less strict placement

This commit is contained in:
Motiejus Jakštys 2021-05-19 22:57:50 +03:00 committed by Motiejus Jakštys
parent 6d362e10a2
commit d13fe6729a

View File

@ -251,14 +251,14 @@ thus convenient to analyze for both small and large scale generalization.
Figure~\onpage{fig:salvis-25} illustrates the original two rivers without any Figure~\onpage{fig:salvis-25} illustrates the original two rivers without any
simplification. simplification.
\begin{figure}[h] \begin{figure}[ht]
\centering \centering
\includegraphics[width=\textwidth]{salvis-25k} \includegraphics[width=\textwidth]{salvis-25k}
\caption{Example rivers for visual tests (1:{\numprint{25000}}).} \caption{Example rivers for visual tests (1:{\numprint{25000}}).}
\label{fig:salvis-25} \label{fig:salvis-25}
\end{figure} \end{figure}
\begin{figure}[h] \begin{figure}[ht]
\centering \centering
\begin{subfigure}[b]{.49\textwidth} \begin{subfigure}[b]{.49\textwidth}
\includegraphics[width=\textwidth]{salvis-50k} \includegraphics[width=\textwidth]{salvis-50k}
@ -281,7 +281,7 @@ is touching itself, creating a thicker line. We can assume that some
simplification for scale 1:\numprint{50000} and especially for simplification for scale 1:\numprint{50000} and especially for
1:\numprint{250000} are worthwhile. 1:\numprint{250000} are worthwhile.
\begin{figure}[h] \begin{figure}[ht]
\centering \centering
\begin{subfigure}[b]{.49\textwidth} \begin{subfigure}[b]{.49\textwidth}
\includegraphics[width=\textwidth]{salvis-douglas-64-50k} \includegraphics[width=\textwidth]{salvis-douglas-64-50k}
@ -303,7 +303,7 @@ traditionally, Chaikin's\cite{chaikin1974algorithm} is applied after
generalization, illustrated in generalization, illustrated in
figure~\onpage{fig:salvis-generalized-chaikin-50k}. figure~\onpage{fig:salvis-generalized-chaikin-50k}.
\begin{figure}[h] \begin{figure}[ht]
\centering \centering
\begin{subfigure}[b]{.49\textwidth} \begin{subfigure}[b]{.49\textwidth}
\includegraphics[width=\textwidth]{salvis-douglas-64-chaikin-50k} \includegraphics[width=\textwidth]{salvis-douglas-64-chaikin-50k}
@ -318,7 +318,7 @@ figure~\onpage{fig:salvis-generalized-chaikin-50k}.
\label{fig:salvis-generalized-chaikin-50k} \label{fig:salvis-generalized-chaikin-50k}
\end{figure} \end{figure}
\begin{figure}[h] \begin{figure}[ht]
\centering \centering
\begin{subfigure}[b]{.49\textwidth} \begin{subfigure}[b]{.49\textwidth}
\includegraphics[width=\textwidth]{salvis-overlaid-douglas-64-chaikin-50k} \includegraphics[width=\textwidth]{salvis-overlaid-douglas-64-chaikin-50k}
@ -363,7 +363,7 @@ classical algorithms would remove these bends altogether. A cartographer would
retain a few of those distinctive bends, but would increase the distance retain a few of those distinctive bends, but would increase the distance
between the bends, remove some of the bends, or both. between the bends, remove some of the bends, or both.
\begin{figure}[h] \begin{figure}[ht]
\includegraphics[width=\textwidth]{amalgamate1} \includegraphics[width=\textwidth]{amalgamate1}
\caption{Narrow bends amalgamating into large unintelligible blobs.} \caption{Narrow bends amalgamating into large unintelligible blobs.}
\label{fig:pixel-amalgamation} \label{fig:pixel-amalgamation}
@ -449,7 +449,7 @@ Figure~\ref{fig:wang125} illustrates {\WM} algorithm from their original
paper. Note how the long bends retain curvy, and how some small bends got paper. Note how the long bends retain curvy, and how some small bends got
exaggerated. exaggerated.
\begin{figure}[h] \begin{figure}[ht]
\centering \centering
\includegraphics[width=.8\textwidth]{wang125} \includegraphics[width=.8\textwidth]{wang125}
@ -543,7 +543,7 @@ matches the resulting hand-calculated geometry.
The full set of test geometries is visualized in figure~\ref{fig:test-figures}. The full set of test geometries is visualized in figure~\ref{fig:test-figures}.
\begin{figure}[h] \begin{figure}[ht]
\centering \centering
\includegraphics[width=\textwidth]{test-figures} \includegraphics[width=\textwidth]{test-figures}
\caption{Geometries for automated test cases.} \caption{Geometries for automated test cases.}
@ -758,7 +758,7 @@ diameter of the bend. A semi-circle of 1.5mm diameter is depicted in
figure~\ref{fig:half-circle}. In other words, a bend of this size or larger, figure~\ref{fig:half-circle}. In other words, a bend of this size or larger,
when adjusted to scale, will not be simplified. when adjusted to scale, will not be simplified.
\begin{figure}[h] \begin{figure}[ht]
\centering \centering
\begin{tikzpicture}[x=1mm,y=1mm] \begin{tikzpicture}[x=1mm,y=1mm]
\draw[] (-10, 0) -- (-.75,0) arc (225:-45:.75) -- (10, 0); \draw[] (-10, 0) -- (-.75,0) arc (225:-45:.75) -- (10, 0);
@ -773,7 +773,7 @@ Assuming measurement units in projected coordinate system are meters (for
example, \titlecite{epsg3857}), values of some popular scales is highlighted in example, \titlecite{epsg3857}), values of some popular scales is highlighted in
table~\ref{table:scale-halfcirlce-diameter}. table~\ref{table:scale-halfcirlce-diameter}.
\begin{table}[h] \begin{table}[ht]
\centering \centering
\begin{tabular}{ c D{.}{.}{1} } \begin{tabular}{ c D{.}{.}{1} }
Scale & \multicolumn{1}{c}{$D(m)$} \\ \hline Scale & \multicolumn{1}{c}{$D(m)$} \\ \hline
@ -832,7 +832,7 @@ article.
Figure~\ref{fig:fig8-definition-of-a-bend} illustrates article's figure 8, Figure~\ref{fig:fig8-definition-of-a-bend} illustrates article's figure 8,
but with bends colored as polygons: each color is a distinctive bend. but with bends colored as polygons: each color is a distinctive bend.
\begin{figure}[h] \begin{figure}[ht]
\centering \centering
\includegraphics[width=\textwidth]{fig8-definition-of-a-bend} \includegraphics[width=\textwidth]{fig8-definition-of-a-bend}
\caption{Originally figure 8: detected bends are highlighted.} \caption{Originally figure 8: detected bends are highlighted.}
@ -851,7 +851,7 @@ The gist of the section is in the original article:
Figure~\ref{fig:fig5-gentle-inflection} visualizes original paper's figure 5, Figure~\ref{fig:fig5-gentle-inflection} visualizes original paper's figure 5,
when a single vertex is moved outwards the end of the bend. when a single vertex is moved outwards the end of the bend.
\begin{figure}[h] \begin{figure}[ht]
\centering \centering
\begin{subfigure}[b]{.49\textwidth} \begin{subfigure}[b]{.49\textwidth}
\includegraphics[width=\textwidth]{fig5-gentle-inflection-before} \includegraphics[width=\textwidth]{fig5-gentle-inflection-before}
@ -878,7 +878,7 @@ additional example was created, and illustrated in
figure~\ref{fig:inflection-1-gentle-inflection}: the rule re-assigns two figure~\ref{fig:inflection-1-gentle-inflection}: the rule re-assigns two
vertices to the next bend. vertices to the next bend.
\begin{figure}[h] \begin{figure}[ht]
\centering \centering
\begin{subfigure}[b]{.49\textwidth} \begin{subfigure}[b]{.49\textwidth}
\includegraphics[width=\textwidth]{inflection-1-gentle-inflection-before} \includegraphics[width=\textwidth]{inflection-1-gentle-inflection-before}
@ -923,7 +923,7 @@ should be removed. There are a few rules on when and how they should be removed
complexity and applied optimizations. Figure~\ref{fig:fig6-selfcrossing} is complexity and applied optimizations. Figure~\ref{fig:fig6-selfcrossing} is
copied from the original article. copied from the original article.
\begin{figure}[h] \begin{figure}[ht]
\centering \centering
\begin{subfigure}[b]{.49\textwidth} \begin{subfigure}[b]{.49\textwidth}
\includegraphics[width=\textwidth]{fig6-selfcrossing-before} \includegraphics[width=\textwidth]{fig6-selfcrossing-before}
@ -938,7 +938,7 @@ copied from the original article.
\label{fig:fig6-selfcrossing} \label{fig:fig6-selfcrossing}
\end{figure} \end{figure}
\begin{figure}[h] \begin{figure}[ht]
\centering \centering
\begin{subfigure}[b]{.49\textwidth} \begin{subfigure}[b]{.49\textwidth}
\includegraphics[width=\textwidth]{selfcrossing-1-before} \includegraphics[width=\textwidth]{selfcrossing-1-before}