use degrees where possible
This commit is contained in:
parent
2c45a6f95b
commit
898d62fe44
1
bib.bib
1
bib.bib
@ -202,7 +202,6 @@
|
||||
month={1},
|
||||
day={26},
|
||||
url={http://www.e-cartouche.ch/content_reg/cartouche/cartdesign/en/html/GenRules_learningObject3.html},
|
||||
organization={CartouCHe},
|
||||
urldate={2021-05-03},
|
||||
}
|
||||
|
||||
|
47
mj-msc.tex
47
mj-msc.tex
@ -1,6 +1,6 @@
|
||||
\documentclass[a4paper]{article}
|
||||
|
||||
\usepackage[T1,T2A]{fontenc} % T2A is for Cyrillic characters
|
||||
\usepackage[T1]{fontenc}
|
||||
\usepackage[american]{babel}
|
||||
\usepackage[utf8]{inputenc}
|
||||
\usepackage [autostyle,english=american]{csquotes}
|
||||
@ -9,7 +9,7 @@
|
||||
\addbibresource{bib.bib}
|
||||
\usepackage[
|
||||
pdfusetitle,
|
||||
pdfkeywords={Line Generalization,Cartographic Line Generalization,Wang--Mueller},
|
||||
pdfkeywords={Line Generalization,Line Simplification,Wang--Mueller},
|
||||
pdfborderstyle={/S/U/W 0} % /S/U/W 1 to enable reasonable decorations
|
||||
]{hyperref}
|
||||
\usepackage{enumitem}
|
||||
@ -29,6 +29,8 @@
|
||||
%\usepackage{setspace}
|
||||
%\doublespacing
|
||||
|
||||
\input{version.inc}
|
||||
\input{vars.inc}
|
||||
\IfFileExists{./editorial-version}{\def \mjEditorial {}}{}
|
||||
\ifx \mjEditorial \undefined
|
||||
\usepackage{minted}
|
||||
@ -38,10 +40,6 @@
|
||||
\newcommand{\inputcode}[2]{\verbatiminput{#2}}
|
||||
\fi
|
||||
|
||||
\input{version.inc}
|
||||
\input{vars.inc}
|
||||
|
||||
|
||||
\newcommand{\onpage}[1]{\ref{#1} on page~\pageref{#1}}
|
||||
\newcommand{\titlecite}[1]{\citetitle{#1}\cite{#1}}
|
||||
\newcommand{\DP}{Douglas \& Peucker}
|
||||
@ -50,7 +48,7 @@
|
||||
\newcommand{\WnM}{Wang and M{\"u}ller}
|
||||
% {\WM} algoritmo realizacija kartografinei upių generalizacijai
|
||||
\newcommand{\MYTITLE}{{\WM} algorithm realization for cartographic line generalization}
|
||||
\newcommand{\MYTITLESC}{wang--m{\"u}ller algorithm realization for cartographic line generalization}
|
||||
\newcommand{\MYTITLENOCAPS}{wang--m{\"u}ller algorithm realization for cartographic line generalization}
|
||||
\newcommand{\MYAUTHOR}{Motiejus Jakštys}
|
||||
|
||||
\title{\MYTITLE}
|
||||
@ -76,7 +74,7 @@
|
||||
A thesis presented for the degree of Master in Cartography \\[8ex]
|
||||
|
||||
\LARGE
|
||||
\textbf{\textsc{\MYTITLESC}}
|
||||
\textbf{\textsc{\MYTITLENOCAPS}}
|
||||
|
||||
\vfill
|
||||
|
||||
@ -444,25 +442,6 @@ This section defines vocabulary and terms as defined in the rest of the paper.
|
||||
|
||||
\end{description}
|
||||
|
||||
\subsection{Radians and Degrees}
|
||||
|
||||
This document contains a few constant angles expressed in radians.
|
||||
Table~\ref{table:radians} summarizes some of the values used in this document
|
||||
and the implementation.
|
||||
|
||||
\begin{table}[h]
|
||||
\centering
|
||||
\begin{tabular}{|c|c|c|c|c|c|c|}
|
||||
\hline
|
||||
Degrees & $30^\circ$ & $45^\circ$ & $90^\circ$ & $180^\circ$ & $360^\circ$ \\
|
||||
\hline
|
||||
Radians & $\nicefrac{\pi}{6}$ & $\nicefrac{\pi}{4}$ & $\nicefrac{\pi}{2}$ & $\pi$ & $2\pi$ \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\caption{Some angular degree and radian values mentioned in this article.}
|
||||
\label{table:radians}
|
||||
\end{table}
|
||||
|
||||
\subsection{Automated tests}
|
||||
\label{sec:automated-tests}
|
||||
|
||||
@ -771,13 +750,13 @@ be quite computationally expensive: naively implemented, complexity of checking
|
||||
every bend with every bend is $O(n^2)$. In other words, the time it takes to
|
||||
run the algorithm grows quadratically with the with the number of vertices.
|
||||
|
||||
It is possible to optimize this step and skip checking most of the bends. Only
|
||||
bends whose sum of inner angles is larger than $\pi$ can ever self-cross. If
|
||||
the value is less than $\pi$, it cannot cross other bends. That way, only a
|
||||
fraction of bends need to be checked. The worst-case complexity is still
|
||||
$O(n^2)$, when all bends' inner angles are larger than $\pi$, but, assuming no
|
||||
more than $20\%$ of the bends' inner angles are larger than $\pi$, the time it
|
||||
takes to run this piece of the algorithm drops by $80\%$.
|
||||
It is possible to optimize this step and skip checking a large number of bends.
|
||||
Only bends whose sum of inner angles is larger than $180^\circ$ can ever
|
||||
self-cross. That way, only a fraction of bends need to be checked. The
|
||||
worst-case complexity is still $O(n^2)$, when all bends' inner angles are
|
||||
larger than $180^\circ$. Having this optimization, the algorithmic complexity
|
||||
(as a result, the time it takes to execute the algorithm) is drops by the
|
||||
fraction of bends whose sum of inner angles is smaller than $180^\circ$.
|
||||
|
||||
\subsection{Attributes of a Single Bend}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user