Merge pull request #13251 from Vexu/c-abi

implement ARM C ABI, separate C ABI tests from standalone tests
This commit is contained in:
Andrew Kelley
2022-10-23 12:16:58 -07:00
committed by GitHub
13 changed files with 696 additions and 203 deletions

View File

@@ -24,6 +24,8 @@ const CType = @import("../type.zig").CType;
const x86_64_abi = @import("../arch/x86_64/abi.zig");
const wasm_c_abi = @import("../arch/wasm/abi.zig");
const aarch64_c_abi = @import("../arch/aarch64/abi.zig");
const arm_c_abi = @import("../arch/arm/abi.zig");
const riscv_c_abi = @import("../arch/riscv64/abi.zig");
const Error = error{ OutOfMemory, CodegenFail };
@@ -1130,6 +1132,25 @@ pub const Object = struct {
const casted_ptr = builder.buildBitCast(arg_ptr, param.typeOf().pointerType(0), "");
_ = builder.buildStore(param, casted_ptr);
if (isByRef(param_ty)) {
try args.append(arg_ptr);
} else {
const load_inst = builder.buildLoad(param_llvm_ty, arg_ptr, "");
load_inst.setAlignment(alignment);
try args.append(load_inst);
}
},
.i32_array, .i64_array => {
const param_ty = fn_info.param_types[it.zig_index - 1];
const param_llvm_ty = try dg.lowerType(param_ty);
const param = llvm_func.getParam(llvm_arg_i);
llvm_arg_i += 1;
const alignment = param_ty.abiAlignment(target);
const arg_ptr = buildAllocaInner(builder, llvm_func, false, param_llvm_ty, alignment, target);
const casted_ptr = builder.buildBitCast(arg_ptr, param.typeOf().pointerType(0), "");
_ = builder.buildStore(param, casted_ptr);
if (isByRef(param_ty)) {
try args.append(arg_ptr);
} else {
@@ -2578,6 +2599,8 @@ pub const DeclGen = struct {
.multiple_llvm_float,
.as_u16,
.float_array,
.i32_array,
.i64_array,
=> continue,
.slice => unreachable, // extern functions do not support slice types.
@@ -3132,6 +3155,11 @@ pub const DeclGen = struct {
const arr_ty = float_ty.arrayType(field_count);
try llvm_params.append(arr_ty);
},
.i32_array, .i64_array => |arr_len| {
const elem_size: u8 = if (lowering == .i32_array) 32 else 64;
const arr_ty = dg.context.intType(elem_size).arrayType(arr_len);
try llvm_params.append(arr_ty);
},
};
return llvm.functionType(
@@ -4822,6 +4850,25 @@ pub const FuncGen = struct {
load_inst.setAlignment(alignment);
try llvm_args.append(load_inst);
},
.i32_array, .i64_array => |arr_len| {
const elem_size: u8 = if (lowering == .i32_array) 32 else 64;
const arg = args[it.zig_index - 1];
const arg_ty = self.air.typeOf(arg);
var llvm_arg = try self.resolveInst(arg);
if (!isByRef(arg_ty)) {
const p = self.buildAlloca(llvm_arg.typeOf(), null);
const store_inst = self.builder.buildStore(llvm_arg, p);
store_inst.setAlignment(arg_ty.abiAlignment(target));
llvm_arg = store_inst;
}
const array_llvm_ty = self.dg.context.intType(elem_size).arrayType(arr_len);
const casted = self.builder.buildBitCast(llvm_arg, array_llvm_ty.pointerType(0), "");
const alignment = arg_ty.abiAlignment(target);
const load_inst = self.builder.buildLoad(array_llvm_ty, casted, "");
load_inst.setAlignment(alignment);
try llvm_args.append(load_inst);
},
};
const call = self.builder.buildCall(
@@ -10083,10 +10130,16 @@ fn firstParamSRet(fn_info: Type.Payload.Function.Data, target: std.Target) bool
.mips, .mipsel => return false,
.x86_64 => switch (target.os.tag) {
.windows => return x86_64_abi.classifyWindows(fn_info.return_type, target) == .memory,
else => return x86_64_abi.classifySystemV(fn_info.return_type, target)[0] == .memory,
else => return x86_64_abi.classifySystemV(fn_info.return_type, target, .ret)[0] == .memory,
},
.wasm32 => return wasm_c_abi.classifyType(fn_info.return_type, target)[0] == .indirect,
.aarch64, .aarch64_be => return aarch64_c_abi.classifyType(fn_info.return_type, target)[0] == .memory,
.aarch64, .aarch64_be => return aarch64_c_abi.classifyType(fn_info.return_type, target) == .memory,
.arm, .armeb => switch (arm_c_abi.classifyType(fn_info.return_type, target, .ret)) {
.memory, .i64_array => return true,
.i32_array => |size| return size != 1,
.byval => return false,
},
.riscv32, .riscv64 => return riscv_c_abi.classifyType(fn_info.return_type, target) == .memory,
else => return false, // TODO investigate C ABI for other architectures
},
else => return false,
@@ -10139,7 +10192,7 @@ fn lowerFnRetTy(dg: *DeclGen, fn_info: Type.Payload.Function.Data) !*llvm.Type {
if (is_scalar) {
return dg.lowerType(fn_info.return_type);
}
const classes = x86_64_abi.classifySystemV(fn_info.return_type, target);
const classes = x86_64_abi.classifySystemV(fn_info.return_type, target, .ret);
if (classes[0] == .memory) {
return dg.context.voidType();
}
@@ -10197,22 +10250,44 @@ fn lowerFnRetTy(dg: *DeclGen, fn_info: Type.Payload.Function.Data) !*llvm.Type {
return dg.context.intType(@intCast(c_uint, abi_size * 8));
},
.aarch64, .aarch64_be => {
if (is_scalar) {
return dg.lowerType(fn_info.return_type);
switch (aarch64_c_abi.classifyType(fn_info.return_type, target)) {
.memory => return dg.context.voidType(),
.float_array => return dg.lowerType(fn_info.return_type),
.byval => return dg.lowerType(fn_info.return_type),
.integer => {
const bit_size = fn_info.return_type.bitSize(target);
return dg.context.intType(@intCast(c_uint, bit_size));
},
.double_integer => return dg.context.intType(64).arrayType(2),
}
const classes = aarch64_c_abi.classifyType(fn_info.return_type, target);
if (classes[0] == .memory or classes[0] == .none) {
return dg.context.voidType();
},
.arm, .armeb => {
switch (arm_c_abi.classifyType(fn_info.return_type, target, .ret)) {
.memory, .i64_array => return dg.context.voidType(),
.i32_array => |len| if (len == 1) {
return dg.context.intType(32);
} else {
return dg.context.voidType();
},
.byval => return dg.lowerType(fn_info.return_type),
}
if (classes[0] == .float_array) {
return dg.lowerType(fn_info.return_type);
},
.riscv32, .riscv64 => {
switch (riscv_c_abi.classifyType(fn_info.return_type, target)) {
.memory => return dg.context.voidType(),
.integer => {
const bit_size = fn_info.return_type.bitSize(target);
return dg.context.intType(@intCast(c_uint, bit_size));
},
.double_integer => {
var llvm_types_buffer: [2]*llvm.Type = .{
dg.context.intType(64),
dg.context.intType(64),
};
return dg.context.structType(&llvm_types_buffer, 2, .False);
},
.byval => return dg.lowerType(fn_info.return_type),
}
if (classes[1] == .none) {
const bit_size = fn_info.return_type.bitSize(target);
return dg.context.intType(@intCast(c_uint, bit_size));
}
return dg.context.intType(64).arrayType(2);
},
// TODO investigate C ABI for other architectures
else => return dg.lowerType(fn_info.return_type),
@@ -10242,6 +10317,8 @@ const ParamTypeIterator = struct {
slice,
as_u16,
float_array: u8,
i32_array: u8,
i64_array: u8,
};
pub fn next(it: *ParamTypeIterator) ?Lowering {
@@ -10288,15 +10365,6 @@ const ParamTypeIterator = struct {
.C => {
const is_scalar = isScalar(ty);
switch (it.target.cpu.arch) {
.riscv32, .riscv64 => {
it.zig_index += 1;
it.llvm_index += 1;
if (ty.tag() == .f16) {
return .as_u16;
} else {
return .byval;
}
},
.mips, .mipsel => {
it.zig_index += 1;
it.llvm_index += 1;
@@ -10334,18 +10402,18 @@ const ParamTypeIterator = struct {
else => unreachable,
},
else => {
if (is_scalar) {
it.zig_index += 1;
it.llvm_index += 1;
return .byval;
}
const classes = x86_64_abi.classifySystemV(ty, it.target);
const classes = x86_64_abi.classifySystemV(ty, it.target, .arg);
if (classes[0] == .memory) {
it.zig_index += 1;
it.llvm_index += 1;
it.byval_attr = true;
return .byref;
}
if (is_scalar) {
it.zig_index += 1;
it.llvm_index += 1;
return .byval;
}
var llvm_types_buffer: [8]u16 = undefined;
var llvm_types_index: u32 = 0;
for (classes) |class| {
@@ -10383,11 +10451,6 @@ const ParamTypeIterator = struct {
it.llvm_index += 1;
return .abi_sized_int;
}
if (classes[0] == .sse and classes[1] == .none) {
it.zig_index += 1;
it.llvm_index += 1;
return .byval;
}
it.llvm_types_buffer = llvm_types_buffer;
it.llvm_types_len = llvm_types_index;
it.llvm_index += llvm_types_index;
@@ -10410,24 +10473,45 @@ const ParamTypeIterator = struct {
.aarch64, .aarch64_be => {
it.zig_index += 1;
it.llvm_index += 1;
if (is_scalar) {
return .byval;
switch (aarch64_c_abi.classifyType(ty, it.target)) {
.memory => return .byref,
.float_array => |len| return Lowering{ .float_array = len },
.byval => return .byval,
.integer => {
it.llvm_types_len = 1;
it.llvm_types_buffer[0] = 64;
return .multiple_llvm_ints;
},
.double_integer => return Lowering{ .i64_array = 2 },
}
const classes = aarch64_c_abi.classifyType(ty, it.target);
if (classes[0] == .memory) {
return .byref;
},
.arm, .armeb => {
it.zig_index += 1;
it.llvm_index += 1;
switch (arm_c_abi.classifyType(ty, it.target, .arg)) {
.memory => {
it.byval_attr = true;
return .byref;
},
.byval => return .byval,
.i32_array => |size| return Lowering{ .i32_array = size },
.i64_array => |size| return Lowering{ .i64_array = size },
}
if (classes[0] == .float_array) {
return Lowering{ .float_array = @enumToInt(classes[1]) };
},
.riscv32, .riscv64 => {
it.zig_index += 1;
it.llvm_index += 1;
if (ty.tag() == .f16) {
return .as_u16;
}
if (classes[1] == .none) {
it.llvm_types_len = 1;
} else {
it.llvm_types_len = 2;
switch (riscv_c_abi.classifyType(ty, it.target)) {
.memory => {
return .byref;
},
.byval => return .byval,
.integer => return .abi_sized_int,
.double_integer => return Lowering{ .i64_array = 2 },
}
it.llvm_types_buffer[0] = 64;
it.llvm_types_buffer[1] = 64;
return .multiple_llvm_ints;
},
// TODO investigate C ABI for other architectures
else => {
@@ -10475,8 +10559,16 @@ fn ccAbiPromoteInt(
};
if (int_info.bits <= 16) return int_info.signedness;
switch (target.cpu.arch) {
.riscv64 => {
if (int_info.bits == 32) {
// LLVM always signextends 32 bit ints, unsure if bug.
return .signed;
}
if (int_info.bits < 64) {
return int_info.signedness;
}
},
.sparc64,
.riscv64,
.powerpc64,
.powerpc64le,
=> {