\set ON_ERROR_STOP on SET plpgsql.extra_errors TO 'all'; -- wm_detect_bends detects bends using the inflection angles. No corrections. drop function if exists wm_detect_bends; create function wm_detect_bends( line geometry, dbgname text default null, dbggen integer default null, OUT bends geometry[] ) as $$ declare p geometry; p1 geometry; p2 geometry; p3 geometry; bend geometry; prev_sign int4; cur_sign int4; l_type text; dbgpolygon geometry; begin l_type = st_geometrytype(line); if l_type != 'ST_LineString' then raise 'This function works with ST_LineString, got %', l_type; end if; -- The last vertex is iterated over twice, because the algorithm uses 3 -- vertices to calculate the angle between them. -- -- Given 3 vertices p1, p2, p3: -- -- p1___ ... -- / -- ... _____/ -- p3 p2 -- -- When looping over the line, p1 will be head (lead) vertex, p2 will be the -- measured angle, and p3 will be trailing. The line that will be added to -- the bend will always be [p3,p2]. -- So once the p1 becomes the last vertex, the loop terminates, and the -- [p2,p1] line will not have a chance to be added. So the loop adds the last -- vertex twice, so it has a chance to become p2, and be added to the bend. for p in (select geom from st_dumppoints(line) order by path[1] asc) union all (select geom from st_dumppoints(line) order by path[1] desc limit 1) loop p3 = p2; p2 = p1; p1 = p; continue when p3 is null; cur_sign = sign(pi() - st_angle(p1, p2, p2, p3)); if bend is null then bend = st_makeline(p3, p2); else bend = st_linemerge(st_union(bend, st_makeline(p3, p2))); end if; if prev_sign + cur_sign = 0 then if bend is not null then bends = bends || bend; end if; bend = st_makeline(p3, p2); end if; prev_sign = cur_sign; end loop; -- the last line may be lost if there is no "final" inflection angle. Add it. if (select count(1) >= 2 from st_dumppoints(bend)) then bends = bends || bend; end if; if dbgname is not null then for i in 1..array_length(bends, 1) loop insert into wm_debug(stage, name, gen, nbend, way) values( 'bbends', dbgname, dbggen, i, bends[i]); dbgpolygon = null; if st_npoints(bends[i]) >= 3 then dbgpolygon = st_makepolygon( st_addpoint(bends[i], st_startpoint(bends[i])) ); end if; insert into wm_debug(stage, name, gen, nbend, way) values( 'bbends-polygon', dbgname, dbggen, i, dbgpolygon); end loop; end if; end $$ language plpgsql; -- wm_fix_gentle_inflections moves bend endpoints following "Gentle Inflection -- at End of a Bend" section. -- -- The text does not specify how many vertices can be "adjusted"; it can -- equally be one or many. This function is adjusting many, as long as the -- cumulative inflection angle is small (see variable below). -- -- The implementation could be significantly optimized to avoid `st_reverse` -- and array reversals, trading for complexity in wm_fix_gentle_inflections1. drop function if exists wm_fix_gentle_inflections; create function wm_fix_gentle_inflections( INOUT bends geometry[], dbgname text default null, dbggen integer default null ) as $$ declare len int4; bends1 geometry[]; dbgpolygon geometry; begin len = array_length(bends, 1); bends = wm_fix_gentle_inflections1(bends); for i in 1..len loop bends1[i] = st_reverse(bends[len-i+1]); end loop; bends1 = wm_fix_gentle_inflections1(bends1); for i in 1..len loop bends[i] = st_reverse(bends1[len-i+1]); end loop; if dbgname is not null then for i in 1..array_length(bends, 1) loop insert into wm_debug(stage, name, gen, nbend, way) values( 'cinflections', dbgname, dbggen, i, bends[i]); dbgpolygon = null; if st_npoints(bends[i]) >= 3 then dbgpolygon = st_makepolygon( st_addpoint(bends[i], st_startpoint(bends[i])) ); end if; insert into wm_debug(stage, name, gen, nbend, way) values( 'cinflections-polygon', dbgname, dbggen, i, dbgpolygon); end loop; end if; end $$ language plpgsql; -- wm_fix_gentle_inflections1 fixes gentle inflections of an array of lines in -- one direction. An implementation detail of wm_fix_gentle_inflections. drop function if exists wm_fix_gentle_inflections1; create function wm_fix_gentle_inflections1(INOUT bends geometry[]) as $$ declare -- the threshold when the angle is still "small", so gentle inflections can -- be joined small_angle constant real default radians(45); ptail geometry; -- tail point of tail bend phead geometry[]; -- 3 tail points of head bend i int4; -- bends[i] is the current head begin for i in 2..array_length(bends, 1) loop -- Predicate: two bends will always share an edge. Assuming (A,B,C,D,E,F) -- is a bend: -- C________D -- / \ -- \________/ \_______/ -- A B E F -- -- Then edges (A,B) and (E,F) are shared with the neighboring bends. -- -- -- Assume this curve (figure `inflection-1`), going clockwise from A: -- -- \______B -- A `-------. C -- | -- G___ F | -- / `-----.____+ D -- E -- -- After processing the curve following the definition of a bend, the bend -- [A-E] would be detected. Assuming inflection point E and F are "small", -- the bend needs to be extended by two edges to [A,G]. select geom from st_dumppoints(bends[i-1]) order by path[1] asc limit 1 into ptail; while true loop -- copy last 3 points of bends[i-1] (tail) to ptail select array( select geom from st_dumppoints(bends[i]) order by path[1] asc limit 3 ) into phead; -- if the bend got too short, stop processing it exit when array_length(phead, 1) < 3; -- inflection angle between ptail[1:3] is "large", stop processing exit when abs(st_angle(phead[1], phead[2], phead[3]) - pi()) > small_angle; -- distance from head's 1st vertex should be larger than from 2nd vertex exit when st_distance(ptail, phead[2]) < st_distance(ptail, phead[3]); -- Between two bends, bend with smaller baseline wins when two -- neighboring bends can have gentle inflections. This is a heuristic -- that can be safely removed, but in practice has shown to avoid -- creating some very bendy lines. exit when st_distance(st_pointn(bends[i], 1), st_pointn(bends[i], -1)) < st_distance(st_pointn(bends[i-1], 1), st_pointn(bends[i-1], -1)); -- Detected a gentle inflection. -- Move head of the tail to the tail of head bends[i] = st_removepoint(bends[i], 0); bends[i-1] = st_addpoint(bends[i-1], phead[3]); end loop; end loop; end $$ language plpgsql; -- wm_if_selfcross returns whether baseline of bendi crosses bendj. -- If it doesn't, returns a null geometry. -- Otherwise, it will return the baseline split into a few parts where it -- crosses bendj. drop function if exists wm_if_selfcross; create function wm_if_selfcross( bendi geometry, bendj geometry ) returns geometry as $$ declare a geometry; b geometry; multi geometry; begin a = st_pointn(bendi, 1); b = st_pointn(bendi, -1); multi = st_split(bendj, st_makeline(a, b)); if st_numgeometries(multi) = 1 then return null; end if; if st_numgeometries(multi) = 2 and (st_contains(bendj, a) or st_contains(bendj, b)) then return null; end if; return multi; end $$ language plpgsql; -- wm_self_crossing eliminates self-crossing from the bends, following the -- article's section "Self-line Crossing When Cutting a Bend". drop function if exists wm_self_crossing; create function wm_self_crossing( INOUT bends geometry[], dbgname text default null, dbggen integer default null, OUT mutated boolean ) as $$ declare i int4; j int4; multi geometry; begin mutated = false; <> for i in 1..array_length(bends, 1) loop continue when abs(wm_inflection_angle(bends[i])) <= pi(); -- sum of inflection angles for this bend is >180, so it may be -- self-crossing. Now try to find another bend in this line that -- crosses an imaginary line of end-vertices -- Go through each bend in the given line, and see if has a potential to -- cross bends[i]. The line-cut process is different when ij; -- therefore there are two loops, one for each case. for j in 1..i-1 loop multi = wm_if_selfcross(bends[i], bends[j]); continue when multi is null; mutated = true; -- remove first vertex of the following bend, because the last -- segment is always duplicated with the i'th bend. bends[i+1] = st_removepoint(bends[i+1], 0); bends[j] = st_geometryn(multi, 1); bends[j] = st_setpoint( bends[j], st_npoints(bends[j])-1, st_pointn(bends[i], st_npoints(bends[i])) ); bends = bends[1:j] || bends[i+1:]; continue bendloop; end loop; for j in reverse array_length(bends, 1)..i+1 loop multi = wm_if_selfcross(bends[i], bends[j]); continue when multi is null; mutated = true; -- remove last vertex of the previous bend, because the last -- segment is duplicated with the i'th bend. bends[i-1] = st_removepoint(bends[i-1], st_npoints(bends[i-1])-1); bends[i] = st_makeline( st_pointn(bends[i], 1), st_removepoint(st_geometryn(multi, st_numgeometries(multi)), 0) ); bends = bends[1:i] || bends[j+1:]; continue bendloop; end loop; end loop; if dbgname is not null then insert into wm_debug(stage, name, gen, nbend, way) values( 'dcrossings', dbgname, dbggen, generate_subscripts(bends, 1), unnest(bends) ); end if; end $$ language plpgsql; drop function if exists wm_inflection_angle; create function wm_inflection_angle (IN bend geometry, OUT angle real) as $$ declare p0 geometry; p1 geometry; p2 geometry; p3 geometry; begin angle = 0; for p0 in select geom from st_dumppoints(bend) order by path[1] asc loop p3 = p2; p2 = p1; p1 = p0; continue when p3 is null; angle = angle + abs(pi() - st_angle(p1, p2, p3)); end loop; end $$ language plpgsql; drop function if exists wm_bend_attrs; drop function if exists wm_elimination; drop function if exists wm_exaggeration; drop type if exists wm_t_attrs; create type wm_t_attrs as ( adjsize real, baselinelength real, curvature real, isolated boolean ); create function wm_bend_attrs( bends geometry[], dbgname text default null, dbggen integer default null ) returns wm_t_attrs[] as $$ declare isolation_threshold constant real default 0.5; attrs wm_t_attrs[]; attr wm_t_attrs; bend geometry; i int4; needs_curvature real; skip_next boolean; dbglastid integer; begin for i in 1..array_length(bends, 1) loop bend = bends[i]; attr.adjsize = 0; attr.baselinelength = st_distance(st_startpoint(bend), st_endpoint(bend)); attr.curvature = wm_inflection_angle(bend) / st_length(bend); attr.isolated = false; if st_numpoints(bend) >= 3 then attr.adjsize = wm_adjsize(bend); end if; attrs[i] = attr; end loop; for i in 1..array_length(attrs, 1) loop if dbgname is not null then insert into wm_debug (stage, name, gen, nbend, way, props) values( 'ebendattrs', dbgname, dbggen, i, bends[i], jsonb_build_object( 'adjsize', attrs[i].adjsize, 'baselinelength', attrs[i].baselinelength, 'curvature', attrs[i].curvature, 'isolated', false ) ) returning id into dbglastid; end if; -- first and last bends can never be isolated by definition if skip_next or i = 1 or i = array_length(attrs, 1) then -- invariant: two bends that touch cannot be isolated. if st_npoints(bends[i]) > 3 then skip_next = false; end if; continue; end if; needs_curvature = attrs[i].curvature * isolation_threshold; if attrs[i-1].curvature < needs_curvature and attrs[i+1].curvature < needs_curvature then attr = attrs[i]; attr.isolated = true; attrs[i] = attr; skip_next = true; if dbgname is not null then update wm_debug set props=props || jsonb_build_object('isolated', true) where id=dbglastid; end if; end if; end loop; return attrs; end $$ language plpgsql; -- sm_st_split a line by a point in a more robust way than st_split. -- See https://trac.osgeo.org/postgis/ticket/2192 drop function if exists wm_st_split; create function wm_st_split( input geometry, blade geometry ) returns geometry as $$ declare type1 text; type2 text; begin type1 = st_geometrytype(input); type2 = st_geometrytype(blade); if not (type1 = 'ST_LineString' and type2 = 'ST_Point') then raise 'Arguments must be LineString and Point, got: % and %', type1, type2; end if; return st_split(st_snap(input, blade, 0.00000001), blade); end $$ language plpgsql; -- wm_exaggerate_bend2 is the second version of bend exaggeration. Uses -- non-linear interpolation by point azimuth. Slower, but produces nicer -- exaggerated geometries. drop function if exists wm_exaggerate_bend2; create function wm_exaggerate_bend2( INOUT bend geometry, size float, desired_size float ) as $$ declare scale2 constant float default 1.2; -- exaggeration enthusiasm midpoint geometry; -- midpoint of the baseline points geometry[]; startazimuth float; azimuth float; diffazimuth float; point geometry; sss float; protect int = 10; begin if size = 0 then raise 'invalid input: zero-area bend'; end if; midpoint = st_lineinterpolatepoint(st_makeline( st_pointn(bend, 1), st_pointn(bend, -1) ), .5); startazimuth = st_azimuth(midpoint, st_pointn(bend, 1)); while (size < desired_size) and (protect > 0) loop protect = protect - 1; for i in 2..st_npoints(bend)-1 loop point = st_pointn(bend, i); azimuth = st_azimuth(midpoint, point); diffazimuth = degrees(azimuth - startazimuth); if diffazimuth > 180 then diffazimuth = diffazimuth - 360; elseif diffazimuth < -180 then diffazimuth = diffazimuth + 360; end if; diffazimuth = abs(diffazimuth); if diffazimuth > 90 then diffazimuth = 180 - diffazimuth; end if; sss = ((scale2-1) * (diffazimuth / 90)^0.5); point = st_transform( st_project( st_transform(point, 4326)::geography, st_distance(midpoint, point) * sss, azimuth)::geometry, st_srid(midpoint) ); bend = st_setpoint(bend, i-1, point); end loop; size = wm_adjsize(bend); end loop; end $$ language plpgsql; -- wm_exaggerate_bend exaggerates a given bend. Uses naive linear -- interpolation. Faster than wm_exaggerate_bend2, but result visually looks -- worse. drop function if exists wm_exaggerate_bend; create function wm_exaggerate_bend( INOUT bend geometry, size float, desired_size float ) as $$ declare scale constant float default 1.2; -- exaggeration enthusiasm midpoint geometry; -- midpoint of the baseline splitbend geometry; -- bend split across its half bendm geometry; -- bend with coefficients to prolong the lines points geometry[]; begin if size = 0 then raise 'invalid input: zero-area bend'; end if; midpoint = st_lineinterpolatepoint(st_makeline( st_pointn(bend, 1), st_pointn(bend, -1) ), .5); while size < desired_size loop splitbend = wm_st_split(bend, st_lineinterpolatepoint(bend, .5)); -- Convert bend to LINESTRINGM, where M is the fraction by how -- much the point will be prolonged: -- 1. draw a line between midpoint and the point on the bend. -- 2. multiply the line length by M. Midpoint stays intact. -- 3. the new set of lines form a new bend. -- Uses linear interpolation; can be updated to gaussian or similar; -- then interpolate manually instead of relying on st_addmeasure. bendm = st_collect( st_addmeasure(st_geometryn(splitbend, 1), 1, scale), st_addmeasure(st_geometryn(splitbend, 2), scale, 1) ); points = array(( select st_scale( st_makepoint(st_x(geom), st_y(geom)), st_makepoint(st_m(geom), st_m(geom)), midpoint ) from st_dumppoints(bendm) order by path[1], path[2] )); bend = st_setsrid(st_makeline(points), st_srid(bend)); size = wm_adjsize(bend); end loop; end $$ language plpgsql; -- wm_adjsize calculates adjusted size for a polygon. Can return 0. drop function if exists wm_adjsize; create function wm_adjsize(bend geometry, OUT adjsize float) as $$ declare polygon geometry; area float; cmp float; begin adjsize = 0; polygon = st_makepolygon(st_addpoint(bend, st_startpoint(bend))); -- Compactness Index (cmp) is defined as "the ratio of the area of the -- polygon over the circle whose circumference length is the same as the -- length of the circumference of the polygon". I assume they meant the -- area of the circle. So here goes: -- 1. get polygon area P. -- 2. get polygon perimeter = u. Pretend it's our circle's circumference. -- 3. get A (area) of the circle from u: A = u^2/(4pi) -- 4. divide P by A: cmp = P/A = P/(u^2/(4pi)) = 4pi*P/u^2 area = st_area(polygon); cmp = 4*pi()*area/(st_perimeter(polygon)^2); if cmp > 0 then adjsize = (area*(0.75/cmp)); end if; end $$ language plpgsql; -- wm_exaggeration is the Exaggeration Operator described in the WM paper. create function wm_exaggeration( INOUT bends geometry[], attrs wm_t_attrs[], dhalfcircle float, intersect_patience integer, dbgname text default null, dbggen integer default null, OUT mutated boolean ) as $$ declare desired_size constant float default pi()*(dhalfcircle^2)/8; bend geometry; tmpint geometry; i integer; n integer; last_id integer; begin mutated = false; <> for i in 1..array_length(attrs, 1) loop if attrs[i].isolated and attrs[i].adjsize < desired_size then bend = wm_exaggerate_bend2(bends[i], attrs[i].adjsize, desired_size); -- Does bend intersect with the previous or next -- intersect_patience bends? If they do, abort exaggeration for this one. -- Do close-by bends intersect with this one? Special -- handling first, because 2 vertices need to be removed before checking. n = st_npoints(bends[i-1]); if n > 3 then continue when st_intersects(bend, st_removepoint(st_removepoint(bends[i-1], n-1), n-2)); end if; if n > 2 then tmpint = st_intersection(bend, st_removepoint(bends[i-1], n-1)); continue when st_npoints(tmpint) > 1; end if; n = st_npoints(bends[i+1]); if n > 3 then continue when st_intersects(bend, st_removepoint(st_removepoint(bends[i+1], 0), 0)); end if; if n > 2 then tmpint = st_intersection(bend, st_removepoint(bends[i+1], 0)); continue when st_npoints(tmpint) > 1; end if; for n in -intersect_patience+1..intersect_patience-1 loop continue when n in (-1, 0, 1); continue when i+n < 1; continue when i+n > array_length(attrs, 1); -- More special handling: if the neigbhoring bend has 3 vertices, the -- neighbor's neighbor may just touch the tmpbendattr.bend; in this -- case, the nearest vertex should be removed before comparing. tmpint = bends[i+n]; if st_npoints(tmpint) > 2 then if n = -2 and st_npoints(bends[i+n+1]) = 3 then tmpint = st_removepoint(tmpint, st_npoints(tmpint)-1); elsif n = 2 and st_npoints(bends[i+n-1]) = 3 then tmpint = st_removepoint(tmpint, 0); end if; end if; continue bendloop when st_intersects(bend, tmpint); end loop; -- No intersections within intersect_patience, mutate bend! mutated = true; bends[i] = bend; -- remove last vertex of the previous bend and first vertex of the next -- bend, because bends always share a line segment together this is -- duplicated in a few places, because PostGIS does not allow (?) -- mutating an array when passed to a function. bends[i-1] = st_addpoint( st_removepoint(bends[i-1], st_npoints(bends[i-1])-1), st_pointn(bends[i], 1), -1 ); bends[i+1] = st_addpoint( st_removepoint(bends[i+1], 0), st_pointn(bends[i], st_npoints(bends[i])-1), 0 ); if dbgname is not null then insert into wm_debug (stage, name, gen, nbend, way) values( 'gexaggeration', dbgname, dbggen, i, bends[i]); end if; end if; end loop; end $$ language plpgsql; create function wm_elimination( INOUT bends geometry[], attrs wm_t_attrs[], dhalfcircle float, dbgname text default null, dbggen integer default null, OUT mutated boolean ) as $$ declare desired_size constant float default pi()*(dhalfcircle^2)/8; leftsize float; rightsize float; i int4; begin mutated = false; i = 1; while i < array_length(attrs, 1)-1 loop i = i + 1; continue when attrs[i].adjsize = 0; continue when attrs[i].adjsize > desired_size; if i = 2 then leftsize = attrs[i].adjsize + 1; else leftsize = attrs[i-1].adjsize; end if; if i = array_length(attrs, 1)-1 then rightsize = attrs[i].adjsize + 1; else rightsize = attrs[i+1].adjsize; end if; continue when attrs[i].adjsize >= leftsize; continue when attrs[i].adjsize >= rightsize; -- Local minimum. Elminate bend! mutated = true; bends[i] = st_makeline(st_pointn(bends[i], 1), st_pointn(bends[i], -1)); -- remove last vertex of the previous bend and -- first vertex of the next bend, because bends always -- share a line segment together bends[i-1] = st_addpoint( st_removepoint(bends[i-1], st_npoints(bends[i-1])-1), st_pointn(bends[i], 1), -1 ); bends[i+1] = st_addpoint( st_removepoint(bends[i+1], 0), st_pointn(bends[i], st_npoints(bends[i])-1), 0 ); -- the next bend's adjsize is now messed up; it should not be taken -- into consideration for other local minimas. Skip over 2. i = i + 2; end loop; if dbgname is not null then insert into wm_debug(stage, name, gen, nbend, way) values( 'helimination', dbgname, dbggen, generate_subscripts(bends, 1), unnest(bends) ); end if; end $$ language plpgsql; drop function if exists ST_SimplifyWM_Estimate; create function ST_SimplifyWM_Estimate( geom geometry, OUT npoints bigint, OUT secs bigint ) as $$ declare lines geometry[]; l_type text; begin l_type = st_geometrytype(geom); if l_type = 'ST_LineString' then lines = array[geom]; elseif l_type = 'ST_MultiLineString' then lines = array((select a.geom from st_dump(geom) a order by path[1] asc)); else raise 'Unknown geometry type %', l_type; end if; npoints = 0; for i in 1..array_length(lines, 1) loop npoints = npoints + st_numpoints(lines[i]); end loop; secs = npoints / 33; end $$ language plpgsql; -- ST_SimplifyWM simplifies a given geometry using Wang & Müller's -- "Line Generalization Based on Analysis of Shape Characteristics" algorithm, -- 1998. -- Input parameters: -- - geom: ST_LineString or ST_MultiLineString: the geometry to be simplified -- - dhalfcircle: the diameter of a half-circle, whose area is an approximate -- threshold for small bend elimination. If bend's area is larger than that, -- the bend will be left alone. drop function if exists ST_SimplifyWM; create function ST_SimplifyWM( geom geometry, dhalfcircle float, intersect_patience integer default 50, dbgname text default null ) returns geometry as $$ declare gen integer; i integer; j integer; line geometry; lines geometry[]; bends geometry[]; attrs wm_t_attrs[]; mutated boolean; l_type text; begin if intersect_patience is null then intersect_patience = 50; end if; l_type = st_geometrytype(geom); if l_type = 'ST_LineString' then lines = array[geom]; elseif l_type = 'ST_MultiLineString' then lines = array((select a.geom from st_dump(geom) a order by path[1] asc)); else raise 'Unknown geometry type %', l_type; end if; <> for i in 1..array_length(lines, 1) loop mutated = true; gen = 1; while mutated loop if dbgname is not null then insert into wm_debug (stage, name, gen, nbend, way) values( 'afigures', dbgname, gen, i, lines[i]); end if; bends = wm_detect_bends(lines[i], dbgname, gen); bends = wm_fix_gentle_inflections(bends, dbgname, gen); select * from wm_self_crossing(bends, dbgname, gen) into bends, mutated; if not mutated then attrs = wm_bend_attrs(bends, dbgname, gen); select * from wm_exaggeration(bends, attrs, dhalfcircle, intersect_patience, dbgname, gen) into bends, mutated; end if; -- TODO: wm_combination if not mutated then select * from wm_elimination(bends, attrs, dhalfcircle, dbgname, gen) into bends, mutated; end if; if mutated then lines[i] = st_linemerge(st_union(bends)); if st_geometrytype(lines[i]) != 'ST_LineString' then -- For manual debugging: --insert into wm_manual(name, way) --select 'non-linestring-' || a.path[1], a.geom --from st_dump(lines[i]) a --order by a.path[1]; raise '[%] Got % (in %) instead of ST_LineString. ' 'Does the exaggerated bend intersect with the line? ' 'If so, try increasing intersect_patience.', gen, st_geometrytype(lines[i]), dbgname; --exit lineloop; end if; gen = gen + 1; continue; end if; end loop; end loop; if l_type = 'ST_LineString' then return st_linemerge(st_union(lines)); elseif l_type = 'ST_MultiLineString' then return st_union(lines); end if; end $$ language plpgsql;