#include "graph.h" #include "bmz.h" #include "bmz_structs.h" #include "brz.h" #include "cmph_structs.h" #include "brz_structs.h" #include "cmph.h" #include "hash.h" #include "bitbool.h" #include #include #include #include #include //#define DEBUG #include "debug.h" static int brz_gen_graphs(cmph_config_t *mph, FILE * graphs_fd); static cmph_uint32 brz_min_index(cmph_uint32 * vector, cmph_uint32 n); static void flush_buffer(cmph_uint8 *buffer, cmph_uint32 *memory_usage, FILE * graphs_fd); static void save_in_disk(cmph_uint8 *buffer, cmph_uint8 * key, cmph_uint32 keylen, cmph_uint32 *memory_usage, cmph_uint32 memory_availability, FILE * graphs_fd); static char * brz_read_key(FILE * fd); static char ** brz_read_keys_vd(FILE * graphs_fd, cmph_uint8 nkeys); static void brz_destroy_keys_vd(char ** keys_vd, cmph_uint8 nkeys); static void brz_copy_partial_mphf(brz_config_data_t *brz, bmz_data_t * bmzf, cmph_uint32 index, cmph_io_adapter_t *source); brz_config_data_t *brz_config_new() { brz_config_data_t *brz = NULL; brz = (brz_config_data_t *)malloc(sizeof(brz_config_data_t)); brz->hashfuncs[0] = CMPH_HASH_JENKINS; brz->hashfuncs[1] = CMPH_HASH_JENKINS; brz->hashfuncs[2] = CMPH_HASH_JENKINS; brz->size = NULL; brz->offset = NULL; brz->g = NULL; brz->h1 = NULL; brz->h2 = NULL; brz->h3 = NULL; assert(brz); return brz; } void brz_config_destroy(cmph_config_t *mph) { brz_config_data_t *data = (brz_config_data_t *)mph->data; DEBUGP("Destroying algorithm dependent data\n"); free(data); } void brz_config_set_hashfuncs(cmph_config_t *mph, CMPH_HASH *hashfuncs) { brz_config_data_t *brz = (brz_config_data_t *)mph->data; CMPH_HASH *hashptr = hashfuncs; cmph_uint32 i = 0; while(*hashptr != CMPH_HASH_COUNT) { if (i >= 3) break; //brz only uses three hash functions brz->hashfuncs[i] = *hashptr; ++i, ++hashptr; } } static cmph_uint8 brz_verify_mphf(cmph_t * mphf, cmph_io_adapter_t *source) { cmph_uint8 * hashtable = NULL; cmph_uint32 i; hashtable = (cmph_uint8*)malloc(source->nkeys*sizeof(cmph_uint8)); source->rewind(source->data); memset(hashtable, 0, source->nkeys); //check all keys for (i = 0; i < source->nkeys; ++i) { cmph_uint32 h; char *buf; cmph_uint32 buflen = 0; source->read(source->data, &buf, &buflen); h = cmph_search(mphf, buf, buflen); if(hashtable[h]) { fprintf(stderr, "collision: %u\n",h); return 0; } //assert(hashtable[h]==0); hashtable[h] = 1; source->dispose(source->data, buf, buflen); } fprintf(stderr, "\n===============================================================================\n"); free(hashtable); return 1; } static cmph_uint8 brz_verify_mphf1(hash_state_t *h1, hash_state_t *h2, cmph_uint8 * g, cmph_uint32 n, cmph_io_adapter_t *source) { cmph_uint8 * hashtable = NULL; cmph_uint32 i; hashtable = (cmph_uint8*)calloc(source->nkeys, sizeof(cmph_uint8)); source->rewind(source->data); //memset(hashtable, 0, source->nkeys); //check all keys for (i = 0; i < source->nkeys; ++i) { cmph_uint32 h1_v; cmph_uint32 h2_v; cmph_uint32 h; char *buf; cmph_uint32 buflen = 0; source->read(source->data, &buf, &buflen); h1_v = hash(h1, buf, buflen) % n; h2_v = hash(h2, buf, buflen) % n; if (h1_v == h2_v && ++h2_v >= n) h2_v = 0; h = ((cmph_uint32)g[h1_v] + (cmph_uint32)g[h2_v]) % source->nkeys; if(hashtable[h]) { fprintf(stderr, "collision: %u\n",h); return 0; } //assert(hashtable[h]==0); hashtable[h] = 1; source->dispose(source->data, buf, buflen); } free(hashtable); return 1; } cmph_t *brz_new(cmph_config_t *mph, float c) { cmph_t *mphf = NULL; brz_data_t *brzf = NULL; cmph_uint32 i; cmph_uint32 iterations = 20; /* cmph_uint32 * disksize = NULL; cmph_uint32 * diskoffset = NULL;*/ cmph_io_adapter_t *source = NULL; cmph_config_t *config = NULL; cmph_t *mphf_tmp = NULL; char ** keys_vd = NULL; FILE * graphs_fd = NULL; DEBUGP("c: %f\n", c); brz_config_data_t *brz = (brz_config_data_t *)mph->data; brz->c = c; brz->m = mph->key_source->nkeys; DEBUGP("m: %u\n", brz->m); brz->k = ceil(brz->m/170); DEBUGP("k: %u\n", brz->k); brz->size = (cmph_uint8 *) calloc(brz->k, sizeof(cmph_uint8)); // Clustering the keys by graph id. if (mph->verbosity) { fprintf(stderr, "Partioning the set of keys.\n"); } graphs_fd = fopen("/mnt/hd4/fbotelho/cmph.tmp", "wb"); if (graphs_fd == NULL) { free(brz->size); fprintf(stderr, "Unable to open file %s\n", "/mnt/hd4/fbotelho/cmph.tmp"); return NULL; } while(1) { int ok; DEBUGP("hash function 3\n"); brz->h3 = hash_state_new(brz->hashfuncs[2], brz->k); DEBUGP("Generating graphs\n"); ok = brz_gen_graphs(mph, graphs_fd); if (!ok) { --iterations; hash_state_destroy(brz->h3); brz->h3 = NULL; DEBUGP("%u iterations remaining to create the graphs in a external file\n", iterations); if (mph->verbosity) { fprintf(stderr, "Failure: A graph with more than 255 keys was created - %u iterations remaining\n", iterations); } if (iterations == 0) break; } else break; } fclose(graphs_fd); if (iterations == 0) { DEBUGP("Graphs with more than 255 keys were created in all 20 iterations\n"); free(brz->size); return NULL; } DEBUGP("Graphs generated\n"); brz->offset = (cmph_uint32 *)calloc(brz->k, sizeof(cmph_uint32)); for (i = 1; i < brz->k; ++i) { brz->offset[i] = brz->size[i-1] + brz->offset[i-1]; } // codigo do algoritmo... graphs_fd = fopen("/mnt/hd4/fbotelho/cmph.tmp", "rb"); brz->h1 = (hash_state_t **)malloc(sizeof(hash_state_t *)*brz->k); brz->h2 = (hash_state_t **)malloc(sizeof(hash_state_t *)*brz->k); brz->g = (cmph_uint8 **) malloc(sizeof(cmph_uint8 *) *brz->k); if (mph->verbosity) { fprintf(stderr, "\nGenerating mphf.\n"); } DEBUGP("Generating mphf\n"); for(i = 0; i < brz->k; i++) { if (mph->verbosity) fprintf(stderr, "\tMPHF %u in %u was generated.\n", i+1, brz->k); cmph_uint32 j; bmz_data_t * bmzf = NULL; cmph_uint8 nkeys = brz->size[i]; if (nkeys == 0) continue; keys_vd = brz_read_keys_vd(graphs_fd, nkeys); // Source of keys source = cmph_io_vector_adapter(keys_vd, (cmph_uint32)nkeys); config = cmph_config_new(source); cmph_config_set_algo(config, CMPH_BMZ); cmph_config_set_graphsize(config, c); //cmph_config_set_verbosity(config, 1); mphf_tmp = cmph_new(config); bmzf = (bmz_data_t *)mphf_tmp->data; //assert(brz_verify_mphf(mphf_tmp, source)); brz_copy_partial_mphf(brz, bmzf, i, source); cmph_config_destroy(config); brz_destroy_keys_vd(keys_vd, nkeys); free(keys_vd); cmph_destroy(mphf_tmp); free(source); } fclose(graphs_fd); // Generating a mphf mphf = (cmph_t *)malloc(sizeof(cmph_t)); mphf->algo = mph->algo; brzf = (brz_data_t *)malloc(sizeof(brz_data_t)); brzf->g = brz->g; brz->g = NULL; //transfer memory ownership brzf->h1 = brz->h1; brz->h1 = NULL; //transfer memory ownership brzf->h2 = brz->h2; brz->h2 = NULL; //transfer memory ownership brzf->h3 = brz->h3; brz->h3 = NULL; //transfer memory ownership brzf->size = brz->size; brz->size = NULL; //transfer memory ownership brzf->offset = brz->offset; brz->offset = NULL; //transfer memory ownership brzf->k = brz->k; brzf->c = brz->c; brzf->m = brz->m; mphf->data = brzf; mphf->size = brz->m; DEBUGP("Successfully generated minimal perfect hash\n"); if (mph->verbosity) { fprintf(stderr, "Successfully generated minimal perfect hash function\n"); } return mphf; } static int brz_gen_graphs(cmph_config_t *mph, FILE * graphs_fd) { #pragma pack(1) cmph_uint32 i, e; brz_config_data_t *brz = (brz_config_data_t *)mph->data; cmph_uint32 memory_availability = 209715200;//200MB //104857600;//100MB //524288000; // 500MB //209715200; // 200 MB cmph_uint32 memory_usage = 0; cmph_uint32 nkeys_in_buffer = 0; cmph_uint8 *buffer = (cmph_uint8 *)malloc(memory_availability); cmph_uint32 *buckets_size = (cmph_uint32 *)calloc(brz->k, sizeof(cmph_uint32)); cmph_uint32 *keys_index = NULL; cmph_uint8 **buffer_merge = NULL; cmph_uint32 *buffer_h3 = NULL; cmph_uint32 nflushes = 0; cmph_uint32 h3; FILE * tmp_fd = NULL; FILE ** tmp_fds = NULL; char filename[100]; char *key = NULL; cmph_uint32 keylen; mph->key_source->rewind(mph->key_source->data); DEBUGP("Generating graphs from %u keys\n", brz->m); // Partitioning for (e = 0; e < brz->m; ++e) { mph->key_source->read(mph->key_source->data, &key, &keylen); /* Buffers management */ if (memory_usage + keylen + 1 > memory_availability) // flush buffers { fprintf(stderr, "Flushing %u\n", nkeys_in_buffer); cmph_uint32 value = buckets_size[0]; cmph_uint32 sum = 0; cmph_uint32 keylen1 = 0; buckets_size[0] = 0; for(i = 1; i < brz->k; i++) { if(buckets_size[i] == 0) continue; sum += value; value = buckets_size[i]; buckets_size[i] = sum; } memory_usage = 0; keys_index = (cmph_uint32 *)calloc(nkeys_in_buffer, sizeof(cmph_uint32)); for(i = 0; i < nkeys_in_buffer; i++) { keylen1 = strlen(buffer + memory_usage); h3 = hash(brz->h3, buffer + memory_usage, keylen1) % brz->k; keys_index[buckets_size[h3]] = memory_usage; buckets_size[h3]++; memory_usage = memory_usage + keylen1 + 1; } sprintf(filename, "/mnt/hd4/fbotelho/%u.cmph",nflushes); tmp_fd = fopen(filename, "wb"); for(i = 0; i < nkeys_in_buffer; i++) { keylen1 = strlen(buffer + keys_index[i]) + 1; fwrite(buffer + keys_index[i], 1, keylen1, tmp_fd); } nkeys_in_buffer = 0; memory_usage = 0; bzero(buckets_size, brz->k*sizeof(cmph_uint32)); nflushes++; free(keys_index); fclose(tmp_fd); fprintf(stderr, "Flushing is over\n"); } //fprintf(stderr, "Storing read Key\n"); memcpy(buffer + memory_usage, key, keylen + 1); memory_usage = memory_usage + keylen + 1; h3 = hash(brz->h3, key, keylen) % brz->k; if (brz->size[h3] == 255) { free(buffer); free(buckets_size); return 0; } brz->size[h3] = brz->size[h3] + 1; buckets_size[h3] ++; nkeys_in_buffer++; mph->key_source->dispose(mph->key_source->data, key, keylen); } if (memory_usage != 0) // flush buffers { fprintf(stderr, "Flushing %u\n", nkeys_in_buffer); cmph_uint32 value = buckets_size[0]; cmph_uint32 sum = 0; cmph_uint32 keylen1 = 0; buckets_size[0] = 0; for(i = 1; i < brz->k; i++) { if(buckets_size[i] == 0) continue; sum += value; value = buckets_size[i]; buckets_size[i] = sum; } memory_usage = 0; keys_index = (cmph_uint32 *)calloc(nkeys_in_buffer, sizeof(cmph_uint32)); for(i = 0; i < nkeys_in_buffer; i++) { keylen1 = strlen(buffer + memory_usage); h3 = hash(brz->h3, buffer + memory_usage, keylen1) % brz->k; keys_index[buckets_size[h3]] = memory_usage; buckets_size[h3]++; memory_usage = memory_usage + keylen1 + 1; } sprintf(filename, "/mnt/hd4/fbotelho/%u.cmph",nflushes); tmp_fd = fopen(filename, "wb"); for(i = 0; i < nkeys_in_buffer; i++) { keylen1 = strlen(buffer + keys_index[i]) + 1; fwrite(buffer + keys_index[i], 1, keylen1, tmp_fd); } nkeys_in_buffer = 0; memory_usage = 0; bzero(buckets_size, brz->k*sizeof(cmph_uint32)); nflushes++; free(keys_index); fclose(tmp_fd); fprintf(stderr, "Flushing is over\n"); } free(buffer); free(buckets_size); if(nflushes > 1024) return 0; // Too many files generated. // Merging fprintf(stderr, "\nMerging files\n"); tmp_fds = (FILE **)calloc(nflushes, sizeof(FILE *)); buffer_merge = (cmph_uint8 **)calloc(nflushes, sizeof(cmph_uint8 *)); buffer_h3 = (cmph_uint32 *)calloc(nflushes, sizeof(cmph_uint32)); for(i = 0; i < nflushes; i++) { sprintf(filename, "/mnt/hd4/fbotelho/%u.cmph",i); tmp_fds[i] = fopen(filename, "rb"); key = brz_read_key(tmp_fds[i]); keylen = strlen(key); h3 = hash(brz->h3, key, keylen) % brz->k; buffer_h3[i] = h3; buffer_merge[i] = (cmph_uint8 *)calloc(keylen + 1, sizeof(cmph_uint8)); memcpy(buffer_merge[i], key, keylen + 1); free(key); } e = 0; buffer = (cmph_uint8 *)malloc(memory_availability); while(e < brz->m) { i = brz_min_index(buffer_h3, nflushes); key = brz_read_key(tmp_fds[i]); if(key) { while(key) { keylen = strlen(key); h3 = hash(brz->h3, key, keylen) % brz->k; if (h3 != buffer_h3[i]) break; save_in_disk(buffer, key, keylen, &memory_usage, memory_availability, graphs_fd); //fwrite(key, 1, keylen + 1, graphs_fd); e++; free(key); key = brz_read_key(tmp_fds[i]); } if (key) { save_in_disk(buffer, buffer_merge[i], strlen(buffer_merge[i]), &memory_usage, memory_availability, graphs_fd); //fwrite(buffer_merge[i], 1, strlen(buffer_merge[i]) + 1, graphs_fd); e++; buffer_h3[i] = h3; free(buffer_merge[i]); buffer_merge[i] = (cmph_uint8 *)calloc(keylen + 1, sizeof(cmph_uint8)); memcpy(buffer_merge[i], key, keylen + 1); free(key); } } /* fprintf(stderr, "BOSTA %u %u e: %u\n", i, buffer_h3[i], e);*/ if(!key) { save_in_disk(buffer, buffer_merge[i], strlen(buffer_merge[i]), &memory_usage, memory_availability, graphs_fd); //fwrite(buffer_merge[i], 1, strlen(buffer_merge[i]) + 1, graphs_fd); e++; buffer_h3[i] = UINT_MAX; free(buffer_merge[i]); buffer_merge[i] = NULL; } } for(i = 0; i < nflushes; i++) fclose(tmp_fds[i]); flush_buffer(buffer, &memory_usage, graphs_fd); free(tmp_fds); free(buffer); free(buffer_merge); free(buffer_h3); return 1; #pragma pack() } static void flush_buffer(cmph_uint8 *buffer, cmph_uint32 *memory_usage, FILE * graphs_fd) { fwrite(buffer, 1, *memory_usage, graphs_fd); *memory_usage = 0; } static void save_in_disk(cmph_uint8 *buffer, cmph_uint8 * key, cmph_uint32 keylen, cmph_uint32 * memory_usage, cmph_uint32 memory_availability, FILE * graphs_fd) { if(*memory_usage + keylen + 1 > memory_availability) { flush_buffer(buffer, memory_usage, graphs_fd); } memcpy(buffer + *memory_usage, key, keylen + 1); *memory_usage = *memory_usage + keylen + 1; } static cmph_uint32 brz_min_index(cmph_uint32 * vector, cmph_uint32 n) { cmph_uint32 i, min_index = 0; for(i = 1; i < n; i++) { if(vector[i] < vector[min_index]) min_index = i; } return min_index; } static char * brz_read_key(FILE * fd) { char * buf = (char *)malloc(BUFSIZ); cmph_uint32 buf_pos = 0; char c; while(1) { fread(&c, sizeof(char), 1, fd); if(feof(fd)) { free(buf); return NULL; } buf[buf_pos++] = c; if(c == '\0') break; if(buf_pos % BUFSIZ == 0) buf = (char *)realloc(buf, buf_pos + BUFSIZ); } return buf; } static char ** brz_read_keys_vd(FILE * graphs_fd, cmph_uint8 nkeys) { char ** keys_vd = (char **)malloc(sizeof(char *)*nkeys); cmph_uint8 i; for(i = 0; i < nkeys; i++) { char * buf = brz_read_key(graphs_fd); keys_vd[i] = (char *)malloc(strlen(buf) + 1); strcpy(keys_vd[i], buf); free(buf); } return keys_vd; } static void brz_destroy_keys_vd(char ** keys_vd, cmph_uint8 nkeys) { cmph_uint8 i; for(i = 0; i < nkeys; i++) free(keys_vd[i]); } static void brz_copy_partial_mphf(brz_config_data_t *brz, bmz_data_t * bmzf, cmph_uint32 index, cmph_io_adapter_t *source) { cmph_uint32 i; cmph_uint32 n = ceil(brz->c * brz->size[index]); brz->g[index] = (cmph_uint8 *)calloc(n, sizeof(cmph_uint8)); for(i = 0; i < n; i++) { brz->g[index][i] = (cmph_uint8) bmzf->g[i]; //fprintf(stderr, "gsrc[%u]: %u gdest: %u\n", i, (cmph_uint8) bmzf->g[i], brz->g[index][i]); } brz->h1[index] = hash_state_copy(bmzf->hashes[0]); brz->h2[index] = hash_state_copy(bmzf->hashes[1]); //brz->size[index] = bmzf->n; //assert(brz_verify_mphf1(brz->h1[index], brz->h2[index], brz->g[index], n, source)); } int brz_dump(cmph_t *mphf, FILE *fd) { char *buf = NULL; cmph_uint32 buflen; cmph_uint32 nbuflen; cmph_uint32 i; brz_data_t *data = (brz_data_t *)mphf->data; DEBUGP("Dumping brzf\n"); __cmph_dump(mphf, fd); fwrite(&(data->k), sizeof(cmph_uint32), 1, fd); //dumping h1 and h2. for(i = 0; i < data->k; i++) { // h1 hash_state_dump(data->h1[i], &buf, &buflen); DEBUGP("Dumping hash state with %u bytes to disk\n", buflen); fwrite(&buflen, sizeof(cmph_uint32), 1, fd); fwrite(buf, buflen, 1, fd); free(buf); // h2 hash_state_dump(data->h2[i], &buf, &buflen); DEBUGP("Dumping hash state with %u bytes to disk\n", buflen); fwrite(&buflen, sizeof(cmph_uint32), 1, fd); fwrite(buf, buflen, 1, fd); free(buf); } // Dumping h3. hash_state_dump(data->h3, &buf, &buflen); DEBUGP("Dumping hash state with %u bytes to disk\n", buflen); fwrite(&buflen, sizeof(cmph_uint32), 1, fd); fwrite(buf, buflen, 1, fd); free(buf); // Dumping c, m, size vector and offset vector. fwrite(&(data->c), sizeof(cmph_float32), 1, fd); fwrite(&(data->m), sizeof(cmph_uint32), 1, fd); fwrite(data->size, sizeof(cmph_uint8)*(data->k), 1, fd); fwrite(data->offset, sizeof(cmph_uint32)*(data->k), 1, fd); // Dumping g function. for(i = 0; i < data->k; i++) { cmph_uint32 n = ceil(data->c * data->size[i]); fwrite(data->g[i], sizeof(cmph_uint8)*n, 1, fd); } return 1; } void brz_load(FILE *f, cmph_t *mphf) { cmph_uint32 nhashes; char *buf = NULL; cmph_uint32 buflen; cmph_uint32 i; brz_data_t *brz = (brz_data_t *)malloc(sizeof(brz_data_t)); DEBUGP("Loading brz mphf\n"); mphf->data = brz; fread(&(brz->k), sizeof(cmph_uint32), 1, f); brz->h1 = (hash_state_t **)malloc(sizeof(hash_state_t *)*brz->k); brz->h2 = (hash_state_t **)malloc(sizeof(hash_state_t *)*brz->k); DEBUGP("Reading %u h1 and %u h2\n", brz->k, brz->k); //loading h1 and h2. for(i = 0; i < brz->k; i++) { // h1 fread(&buflen, sizeof(cmph_uint32), 1, f); DEBUGP("Hash state has %u bytes\n", buflen); buf = (char *)malloc(buflen); fread(buf, buflen, 1, f); brz->h1[i] = hash_state_load(buf, buflen); free(buf); //h2 fread(&buflen, sizeof(cmph_uint32), 1, f); DEBUGP("Hash state has %u bytes\n", buflen); buf = (char *)malloc(buflen); fread(buf, buflen, 1, f); brz->h2[i] = hash_state_load(buf, buflen); free(buf); } //loading h3 fread(&buflen, sizeof(cmph_uint32), 1, f); DEBUGP("Hash state has %u bytes\n", buflen); buf = (char *)malloc(buflen); fread(buf, buflen, 1, f); brz->h3 = hash_state_load(buf, buflen); free(buf); //loading c, m, size vector and offset vector. fread(&(brz->c), sizeof(cmph_float32), 1, f); fread(&(brz->m), sizeof(cmph_uint32), 1, f); brz->size = (cmph_uint8 *) malloc(sizeof(cmph_uint8)*brz->k); brz->offset = (cmph_uint32 *)malloc(sizeof(cmph_uint32)*brz->k); fread(brz->size, sizeof(cmph_uint8)*(brz->k), 1, f); fread(brz->offset, sizeof(cmph_uint32)*(brz->k), 1, f); //loading g function. brz->g = (cmph_uint8 **) malloc(sizeof(cmph_uint8 *)*brz->k); for(i = 0; i < brz->k; i++) { cmph_uint32 n = ceil(brz->c * brz->size[i]); brz->g[i] = (cmph_uint8 *)malloc(sizeof(cmph_uint8)*n); fread(brz->g[i], sizeof(cmph_uint8)*n, 1, f); } return; } cmph_uint32 brz_search(cmph_t *mphf, const char *key, cmph_uint32 keylen) { brz_data_t *brz = mphf->data; cmph_uint32 h3 = hash(brz->h3, key, keylen) % brz->k; cmph_uint32 m = brz->size[h3]; cmph_uint32 n = ceil(brz->c * m); cmph_uint32 h1 = hash(brz->h1[h3], key, keylen) % n; cmph_uint32 h2 = hash(brz->h2[h3], key, keylen) % n; if (h1 == h2 && ++h2 >= n) h2 = 0; DEBUGP("key: %s h1: %u h2: %u h3: %u\n", key, h1, h2, h3); DEBUGP("key: %s g[h1]: %u g[h2]: %u offset[h3]: %u edges: %u\n", key, brz->g[h3][h1], brz->g[h3][h2], brz->offset[h3], brz->m); DEBUGP("Address: %u\n", (((cmph_uint32)brz->g[h3][h1] + (cmph_uint32)brz->g[h3][h2])% m + brz->offset[h3])); return (((cmph_uint32)brz->g[h3][h1] + (cmph_uint32)brz->g[h3][h2])% m + brz->offset[h3]); } void brz_destroy(cmph_t *mphf) { cmph_uint32 i; brz_data_t *data = (brz_data_t *)mphf->data; for(i = 0; i < data->k; i++) { free(data->g[i]); hash_state_destroy(data->h1[i]); hash_state_destroy(data->h2[i]); } hash_state_destroy(data->h3); free(data->g); free(data->h1); free(data->h2); free(data->size); free(data->offset); free(data); free(mphf); }