#ifndef __CXXMPH_MPHTABLE_H__ #define __CXXMPH_MPHTABLE_H__ // Minimal perfect hash abstraction implementing the BDZ algorithm #include #include #include // for std::hash #include #include using std::cerr; using std::endl; #include "cmph_hash_function.h" #include "trigraph.h" namespace cxxmph { class MPHTable { public: MPHTable(double c = 1.23, cmph_uint8 b = 7) : c_(c), b_(b), m_(0), n_(0), k_(0), r_(0) { } ~MPHTable() {} template bool Reset(ForwardIterator begin, ForwardIterator end); template // must agree with Reset cmph_uint32 index(const Key& x) const; cmph_uint32 size() const { return m_; } void clear(); private: template bool Mapping(ForwardIterator begin, ForwardIterator end, std::vector* edges, std::vector* queue); bool GenerateQueue(TriGraph* graph, std::vector* queue); void Assigning(const std::vector& edges, const std::vector& queue); void Ranking(); cmph_uint32 Rank(cmph_uint32 vertex) const; // Algorithm parameters double c_; // Number of bits per key (? is it right) cmph_uint8 b_; // Number of bits of the kth index in the ranktable // Values used during generation cmph_uint32 m_; // edges count cmph_uint32 n_; // vertex count cmph_uint32 k_; // kth index in ranktable, $k = log_2(n=3r)\varepsilon$ // Values used during search // Partition vertex count, derived from c parameter. cmph_uint32 r_; // The array containing the minimal perfect hash function graph. std::vector g_; // The table used for the rank step of the minimal perfect hash function std::vector ranktable_; // The selected hash seed triplet for finding the edges in the minimal // perfect hash function graph. cmph_uint32 hash_seed_[3]; static const cmph_uint8 valuemask[]; static void set_2bit_value(std::vector *d, cmph_uint32 i, cmph_uint8 v) { (*d)[(i >> 2)] &= (v << ((i & 3) << 1)) | valuemask[i & 3]; } static cmph_uint32 get_2bit_value(const std::vector& d, cmph_uint32 i) { return (d[(i >> 2)] >> ((i & 3) << 1)) & 3; } }; // Template method needs to go in the header file. template bool MPHTable::Reset(ForwardIterator begin, ForwardIterator end) { m_ = end - begin; r_ = static_cast(ceil((c_*m_)/3)); if ((r_ % 2) == 0) r_ += 1; n_ = 3*r_; k_ = 1U << b_; cerr << "m " << m_ << " n " << n_ << " r " << r_ << endl; int iterations = 10; std::vector edges; std::vector queue; while (1) { cerr << "Iterations missing: " << iterations << endl; for (int i = 0; i < 3; ++i) hash_seed_[i] = random() % m_; // for (int i = 0; i < 3; ++i) hash_seed_[i] = random() + i; if (Mapping(begin, end, &edges, &queue)) break; else --iterations; if (iterations == 0) break; } if (iterations == 0) return false; Assigning(edges, queue); std::vector().swap(edges); Ranking(); return true; } template bool MPHTable::Mapping( ForwardIterator begin, ForwardIterator end, std::vector* edges, std::vector* queue) { TriGraph graph(n_, m_); for (ForwardIterator it = begin; it != end; ++it) { cmph_uint32 h[3]; for (int i = 0; i < 3; ++i) h[i] = SeededHashFcn()(*it, hash_seed_[i]); cmph_uint32 v0 = h[0] % r_; cmph_uint32 v1 = h[1] % r_ + r_; cmph_uint32 v2 = h[2] % r_ + (r_ << 1); cerr << "Key: " << *it << " edge " << it - begin << " (" << v0 << "," << v1 << "," << v2 << ")" << endl; graph.AddEdge(TriGraph::Edge(v0, v1, v2)); } if (GenerateQueue(&graph, queue)) { graph.ExtractEdgesAndClear(edges); return true; } return false; } template cmph_uint32 MPHTable::index(const Key& key) const { cmph_uint32 h[3]; for (int i = 0; i < 3; ++i) h[i] = SeededHashFcn()(key, hash_seed_[i]); h[0] = h[0] % r_; h[1] = h[1] % r_ + r_; h[2] = h[2] % r_ + (r_ << 1); assert(g_.size()); cerr << "g_.size() " << g_.size() << " h0 >> 2 " << (h[0] >> 2) << endl; assert((h[0] >> 2) > 2) > 2) >::hash_function> class SimpleMPHTable : public MPHTable { public: template bool Reset(ForwardIterator begin, ForwardIterator end) { return MPHTable::Reset(begin, end); } cmph_uint32 index(const Key& key) { return MPHTable::index(key); } }; } // namespace cxxmph #endif // __CXXMPH_MPHTABLE_H__