I'm seeing a new assertion trip: the call to `enumTagFieldIndex` in the
implementation of `@Type` is attempting to query the field index of an
union's enum tag, but the type of the enum tag value provided is not the
same as the union's tag type. Most likely this is a problem with type
coercion, since values are now typed.
Another problem is that I added some hacks in std.builtin because I
didn't see any convenient way to access them from Sema. That should
definitely be cleaned up before merging this branch.
Unlike unions and structs, enums are actually *encoded* into the
InternPool directly, rather than using the SegmentedList trick. This
results in them being quite compact, and greatly improved the ergonomics
of using enum types throughout the compiler.
It did however require introducing a new concept to the InternPool which
is an "incomplete" item - something that is added to gain a permanent
Index, but which is then mutated in place. This was necessary because
enum tag values and tag types may reference the namespaces created by
the enum itself, which required constructing the namespace, decl, and
calling analyzeDecl on the decl, which required the decl value, which
required the enum type, which required an InternPool index to be
assigned and for it to be meaningful.
The API for updating enums in place turned out to be quite slick and
efficient - the methods directly populate pre-allocated arrays and
return the information necessary to output the same compilation errors
as before.
This commit changes a lot of `*const Module` to `*Module` to make it
work, since accessing the integer tag type of an enum might need to
mutate the InternPool by adding a new integer type into it.
An alternate strategy would be to pre-heat the InternPool with the
integer tag type when creating an enum type, which would make it so that
intTagType could accept a const Module instead of a mutable one,
asserting that the InternPool already had the integer tag type.
Instead of doing everything at once which is a hopelessly large task,
this introduces a piecemeal transition that can be done in small
increments at a time.
This is a minimal changeset that keeps the compiler compiling. It only
uses the InternPool for a small set of types.
Behavior tests are not passing.
Air.Inst.Ref and Zir.Inst.Ref are separated into different enums but
compile-time verified to have the same fields in the same order.
The large set of changes is mainly to deal with the fact that most Type
and Value methods now require a Module to be passed in, so that the
InternPool object can be accessed.
Fixes https://github.com/ziglang/zig/issues/14465
For aarch64, LLVM was crashing because Zig commands it to generate FPU code
even when there is no FPU present. This commit implements the necessary checks
to avoid this undesired situation and aarch64 can be compiled again with
no FPU.
* move `ptrBitWidth` from Arch to Target since it needs to know about the abi
* double isn't always 8 bits
* AVR uses 1-byte alignment for everything in GCC
When the element is comptime-known, we can check if it has a repeated
byte representation. In this case, `@memset` can be lowered with the
LLVM intrinsic rather than with a loop.
store:
The value to store may be undefined, in which case the destination
memory region has undefined bytes after this instruction is
evaluated. In such case ignoring this instruction is legal
lowering.
store_safe:
Same as `store`, except if the value to store is undefined, the
memory region should be filled with 0xaa bytes, and any other
safety metadata such as Valgrind integrations should be notified of
this memory region being undefined.
* Sema: upgrade operands to array pointers if possible when emitting
AIR.
* Implement safety checks for length mismatch and aliasing.
* AIR: make ptrtoint support slice operands. Implement in LLVM backend.
* C backend: implement new `@memset` semantics. `@memcpy` is not done
yet.
Now they use slices or array pointers with any element type instead of
requiring byte pointers.
This is a breaking enhancement to the language.
The safety check for overlapping pointers will be implemented in a
future commit.
closes#14040
Since the Zig language documentation claims support for `.Min` and
`.Max` in `@atomicRmw` with floats, allow in Sema and implement for both
the llvm and C backends.
* CompileStep: Avoid calling producesPdbFile() to determine whether the
option should be respected. If the user asks for it, put it on the
command line and let the Zig CLI deal with it appropriately.
* Make the namespace of `std.dwarf.Format.dwarf32` no longer have a
redundant "dwarf" in it.
* Add `zig cc` integration for `-gdwarf32` and `-gdwarf64`.
* Toss in a bonus bug fix for `-gdwarf-2`, `-gdwarf-3`, etc.
* Avoid using default init values for struct fields unnecessarily.
* Add missing cache hash addition for the new option.
This commit enables producing 64-bit DWARF format for Zig executables
that are produced through the LLVM backend. This is achieved by exposing
both command-line flags and CompileStep flags. The production of the
64-bit format only affects binaries that use the DWARF format and it is
disabled on MacOS due to it being problematic. This commit, despite
generating the interface for the Zig user to be able to tell the compile
which format is wanted, is just implemented for the LLVM backend, so
clang and the self-hosted backends will need this to be implemented in a
future commit.
This is an effort to work around #7962, since the emission of the 64-bit
format automatically produces 64-bit relocations. Further investigation
will be needed to make DWARF 32-bit format to emit bigger relocations
when needed and not make the linker angry.
Backends want to avoid emitting unused instructions which do not have
side effects: to that end, they all have `Liveness.isUnused` checks for
many instructions. However, checking this in the backends avoids a lot
of potential optimizations. For instance, if a nested field is loaded,
then the first field access would still be emitted, since its result is
used by the next access (which is then unreferenced).
To elide more instructions, Liveness can track this data instead. For
operands which do not have to be lowered (i.e. are not side effecting
and are not something special like `arg), Liveness can ignore their
operand usages, and push the unused information further up, potentially
marking many more instructions as unreferenced.
In doing this, I also uncovered a bug in the LLVM backend relating to
discarding the result of `@cVaArg`, which this change fixes. A behaviour
test has been added to cover it.