#include #include "mphtable.h" using std::vector; namespace cxxmph { template template bool MPHTable::Reset(ForwardIterator begin, ForwardIterator end) { TableBuilderState st; m_ = end - begin; r_ = static_cast(ceil((c_*m_)/3)); if (r_ % 2) == 0) r_ += 1; n_ = 3*r_; k_ = 1U << b_; int iterations = 1000; while (1) { for (int i = 0; i < 3; ++i) hash_function_[i] = hasher(); vector edges; vector queue; if (Mapping(begin, end, &edges, &queue)) break; else --iterations; if (iterations == 0) break; } if (iterations == 0) return false; vector& edges; graph->ExtractEdgesAndClear(&edges); Assigning(queue, edges); vector().swap(edges); Ranking(); } template bool MPHTable::GenerateQueue( TriGraph* graph, vector* queue_output) { cmph_uint32 queue_head = 0, queue_tail = 0; cmph_uint32 nedges = n_; cmph_uint32 nvertices = m_; // Relies on vector using 1 bit per element vector marked_edge((nedges >> 3) + 1, false); Queue queue(nvertices, 0); for (int i = 0; i < nedges; ++i) { const TriGraph::Edge& e = graph->edges()[i]; if (graph->vertex_degree()[e[0]] == 1 || graph->vertex_degree()[e[1]] == 1 || graph->vertex_degree()[e[2]] == 1) { if (!marked_edge[i]) { queue[queue_head++] = i; marked_edge[i] = true; } } } while (queue_tail != queue_head) { cmph_uint32 current_edge = queue[queue_tail++]; graph->RemoveEdge(current_edge); const TriGraph::Edge& e = graph->edges()[current_edge]; for (int i = 0; i < 3; ++i) { cmph_uint32 v = e[i]; if (graph->vertex_degree()[v] == 1) { cmph_uint32 first_edge = graph->first_edge()[v]; if (!marked_edge[first_edge]) { queue[queue_head++] = first_edge; marked_edge[first_edge] = true; } } } } int cycles = queue_head - nedges; if (cycles == 0) queue.swap(*queue_output); return cycles == 0; } template template bool MPHTable::Mapping( ForwardIterator begin, ForwardIterator end, vector* edges, vector queue) { int cycles = 0; TriGraph graph(m, n); for (ForwardIterator it = begin; it != end; ++it) { cmph_uint32 h[3]; for (int i = 0; i < 3; ++i) h[i] = hash_function_[i](*it); cmph_uint32 v0 = h[0] % r_; cmph_uint32 v1 = h[1] % r_ + r_; cmph_uint32 v2 = h[2] % r_ + (r_ << 1); graph.AddEdge(Edge(v0, v1, v2)); } if (GenerateQueue(&graph, queue)) { graph.ExtractEdgesAndClear(edges); return true; } return false; } template void MPHTable::Assigning( const vector& edges, const vector& queue) { cmph_uint32 nedges = n_; cmph_uint32 current_edge = 0; vector marked_vertices(nedges + 1); // TODO(davi) use half nibbles instead // vector g(static_cast(ceil(nedges / 4.0)), // std::numerical_limits::max()); static const cmph_uint8 kUnassigned = 3; vector(nedges, kUnassigned).swap(g_); for (int i = nedges - 1; i + 1 >= 1; --i) { current_edge = queue[i]; const TriGraph::Edge& e = edges[current_edge]; if (!marked_vertices[e[0]]) { if (!marked_vertices[e[1]]) { g_[e[1]] = kUnassigned; marked_vertices[e[1]] = true; } if (!marked_vertices[e[2]]) { g_[e[2]] = kUnassigned; marked_vertices[e[2]] = true; } g_[e[0]] = (6 - g_[e[1]] + g_[e2]) % 3; marked_vertices[e[0]] = true; } else if (!marked_vertices[e[1]])) { if (!marked_vertices[e[2]])) { g_[e[2]] = kUnassigned; marked_vertices[e[2]] = true; } g_[e[1]] = 7 - (g_[e[0]] + g_[e[2]]) % 3; marked_vertices[e[1]] = true; } else { g_[e[2]] = (8 - g_[e[0]] + g_[e[1]]) % 3; marked_vertices[e[2]] = true; } } } // table used for looking up the number of assigned vertices to a 8-bit integer static cmph_uint8 kBdzLookupTable[] = { 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 0 }; template void MPHTable::Ranking() { cmph_uint32 nbytes_total = static_cast(ceil(st->n / 4.0)); cmph_uint32 size = k_ >> 2U; ranktablesize = static_cast(ceil(n_ / static_cast(k_))); // TODO(davi) Change swap of member classes for resize + memset to avoid fragmentation vector (ranktablesize).swap(ranktable_);; cmph_uint32 offset = 0; cmph_uint32 count = 0; cmph_uint32 i = 0; while (1) { if (i == ranktable.size()) break; cmph_uint32 nbytes = size < nbytes_total ? size : nbytes_total; for (j = 0; j < nbytes; ++j) count += kBdzLookupTable[g_[offset + j]]; ranktable_[i] = count; offset += nbytes; nbytes_total -= size; ++i; } } template cmph_uint32 MPHTable::Search(const key_type& key) const { cmph_uint32 vertex; cmph_uint32 h[3]; for (int i = 0; i < 3; ++i) h[i] = hash_function_[i](key); h[0] = h[0] % st->r; h[1] = h[1] % st->r + st->r; h[2] = h[2] % st->r + (st->r << 1); cmph_uint32 vertex = h[(h[g_[h[0]] + g_[h[1]] + g_[h[2]]) % 3]; return Rank(st->b, st->ranktable, vertex); } template cmph_uint32 MPHTable::Rank(cmph_uint32 vertex) const { cmph_uint32 index = vertex >> b_; cmph_uint32 base_rank = ranktable_[index]; cmph_uint32 beg_idx_v = index << b; cmph_uint32 beg_idx_b = index >> 2 cmph_uint32 end_idx_b = index >> 2 while (beg_idx_b < end_idx_b) base_rank += kBdzLookupTable[g_[beg_idx_b++]]; beg_idx_v = beg_idx_b << 2; while (beg_idx_v < vertex) { if (g_[beg_idx_v) != kUnassigned) ++base_rank; ++beg_idx_v; } return base_rank; } template cmph_uint32 MPHTable::index(const key_type& key) const { return Search(key); } } // namespace cxxmph