\set ON_ERROR_STOP on SET plpgsql.extra_errors TO 'all'; -- detect_bends detects bends using the inflection angles. No corrections. drop function if exists detect_bends; create function detect_bends( line geometry, dbgname text default null, dbgstagenum integer default null, OUT bends geometry[] ) as $$ declare pi constant real default radians(180); p geometry; p1 geometry; p2 geometry; p3 geometry; bend geometry; prev_sign int4; cur_sign int4; l_type text; begin l_type = st_geometrytype(line); if l_type != 'ST_LineString' then raise 'This function works with ST_LineString, got %', l_type; end if; -- The last vertex is iterated over twice, because the algorithm uses 3 -- vertices to calculate the angle between them. -- -- Given 3 vertices p1, p2, p3: -- -- p1___ ... -- / -- ... _____/ -- p3 p2 -- -- When looping over the line, p1 will be head (lead) vertex, p2 will be the -- measured angle, and p3 will be trailing. The line that will be added to -- the bend will always be [p3,p2]. -- So once the p1 becomes the last vertex, the loop terminates, and the -- [p2,p1] line will not have a chance to be added. So the loop adds the last -- vertex twice, so it has a chance to become p2, and be added to the bend. for p in (select geom from st_dumppoints(line) order by path[1] asc) union all (select geom from st_dumppoints(line) order by path[1] desc limit 1) loop p3 = p2; p2 = p1; p1 = p; continue when p3 is null; cur_sign = sign(pi - st_angle(p1, p2, p2, p3)); if bend is null then bend = st_makeline(p3, p2); else bend = st_linemerge(st_union(bend, st_makeline(p3, p2))); end if; if prev_sign + cur_sign = 0 then if bend is not null then bends = bends || bend; end if; bend = st_makeline(p3, p2); end if; prev_sign = cur_sign; end loop; -- the last line may be lost if there is no "final" inflection angle. Add it. if (select count(1) >= 2 from st_dumppoints(bend)) then bends = bends || bend; end if; if dbgname is not null then for i in 1..array_length(bends, 1) loop insert into wm_debug(stage, name, gen, nbend, way) values( 'bbends', dbgname, dbgstagenum, i, bends[i] ); insert into wm_debug(stage, name, gen, nbend, way) values( 'bbends-polygon', dbgname, dbgstagenum, i, st_makepolygon(st_addpoint(bends[i], st_startpoint(bends[i]))) ); end loop; end if; end $$ language plpgsql; -- fix_gentle_inflections moves bend endpoints following "Gentle Inflection at -- End of a Bend" section. -- -- The text does not specify how many vertices can be "adjusted"; it can -- equally be one or many. This function is adjusting many, as long as the -- cumulative inflection angle small (see variable below). -- -- The implementation could be significantly optimized to avoid `st_reverse` -- and array reversals, trading for complexity in fix_gentle_inflections1. create or replace function fix_gentle_inflections( INOUT bends geometry[], dbgname text default null, dbgstagenum integer default null ) as $$ declare len int4; bends1 geometry[]; begin len = array_length(bends, 1); bends = fix_gentle_inflections1(bends); for i in 1..len loop bends1[i] = st_reverse(bends[len-i+1]); end loop; bends1 = fix_gentle_inflections1(bends1); for i in 1..len loop bends[i] = st_reverse(bends1[len-i+1]); end loop; if dbgname is not null then for i in 1..array_length(bends, 1) loop insert into wm_debug(stage, name, gen, nbend, way) values( 'cinflections', dbgname, dbgstagenum, i, bends[i] ); insert into wm_debug(stage, name, gen, nbend, way) values( 'cinflections-polygon', dbgname, dbgstagenum, i, st_makepolygon(st_addpoint(bends[i], st_startpoint(bends[i]))) ); end loop; end if; end $$ language plpgsql; -- fix_gentle_inflections1 fixes gentle inflections of an array of lines in -- one direction. This is an implementation detail of fix_gentle_inflections. drop function if exists fix_gentle_inflections1; create function fix_gentle_inflections1(INOUT bends geometry[]) as $$ declare pi constant real default radians(180); -- the threshold when the angle is still "small", so gentle inflections can -- be joined small_angle constant real default radians(45); ptail geometry; -- tail point of tail bend phead geometry[]; -- 3 tail points of head bend i int4; -- bends[i] is the current head begin for i in 2..array_length(bends, 1) loop -- Predicate: two bends will always share an edge. Assuming (A,B,C,D,E,F) -- is a bend: -- C________D -- / \ -- \________/ \_______/ -- A B E F -- -- Then edges (A,B) and (E,F) are shared with the neighboring bends. -- -- -- Assume this curve (figure `inflection-1`), going clockwise from A: -- -- \______B -- A `-------. C -- | -- G___ F | -- / `-----.____+ D -- E -- -- After processing the curve following the definition of a bend, the bend -- [A-E] would be detected. Assuming inflection point E and F are "small", -- the bend needs to be extended by two edges to [A,G]. select geom from st_dumppoints(bends[i-1]) order by path[1] asc limit 1 into ptail; while true loop -- copy last 3 points of bends[i-1] (tail) to ptail select array( select geom from st_dumppoints(bends[i]) order by path[1] asc limit 3 ) into phead; -- if the bend got too short, stop processing it exit when array_length(phead, 1) < 3; -- inflection angle between ptail[1:3] is "large", stop processing exit when abs(st_angle(phead[1], phead[2], phead[3]) - pi) > small_angle; -- distance from head's 1st vertex should be larger than from 2nd vertex exit when st_distance(ptail, phead[2]) < st_distance(ptail, phead[3]); -- Detected a gentle inflection. -- Move head of the tail to the tail of head bends[i] = st_removepoint(bends[i], 0); bends[i-1] = st_addpoint(bends[i-1], phead[3]); end loop; end loop; end $$ language plpgsql; -- self_crossing eliminates self-crossing from the bends, following the -- article's section "Self-line Crossing When Cutting a Bend". drop function if exists self_crossing; create function self_crossing( INOUT bends geometry[], OUT mutated boolean ) as $$ declare pi constant real default radians(180); i int4; j int4; prev_length int4; a geometry; b geometry; multi geometry; begin mutated = false; -- go through the bends and find one where sum of inflection angle is >180 for i in 1..array_length(bends, 1) loop continue when abs(inflection_angle(bends[i])) <= pi; -- sum of inflection angles for this bend is >180, so it may be -- self-crossing. now try to find another bend in this line that -- crosses an imaginary line of end-vertices -- go through each bend in the given line, and see if has a potential to -- cross bends[i]. j = 0; while j < array_length(bends, 1) loop j = j + 1; continue when i = j; -- do end vertices of bend[i] cross bend[j]? a = st_pointn(bends[i], 1); b = st_pointn(bends[i], -1); multi = st_split(bends[j], st_makeline(a, b)); continue when st_numgeometries(multi) = 1; continue when st_numgeometries(multi) = 2 and (st_contains(bends[j], a) or st_contains(bends[j], b)); -- vertices, segments and stars are aligned, we are changing the bend mutated = true; -- To understand the block below, I suggest you take a pencil and paper, -- draw a self-crossing bend (fig6 from the article works well), and -- figure out what happens here, by hand. I know it's hard to follow. -- Apologies. prev_length = array_length(bends, 1); if j < i then -- remove first vertex of the following bend, because the last -- segment is always duplicated with the i'th bend. bends[i+1] = st_removepoint(bends[i+1], 0); bends[j] = st_geometryn(multi, 1); bends[j] = st_setpoint( bends[j], st_npoints(bends[j])-1, st_pointn(bends[i], st_npoints(bends[i])) ); bends = bends[1:j] || bends[i+1:prev_length]; j = i; else -- remove last vertex of the previous bend, because the last -- segment is duplicated with the i'th bend. bends[i-1] = st_removepoint(bends[i-1], st_npoints(bends[i-1])-1); bends[i] = st_makeline( st_pointn(bends[i], 1), st_removepoint(st_geometryn(multi, st_numgeometries(multi)), 0) ); bends = bends[1:i] || bends[j+1:prev_length]; end if; j = j - prev_length + array_length(bends, 1); end loop; end loop; end $$ language plpgsql; drop function if exists inflection_angle; create function inflection_angle (IN bend geometry, OUT angle real) as $$ declare pi constant real default radians(180); p0 geometry; p1 geometry; p2 geometry; p3 geometry; begin angle = 0; for p0 in select geom from st_dumppoints(bend) order by path[1] asc loop p3 = p2; p2 = p1; p1 = p0; continue when p3 is null; angle = angle + abs(pi - st_angle(p1, p2, p3)); end loop; end $$ language plpgsql; drop function if exists bend_attrs; drop function if exists isolated_bends; drop type if exists t_bend_attrs; create type t_bend_attrs as ( bend geometry, area real, cmp real, adjsize real, baselinelength real, curvature real, isolated boolean ); create function bend_attrs( bends geometry[], dbgname text default null ) returns setof t_bend_attrs as $$ declare fourpi constant real default 4*radians(180); i int4; polygon geometry; bend geometry; res t_bend_attrs; begin for i in 1..array_length(bends, 1) loop bend = bends[i]; res = null; res.bend = bend; res.area = 0; res.cmp = 0; res.adjsize = 0; res.baselinelength = st_distance(st_startpoint(bend), st_endpoint(bend)); res.curvature = inflection_angle(bend) / st_length(bend); res.isolated = false; if st_numpoints(bend) >= 3 then polygon = st_makepolygon(st_addpoint(bend, st_startpoint(bend))); -- Compactness Index (cmp) is defined as "the ratio of the area of the -- polygon over the circle whose circumference length is the same as the -- length of the circumference of the polygon". I assume they meant the -- area of the circle. So here goes: -- 1. get polygon area P. -- 2. get polygon perimeter = u. Pretend it's our circle's circumference. -- 3. get A (area) of the circle from u: A = (u^2)/(4*pi) -- 4. divide P by A: cmp = P/A = P/((u^2)*4*pi) = 4*pi*P/u^2 res.area = st_area(polygon); res.cmp = fourpi*res.area/(st_perimeter(polygon)^2); if res.cmp > 0 then res.adjsize = (res.area*(0.75/res.cmp)); end if; end if; if dbgname is not null then insert into wm_debug (stage, name, nbend, way, props) values( 'ebendattrs', dbgname, i, bend, jsonb_build_object( 'area', res.area, 'cmp', res.cmp, 'adjsize', res.adjsize, 'baselinelength', res.baselinelength, 'curvature', res.curvature ) ); end if; return next res; end loop; end; $$ language plpgsql; create function isolated_bends( INOUT bendattrs t_bend_attrs[], dbgname text default null ) as $$ declare -- if neighbor's curvatures are within, it's isolated isolation_threshold constant real default 0.25; this real; skip_next bool; res t_bend_attrs; i int4; begin for i in 2..array_length(bendattrs, 1)-1 loop res = bendattrs[i]; if skip_next then skip_next = false; else this = bendattrs[i].curvature * isolation_threshold; if bendattrs[i-1].curvature < this and bendattrs[i+1].curvature < this then res.isolated = true; bendattrs[i] = res; skip_next = true; end if; end if; if dbgname is not null then insert into wm_debug (stage, name, nbend, way, props) values( 'fisolated_bends', dbgname, i, res.bend, jsonb_build_object( 'isolated', res.isolated ) ); end if; end loop; end $$ language plpgsql; -- ST_SimplifyWM simplifies a given geometry using Wang & Müller's -- "Line Generalization Based on Analysis of Shape Characteristics" algorithm, -- 1998. drop function if exists ST_SimplifyWM; create function ST_SimplifyWM( geom geometry, dbgname text default null ) returns geometry as $$ declare stagenum integer; i integer; line geometry; lines geometry[]; bends geometry[]; bend_attrs t_bend_attrs[]; mutated boolean; l_type text; begin l_type = st_geometrytype(geom); if l_type = 'ST_LineString' then lines = array[geom]; elseif l_type = 'ST_MultiLineString' then lines = array((select a.geom from st_dump(geom) a order by path[1] asc)); else raise 'Unknown geometry type %', l_type; end if; for i in 1..array_length(lines, 1) loop mutated = true; stagenum = 1; while mutated loop if dbgname is not null then insert into wm_debug (stage, name, gen, nbend, way) values( 'afigures', dbgname, stagenum, i, lines[i] ); end if; bends = detect_bends(lines[i], dbgname, stagenum); bends = fix_gentle_inflections(bends, dbgname, stagenum); select * from self_crossing(bends) into bends, mutated; if dbgname is not null then insert into wm_debug(stage, name, gen, nbend, way) values( 'dcrossings', dbgname, stagenum, generate_subscripts(bends, 1), unnest(bends) ); end if; if mutated then lines[i] = st_linemerge(st_union(bends)); stagenum = stagenum + 1; continue; end if; -- self-crossing mutations are done, calculate bend properties bend_attrs = array((select bend_attrs(bends, dbgname))); perform isolated_bends(bend_attrs, dbgname); end loop; end loop; if l_type = 'ST_LineString' then return st_linemerge(st_union(lines)); elseif l_type = 'ST_MultiLineString' then return st_union(lines); end if; end $$ language plpgsql;