1
Fork 0
turbonss/src/graph.c

330 lines
7.0 KiB
C

#include "graph.h"
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <assert.h>
#include <string.h>
#include "vstack.h"
//#define DEBUG
#include "debug.h"
#define abs_edge(e, i) (e % g->nedges + i * g->nedges)
struct __graph_t
{
uint32 nnodes;
uint32 nedges;
uint32 *edges;
uint32 *first;
uint32 *next;
uint8 *critical_nodes; /* included -- Fabiano*/
uint32 ncritical_nodes; /* included -- Fabiano*/
uint32 cedges;
int shrinking;
};
static uint32 EMPTY = UINT_MAX;
graph_t *graph_new(uint32 nnodes, uint32 nedges)
{
graph_t *graph = (graph_t *)malloc(sizeof(graph_t));
if (!graph) return NULL;
graph->edges = (uint32 *)malloc(sizeof(uint32) * 2 * nedges);
graph->next = (uint32 *)malloc(sizeof(uint32) * 2 * nedges);
graph->first = (uint32 *)malloc(sizeof(uint32) * nnodes);
graph->critical_nodes = NULL; /* included -- Fabiano*/
graph->ncritical_nodes = 0; /* included -- Fabiano*/
graph->nnodes = nnodes;
graph->nedges = nedges;
graph_clear_edges(graph);
return graph;
}
void graph_destroy(graph_t *graph)
{
DEBUGP("Destroying graph\n");
free(graph->edges);
free(graph->first);
free(graph->next);
free(graph->critical_nodes); /* included -- Fabiano*/
free(graph);
return;
}
void graph_print(graph_t *g)
{
uint32 i, e;
for (i = 0; i < g->nnodes; ++i)
{
DEBUGP("Printing edges connected to %u\n", i);
e = g->first[i];
if (e != EMPTY)
{
printf("%u -> %u\n", g->edges[abs_edge(e, 0)], g->edges[abs_edge(e, 1)]);
while ((e = g->next[e]) != EMPTY)
{
printf("%u -> %u\n", g->edges[abs_edge(e, 0)], g->edges[abs_edge(e, 1)]);
}
}
}
return;
}
void graph_add_edge(graph_t *g, uint32 v1, uint32 v2)
{
uint32 e = g->cedges;
assert(v1 < g->nnodes);
assert(v2 < g->nnodes);
assert(e < g->nedges);
assert(!g->shrinking);
g->next[e] = g->first[v1];
g->first[v1] = e;
g->edges[e] = v2;
g->next[e + g->nedges] = g->first[v2];
g->first[v2] = e + g->nedges;
g->edges[e + g->nedges] = v1;
++(g->cedges);
}
static int check_edge(graph_t *g, uint32 e, uint32 v1, uint32 v2)
{
DEBUGP("Checking edge %u %u looking for %u %u\n", g->edges[abs_edge(e, 0)], g->edges[abs_edge(e, 1)], v1, v2);
if (g->edges[abs_edge(e, 0)] == v1 && g->edges[abs_edge(e, 1)] == v2) return 1;
if (g->edges[abs_edge(e, 0)] == v2 && g->edges[abs_edge(e, 1)] == v1) return 1;
return 0;
}
uint32 graph_edge_id(graph_t *g, uint32 v1, uint32 v2)
{
uint32 e;
e = g->first[v1];
assert(e != EMPTY);
if (check_edge(g, e, v1, v2)) return abs_edge(e, 0);
do
{
e = g->next[e];
assert(e != EMPTY);
}
while (!check_edge(g, e, v1, v2));
return abs_edge(e, 0);
}
static void del_edge_point(graph_t *g, uint32 v1, uint32 v2)
{
uint32 e, prev;
DEBUGP("Deleting edge point %u %u\n", v1, v2);
e = g->first[v1];
if (check_edge(g, e, v1, v2))
{
g->first[v1] = g->next[e];
//g->edges[e] = EMPTY;
DEBUGP("Deleted\n");
return;
}
DEBUGP("Checking linked list\n");
do
{
prev = e;
e = g->next[e];
assert(e != EMPTY);
}
while (!check_edge(g, e, v1, v2));
g->next[prev] = g->next[e];
//g->edges[e] = EMPTY;
DEBUGP("Deleted\n");
}
void graph_del_edge(graph_t *g, uint32 v1, uint32 v2)
{
g->shrinking = 1;
del_edge_point(g, v1, v2);
del_edge_point(g, v2, v1);
}
void graph_clear_edges(graph_t *g)
{
uint32 i;
for (i = 0; i < g->nnodes; ++i) g->first[i] = EMPTY;
for (i = 0; i < g->nedges*2; ++i)
{
g->edges[i] = EMPTY;
g->next[i] = EMPTY;
}
g->cedges = 0;
g->shrinking = 0;
}
static int find_degree1_edge(graph_t *g, uint32 v, char *deleted, uint32 *e)
{
uint32 edge = g->first[v];
char found = 0;
DEBUGP("Checking degree of vertex %u\n", v);
if (edge == EMPTY) return 0;
else if (!deleted[abs_edge(edge, 0)])
{
found = 1;
*e = edge;
}
while(1)
{
edge = g->next[edge];
if (edge == EMPTY) break;
if (deleted[abs_edge(edge, 0)]) continue;
if (found) return 0;
DEBUGP("Found first edge\n");
*e = edge;
found = 1;
}
return found;
}
static void cyclic_del_edge(graph_t *g, uint32 v, char *deleted)
{
uint32 e;
char degree1;
uint32 v1 = v;
uint32 v2 = 0;
degree1 = find_degree1_edge(g, v1, deleted, &e);
if (!degree1) return;
while(1)
{
DEBUGP("Deleting edge %u (%u->%u)\n", e, g->edges[abs_edge(e, 0)], g->edges[abs_edge(e, 1)]);
deleted[abs_edge(e, 0)] = 1;
v2 = g->edges[abs_edge(e, 0)];
if (v2 == v1) v2 = g->edges[abs_edge(e, 1)];
DEBUGP("Checking if second endpoint %u has degree 1\n", v2);
degree1 = find_degree1_edge(g, v2, deleted, &e);
if (degree1)
{
DEBUGP("Inspecting vertex %u\n", v2);
v1 = v2;
}
else break;
}
}
int graph_is_cyclic(graph_t *g)
{
uint32 i;
uint32 v;
char *deleted = (char *)malloc(g->nedges*sizeof(char));
memset(deleted, 0, g->nedges);
DEBUGP("Looking for cycles in graph with %u vertices and %u edges\n", g->nnodes, g->nedges);
for (v = 0; v < g->nnodes; ++v)
{
cyclic_del_edge(g, v, deleted);
}
for (i = 0; i < g->nedges; ++i)
{
if (!(deleted[i]))
{
DEBUGP("Edge %u %u->%u was not deleted\n", i, g->edges[i], g->edges[i + g->nedges]);
free(deleted);
return 1;
}
}
free(deleted);
return 0;
}
uint8 graph_node_is_critical(graph_t * g, uint32 v) /* included -- Fabiano */
{
return g->critical_nodes[v];
}
void graph_obtain_critical_nodes(graph_t *g) /* included -- Fabiano*/
{
uint32 i;
uint32 v;
char *deleted = (char *)malloc(g->nedges*sizeof(char));
memset(deleted, 0, g->nedges);
/* g->critical_nodes = (uint8 *)malloc((size_t)(ceil(g->nnodes*sizeof(uint8)/8.))); */
g->critical_nodes = (uint8 *)malloc(g->nnodes*sizeof(uint8));
g->ncritical_nodes = 0;
DEBUGP("Looking for the 2-core in graph with %u vertices and %u edges\n", g->nnodes, g->nedges);
for (v = 0; v < g->nnodes; ++v)
{
cyclic_del_edge(g, v, deleted);
}
for (i = 0; i < g->nedges; ++i)
{
if (!(deleted[i]))
{
DEBUGP("Edge %u %u->%u belongs to the 2-core\n", i, g->edges[i], g->edges[i + g->nedges]);
if(!(g->critical_nodes[g->edges[i]]))
{
g->ncritical_nodes ++;
g->critical_nodes[g->edges[i]] = 1;
}
if(!(g->critical_nodes[g->edges[i + g->nedges]]))
{
g->ncritical_nodes ++;
g->critical_nodes[g->edges[i + g->nedges]] = 1;
}
}
}
free(deleted);
}
uint8 graph_contains_edge(graph_t *g, uint32 v1, uint32 v2) /* included -- Fabiano*/
{
uint32 e;
e = g->first[v1];
if(e == EMPTY) return 0;
if (check_edge(g, e, v1, v2)) return 1;
do
{
e = g->next[e];
if(e == EMPTY) return 0;
}
while (!check_edge(g, e, v1, v2));
return 1;
}
uint32 graph_vertex_id(graph_t *g, uint32 e, uint32 id) /* included -- Fabiano*/
{
return (g->edges[e + id*g->nedges]);
}
uint32 graph_ncritical_nodes(graph_t *g) /* included -- Fabiano*/
{
return g->ncritical_nodes;
}
graph_iterator_t graph_neighbors_it(graph_t *g, uint32 v)
{
graph_iterator_t it;
it.vertex = v;
it.edge = g->first[v];
return it;
}
uint32 graph_next_neighbor(graph_t *g, graph_iterator_t* it)
{
uint32 ret;
if(it->edge == EMPTY) return GRAPH_NO_NEIGHBOR;
if (g->edges[it->edge] == it->vertex) ret = g->edges[it->edge + g->nedges];
else ret = g->edges[it->edge];
it->edge = g->next[it->edge];
return ret;
}