), pages 49–54, 1999.

[47] R. Pagh. Low redundancy in static dictionaries with constant query time. SIAM

Journal on Computing, 31(2):353–363, 2001.

[48] E. M. Palmer. Graphical Evolution: An Introduction to the Theory of Random Graphs.

John Wiley & Sons, New York, 1985.

[49] B. Pittel and N. C. Wormald. Counting connected graphs inside-out. J. Combin.

Theory Ser. B, 93(2):127–172, 2005.

[50] B. Prabhakar and F. Bonomi. Perfect hashing for network applications. In Proc. of

the IEEE International Symposium on Information Theory. IEEE Press, 2006.

[51] J. Radhakrishnan. Improved bounds for covering complete uniform hypergraphs.

Information Processing Letters, 41:203–207, 1992.

[52] J. P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hash

functions. SIAM Journal on Computing, 19(5):775–786, October 1990.

[53] M. Seltzer. Beyond relational databases. ACM Queue, 3(3), April 2005.

[54] M. Thorup. Even strongly universal hashing is pretty fast. In Proc. of the eleventh

annual ACM-SIAM symposium on Discrete algorithms (SODA’00), pages 496–497,

Philadelphia, PA, USA, 2000. Society for Industrial and Applied Mathematics.

[55] P. Woelfel. Maintaining external memory efficient hash tables. In Proc. of the 10th

International Workshop on Randomization and Computation (RANDOM’06), pages

508–519. Springer LNCS vol. 4110, 2006.

