#include #include #include using std::cerr; using std::endl; #include "mph_index.h" using std::vector; namespace { static const uint8_t kUnassigned = 3; // table used for looking up the number of assigned vertices to a 8-bit integer static uint8_t kBdzLookupIndex[] = { 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 4, 3, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 0 }; } // anonymous namespace namespace cxxmph { const uint8_t MPHIndex::valuemask[] = { 0xfc, 0xf3, 0xcf, 0x3f}; MPHIndex::~MPHIndex() { clear(); } void MPHIndex::clear() { if (!deserialized_) delete [] ranktable_; ranktable_ = NULL; ranktable_size_ = 0; // TODO(davi) implement me } bool MPHIndex::GenerateQueue( TriGraph* graph, vector* queue_output) { uint32_t queue_head = 0, queue_tail = 0; uint32_t nedges = m_; uint32_t nvertices = n_; // Relies on vector using 1 bit per element vector marked_edge(nedges + 1, false); vector queue(nvertices, 0); for (uint32_t i = 0; i < nedges; ++i) { const TriGraph::Edge& e = graph->edges()[i]; if (graph->vertex_degree()[e[0]] == 1 || graph->vertex_degree()[e[1]] == 1 || graph->vertex_degree()[e[2]] == 1) { if (!marked_edge[i]) { queue[queue_head++] = i; marked_edge[i] = true; } } } /* for (unsigned int i = 0; i < marked_edge.size(); ++i) { cerr << "vertex with degree " << static_cast(graph->vertex_degree()[i]) << " marked " << marked_edge[i] << endl; } for (unsigned int i = 0; i < queue.size(); ++i) { cerr << "vertex " << i << " queued at " << queue[i] << endl; } */ // At this point queue head is the number of edges touching at least one // vertex of degree 1. // cerr << "Queue head " << queue_head << " Queue tail " << queue_tail << endl; // graph->DebugGraph(); while (queue_tail != queue_head) { uint32_t current_edge = queue[queue_tail++]; graph->RemoveEdge(current_edge); const TriGraph::Edge& e = graph->edges()[current_edge]; for (int i = 0; i < 3; ++i) { uint32_t v = e[i]; if (graph->vertex_degree()[v] == 1) { uint32_t first_edge = graph->first_edge()[v]; if (!marked_edge[first_edge]) { queue[queue_head++] = first_edge; marked_edge[first_edge] = true; } } } } /* for (unsigned int i = 0; i < queue.size(); ++i) { cerr << "vertex " << i << " queued at " << queue[i] << endl; } */ int cycles = queue_head - nedges; if (cycles == 0) queue.swap(*queue_output); return cycles == 0; } void MPHIndex::Assigning( const vector& edges, const vector& queue) { uint32_t current_edge = 0; vector marked_vertices(n_ + 1); dynamic_2bitset().swap(g_); // Initialize vector of half nibbles with all bits set. dynamic_2bitset g(n_, true /* set bits to 1 */); uint32_t nedges = m_; // for legibility for (int i = nedges - 1; i + 1 >= 1; --i) { current_edge = queue[i]; const TriGraph::Edge& e = edges[current_edge]; /* cerr << "B: " << e[0] << " " << e[1] << " " << e[2] << " -> " << get_2bit_value(g_, e[0]) << " " << get_2bit_value(g_, e[1]) << " " << get_2bit_value(g_, e[2]) << " edge " << current_edge << endl; */ if (!marked_vertices[e[0]]) { if (!marked_vertices[e[1]]) { g.set(e[1], kUnassigned); marked_vertices[e[1]] = true; } if (!marked_vertices[e[2]]) { g.set(e[2], kUnassigned); assert(marked_vertices.size() > e[2]); marked_vertices[e[2]] = true; } g.set(e[0], (6 - (g[e[1]] + g[e[2]])) % 3); marked_vertices[e[0]] = true; } else if (!marked_vertices[e[1]]) { if (!marked_vertices[e[2]]) { g.set(e[2], kUnassigned); marked_vertices[e[2]] = true; } g.set(e[1], (7 - (g[e[0]] + g[e[2]])) % 3); marked_vertices[e[1]] = true; } else { g.set(e[2], (8 - (g[e[0]] + g[e[1]])) % 3); marked_vertices[e[2]] = true; } /* cerr << "A: " << e[0] << " " << e[1] << " " << e[2] << " -> " << static_cast(g[e[0]]) << " " << static_cast(g[e[1]]) << " " << static_cast(g[e[2]]) << " " << endl; */ } g_.swap(g); } void MPHIndex::Ranking() { uint32_t nbytes_total = static_cast(ceil(n_ / 4.0)); uint32_t size = k_ >> 2U; ranktable_size_ = static_cast( ceil(n_ / static_cast(k_))); if (!deserialized_) delete [] ranktable_; ranktable_ = NULL; uint32_t* ranktable = new uint32_t[ranktable_size_]; memset(ranktable, 0, ranktable_size_*sizeof(uint32_t)); uint32_t offset = 0; uint32_t count = 0; uint32_t i = 1; while (1) { if (i == ranktable_size_) break; uint32_t nbytes = size < nbytes_total ? size : nbytes_total; for (uint32_t j = 0; j < nbytes; ++j) count += kBdzLookupIndex[g_[offset + j]]; ranktable[i] = count; offset += nbytes; nbytes_total -= size; ++i; } ranktable_ = ranktable; } uint32_t MPHIndex::Rank(uint32_t vertex) const { uint32_t index = vertex >> b_; uint32_t base_rank = ranktable_[index]; uint32_t beg_idx_v = index << b_; uint32_t beg_idx_b = beg_idx_v >> 2; uint32_t end_idx_b = vertex >> 2; while (beg_idx_b < end_idx_b) base_rank += kBdzLookupIndex[g_.data()[beg_idx_b++]]; beg_idx_v = beg_idx_b << 2; // cerr << "beg_idx_v: " << beg_idx_v << endl; // cerr << "base rank: " << base_rank << endl; cerr << "G: "; for (unsigned int i = 0; i < n_; ++i) { cerr << static_cast(g_[i]) << " "; } cerr << endl; while (beg_idx_v < vertex) { if (g_[beg_idx_v] != kUnassigned) ++base_rank; ++beg_idx_v; } // cerr << "Base rank: " << base_rank << endl; return base_rank; } uint32_t MPHIndex::serialize_bytes_needed() const { return 0; } void MPHIndex::serialize(char* memory) const { } bool MPHIndex::deserialize(const char* serialized_memory) { return true; } } // namespace cxxmph