1
Fork 0
turbonss/deps/cmph/cxxmph/mph_map.h

273 lines
9.8 KiB
C++

#ifndef __CXXMPH_MPH_MAP_H__
#define __CXXMPH_MPH_MAP_H__
// Implementation of the unordered associative mapping interface using a
// minimal perfect hash function.
//
// Since these are header-mostly libraries, make sure you compile your code
// with -DNDEBUG and -O3. The code requires a modern C++11 compiler.
//
// The container comes in 3 flavors, all in the cxxmph namespace and drop-in
// replacement for the popular classes with the same names.
// * dense_hash_map
// -> fast, uses more memory, 2.93 bits per bucket, ~50% occupation
// * unordered_map (aliases: hash_map, mph_map)
// -> middle ground, uses 2.93 bits per bucket, ~81% occupation
// * sparse_hash_map -> slower, uses 3.6 bits per bucket
// -> less fast, uses 3.6 bits per bucket, 100% occupation
//
// Those classes are not necessarily faster than their existing counterparts.
// Benchmark your code before using it. The larger the key, the larger the
// number of elements inserted, and the bigger the number of failed searches,
// the more likely those classes will outperform existing code.
//
// For large sets of urls (>100k), which are a somewhat expensive to compare, I
// found those class to be about 10%-50% faster than unordered_map.
#include <algorithm>
#include <iostream>
#include <limits>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <utility> // for std::pair
#include "string_util.h"
#include "hollow_iterator.h"
#include "mph_bits.h"
#include "mph_index.h"
#include "seeded_hash.h"
namespace cxxmph {
using std::pair;
using std::make_pair;
using std::vector;
// Save on repetitive typing.
#define MPH_MAP_TMPL_SPEC \
template <bool minimal, bool square, \
class Key, class Data, class HashFcn, class EqualKey, class Alloc>
#define MPH_MAP_CLASS_SPEC mph_map_base<minimal, square, Key, Data, HashFcn, EqualKey, Alloc>
#define MPH_MAP_METHOD_DECL(r, m) MPH_MAP_TMPL_SPEC typename MPH_MAP_CLASS_SPEC::r MPH_MAP_CLASS_SPEC::m
#define MPH_MAP_INLINE_METHOD_DECL(r, m) MPH_MAP_TMPL_SPEC inline typename MPH_MAP_CLASS_SPEC::r MPH_MAP_CLASS_SPEC::m
template <bool minimal, bool square, class Key, class Data, class HashFcn = std::hash<Key>, class EqualKey = std::equal_to<Key>, class Alloc = std::allocator<Data> >
class mph_map_base {
public:
typedef Key key_type;
typedef Data data_type;
typedef pair<Key, Data> value_type;
typedef HashFcn hasher;
typedef EqualKey key_equal;
typedef typename vector<value_type>::pointer pointer;
typedef typename vector<value_type>::reference reference;
typedef typename vector<value_type>::const_reference const_reference;
typedef typename vector<value_type>::size_type size_type;
typedef typename vector<value_type>::difference_type difference_type;
typedef is_empty<const vector<value_type>> is_empty_type;
typedef hollow_iterator_base<typename vector<value_type>::iterator, is_empty_type> iterator;
typedef hollow_iterator_base<typename vector<value_type>::const_iterator, is_empty_type> const_iterator;
// For making macros simpler.
typedef void void_type;
typedef bool bool_type;
typedef pair<iterator, bool> insert_return_type;
mph_map_base();
~mph_map_base();
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
size_type size() const;
bool empty() const;
void clear();
void erase(iterator pos);
void erase(const key_type& k);
pair<iterator, bool> insert(const value_type& x);
inline iterator find(const key_type& k);
inline const_iterator find(const key_type& k) const;
typedef int32_t my_int32_t; // help macros
inline int32_t index(const key_type& k) const;
data_type& operator[](const key_type &k);
const data_type& operator[](const key_type &k) const;
size_type bucket_count() const { return index_.size() + slack_.bucket_count(); }
void rehash(size_type nbuckets /*ignored*/);
protected: // mimicking STL implementation
EqualKey equal_;
private:
template <typename iterator>
struct iterator_first : public iterator {
iterator_first(iterator it) : iterator(it) { }
const typename iterator::value_type::first_type& operator*() {
return this->iterator::operator*().first;
}
};
template <typename iterator>
iterator_first<iterator> make_iterator_first(iterator it) {
return iterator_first<iterator>(it);
}
void pack();
vector<value_type> values_;
vector<bool> present_;
FlexibleMPHIndex<minimal, square, Key, typename seeded_hash<HashFcn>::hash_function> index_;
// TODO(davi) optimize slack to use hash from index rather than calculate its own
typedef std::unordered_map<h128, uint32_t, h128::hash32> slack_type;
slack_type slack_;
size_type size_;
typename seeded_hash<HashFcn>::hash_function hasher128_;
};
MPH_MAP_TMPL_SPEC
bool operator==(const MPH_MAP_CLASS_SPEC& lhs, const MPH_MAP_CLASS_SPEC& rhs) {
return lhs.size() == rhs.size() && std::equal(lhs.begin(), lhs.end(), rhs.begin());
}
MPH_MAP_TMPL_SPEC MPH_MAP_CLASS_SPEC::mph_map_base() : size_(0) {
clear();
pack();
}
MPH_MAP_TMPL_SPEC MPH_MAP_CLASS_SPEC::~mph_map_base() { }
MPH_MAP_METHOD_DECL(insert_return_type, insert)(const value_type& x) {
auto it = find(x.first);
auto it_end = end();
if (it != it_end) return make_pair(it, false);
bool should_pack = false;
if (values_.capacity() == values_.size() && values_.size() > 256) {
should_pack = true;
}
values_.push_back(x);
present_.push_back(true);
++size_;
h128 h = hasher128_.hash128(x.first, 0);
if (slack_.find(h) != slack_.end()) should_pack = true; // unavoidable pack
else slack_.insert(std::make_pair(h, values_.size() - 1));
if (should_pack) pack();
it = find(x.first);
return make_pair(it, true);
}
MPH_MAP_METHOD_DECL(void_type, pack)() {
// CXXMPH_DEBUGLN("Packing %v values")(values_.size());
if (values_.empty()) return;
assert(std::unordered_set<key_type>(make_iterator_first(begin()), make_iterator_first(end())).size() == size());
bool success = index_.Reset(
make_iterator_first(begin()),
make_iterator_first(end()), size_);
if (!success) { exit(-1); }
vector<value_type> new_values(index_.size());
new_values.reserve(new_values.size() * 2);
vector<bool> new_present(index_.size(), false);
new_present.reserve(new_present.size() * 2);
for (iterator it = begin(), it_end = end(); it != it_end; ++it) {
size_type id = index_.index(it->first);
assert(id < index_.size());
assert(id < new_values.size());
new_values[id] = *it;
new_present[id] = true;
}
// fprintf(stderr, "Collision ratio: %f\n", collisions*1.0/size());
values_.swap(new_values);
present_.swap(new_present);
slack_type().swap(slack_);
}
MPH_MAP_METHOD_DECL(iterator, begin)() { return make_hollow(&values_, &present_, values_.begin()); }
MPH_MAP_METHOD_DECL(iterator, end)() { return make_solid(&values_, &present_, values_.end()); }
MPH_MAP_METHOD_DECL(const_iterator, begin)() const { return make_hollow(&values_, &present_, values_.begin()); }
MPH_MAP_METHOD_DECL(const_iterator, end)() const { return make_solid(&values_, &present_, values_.end()); }
MPH_MAP_METHOD_DECL(bool_type, empty)() const { return size_ == 0; }
MPH_MAP_METHOD_DECL(size_type, size)() const { return size_; }
MPH_MAP_METHOD_DECL(void_type, clear)() {
values_.clear();
present_.clear();
slack_.clear();
index_.clear();
size_ = 0;
}
MPH_MAP_METHOD_DECL(void_type, erase)(iterator pos) {
assert(pos.it_ - values_.begin() < present_.size());
assert(present_[pos.it_ - values_.begin()]);
present_[pos.it_ - values_.begin()] = false;
*pos = value_type();
--size_;
}
MPH_MAP_METHOD_DECL(void_type, erase)(const key_type& k) {
iterator it = find(k);
if (it == end()) return;
erase(it);
}
MPH_MAP_INLINE_METHOD_DECL(const_iterator, find)(const key_type& k) const {
auto idx = index(k);
typename vector<value_type>::const_iterator vit = values_.begin() + idx;
if (idx == -1 || !equal_(vit->first, k)) return end();
return make_solid(&values_, &present_, vit);;
}
MPH_MAP_INLINE_METHOD_DECL(iterator, find)(const key_type& k) {
auto idx = index(k);
typename vector<value_type>::iterator vit = values_.begin() + idx;
if (idx == -1 || !equal_(vit->first, k)) return end();
return make_solid(&values_, &present_, vit);;
}
MPH_MAP_INLINE_METHOD_DECL(my_int32_t, index)(const key_type& k) const {
if (__builtin_expect(!slack_.empty(), 0)) {
auto sit = slack_.find(hasher128_.hash128(k, 0));
if (sit != slack_.end()) return sit->second;
}
if (__builtin_expect(index_.size(), 1)) {
auto id = index_.index(k);
if (__builtin_expect(present_[id], true)) return id;
}
return -1;
}
MPH_MAP_METHOD_DECL(data_type&, operator[])(const key_type& k) {
return insert(make_pair(k, data_type())).first->second;
}
MPH_MAP_METHOD_DECL(void_type, rehash)(size_type /*nbuckets*/) {
pack();
vector<value_type>(values_.begin(), values_.end()).swap(values_);
vector<bool>(present_.begin(), present_.end()).swap(present_);
slack_type().swap(slack_);
}
#define MPH_MAP_PREAMBLE template <class Key, class Data,\
class HashFcn = std::hash<Key>, class EqualKey = std::equal_to<Key>,\
class Alloc = std::allocator<Data> >
MPH_MAP_PREAMBLE class mph_map : public mph_map_base<
false, false, Key, Data, HashFcn, EqualKey, Alloc> {};
MPH_MAP_PREAMBLE class unordered_map : public mph_map_base<
false, false, Key, Data, HashFcn, EqualKey, Alloc> {};
MPH_MAP_PREAMBLE class hash_map : public mph_map_base<
false, false, Key, Data, HashFcn, EqualKey, Alloc> {};
MPH_MAP_PREAMBLE class dense_hash_map : public mph_map_base<
false, true, Key, Data, HashFcn, EqualKey, Alloc> {};
MPH_MAP_PREAMBLE class sparse_hash_map : public mph_map_base<
true, false, Key, Data, HashFcn, EqualKey, Alloc> {};
#undef MPH_MAP_TMPL_SPEC
#undef MPH_MAP_CLASS_SPEC
#undef MPH_MAP_METHOD_DECL
#undef MPH_MAP_INLINE_METHOD_DECL
#undef MPH_MAP_PREAMBLE
} // namespace cxxmph
#endif // __CXXMPH_MPH_MAP_H__