Instead of explicitly creating a `Module.Decl` object for each anonymous
declaration, each `InternPool.Index` value is implicitly understood to
be an anonymous declaration when encountered by backend codegen.
The memory management strategy for these anonymous decls then becomes to
garbage collect them along with standard InternPool garbage.
In the interest of a smooth transition, this commit only implements this
new scheme for string literals and leaves all the previous mechanisms in
place.
SPIR-V doesn't support true element indexing, so we probably
need to switch over to isByRef like in llvm for this to work
properly. Currently a temporary is used, which at least
seems to work.
This will help us both to make the implementation a little
more efficient by caching emission for certain types like structs,
and also allow us to attach extra information about types that we
can use while lowering without performing a search over the entire
type tree for some property.
Structs were previously using `SegmentedList` to be given indexes, but
were not actually backed by the InternPool arrays.
After this, the only remaining uses of `SegmentedList` in the compiler
are `Module.Decl` and `Module.Namespace`. Once those last two are
migrated to become backed by InternPool arrays as well, we can introduce
state serialization via writing these arrays to disk all at once.
Unfortunately there are a lot of source code locations that touch the
struct type API, so this commit is still work-in-progress. Once I get it
compiling and passing the test suite, I can provide some interesting
data points such as how it affected the InternPool memory size and
performance comparison against master branch.
I also couldn't resist migrating over a bunch of alignment API over to
use the log2 Alignment type rather than a mismash of u32 and u64 byte
units with 0 meaning something implicitly different and special at every
location. Turns out you can do all the math you need directly on the
log2 representation of alignments.