Commit Graph

1159 Commits

Author SHA1 Message Date
mlugg
d7afd797cc Zcu: handle unreferenced test_functions correctly
Previously, `PerThread.populateTestFunctions` was analyzing the
`test_functions` declaration if it hadn't already been analyzed, so that
it could then populate it. However, the logic for doing this wasn't
actually correct, because it didn't trigger the necessary type
resolution. I could have tried to fix this, but there's actually a
simpler solution! If the `test_functions` declaration isn't referenced
or has a compile error, then we simply don't need to update it; either
it's unreferenced so its value doesn't matter, or we're going to get a
compile error anyway. Either way, we can just give up early. This avoids
doing semantic analysis after `performAllTheWork` finishes.

Also, get rid of the "Code Generation" progress node while updating the
test decl: this is a linking task.
2025-06-12 17:51:30 +01:00
mlugg
ac745edbbd compiler: estimate totals for "Code Generation" and "Linking" progress nodes 2025-06-12 13:55:41 +01:00
mlugg
db5d85b8c8 compiler: improve progress output
* "Flush" nodes ("LLVM Emit Object", "ELF Flush") appear under "Linking"

* "Code Generation" disappears when all analysis and codegen is done

* We only show one node under "Semantic Analysis" to accurately convey
  that analysis isn't happening in parallel, but rather that we're
  pausing one task to do another
2025-06-12 13:55:41 +01:00
Jacob Young
c95b1bf2d3 x86_64: remove air references from mir 2025-06-12 13:55:41 +01:00
mlugg
b5f73f8a7b compiler: rework emit paths and cache modes
Previously, various doc comments heavily disagreed with the
implementation on both what lives where on the filesystem at what time,
and how that was represented in code. Notably, the combination of emit
paths outside the cache and `disable_lld_caching` created a kind of
ad-hoc "cache disable" mechanism -- which didn't actually *work* very
well, 'most everything still ended up in this cache. There was also a
long-standing issue where building using the LLVM backend would put a
random object file in your cwd.

This commit reworks how emit paths are specified in
`Compilation.CreateOptions`, how they are represented internally, and
how the cache usage is specified.

There are now 3 options for `Compilation.CacheMode`:
* `.none`: do not use the cache. The paths we have to emit to are
  relative to the compiler cwd (they're either user-specified, or
  defaults inferred from the root name). If we create any temporary
  files (e.g. the ZCU object when using the LLVM backend) they are
  emitted to a directory in `local_cache/tmp/`, which is deleted once
  the update finishes.
* `.whole`: cache the compilation based on all inputs, including file
  contents. All emit paths are computed by the compiler (and will be
  stored as relative to the local cache directory); it is a CLI error to
  specify an explicit emit path. Artifacts (including temporary files)
  are written to a directory under `local_cache/tmp/`, which is later
  renamed to an appropriate `local_cache/o/`. The caller (who is using
  `--listen`; e.g. the build system) learns the name of this directory,
  and can get the artifacts from it.
* `.incremental`: similar to `.whole`, but Zig source file contents, and
  anything else which incremental compilation can handle changes for, is
  not included in the cache manifest. We don't need to do the dance
  where the output directory is initially in `tmp/`, because our digest
  is computed entirely from CLI inputs.

To be clear, the difference between `CacheMode.whole` and
`CacheMode.incremental` is unchanged. `CacheMode.none` is new
(previously it was sort of poorly imitated with `CacheMode.whole`). The
defined behavior for temporary/intermediate files is new.

`.none` is used for direct CLI invocations like `zig build-exe foo.zig`.
The other cache modes are reserved for `--listen`, and the cache mode in
use is currently just based on the presence of the `-fincremental` flag.

There are two cases in which `CacheMode.whole` is used despite there
being no `--listen` flag: `zig test` and `zig run`. Unless an explicit
`-femit-bin=xxx` argument is passed on the CLI, these subcommands will
use `CacheMode.whole`, so that they can put the output somewhere without
polluting the cwd (plus, caching is potentially more useful for direct
usage of these subcommands).

Users of `--listen` (such as the build system) can now use
`std.zig.EmitArtifact.cacheName` to find out what an output will be
named. This avoids having to synchronize logic between the compiler and
all users of `--listen`.
2025-06-12 13:55:40 +01:00
mlugg
c0df707066 wasm: get self-hosted compiling, and supporting separate_thread
My original goal here was just to get the self-hosted Wasm backend
compiling again after the pipeline change, but it turned out that from
there it was pretty simple to entirely eliminate the shared state
between `codegen.wasm` and `link.Wasm`. As such, this commit not only
fixes the backend, but makes it the second backend (after CBE) to
support the new 1:N:1 threading model.
2025-06-12 13:55:40 +01:00
mlugg
5ab307cf47 compiler: get most backends compiling again
As of this commit, every backend other than self-hosted Wasm and
self-hosted SPIR-V compiles and (at least somewhat) functions again.
Those two backends are currently disabled with panics.

Note that `Zcu.Feature.separate_thread` is *not* enabled for the fixed
backends. Avoiding linker references from codegen is a non-trivial task,
and can be done after this branch.
2025-06-12 13:55:40 +01:00
mlugg
9eb400ef19 compiler: rework backend pipeline to separate codegen and link
The idea here is that instead of the linker calling into codegen,
instead codegen should run before we touch the linker, and after MIR is
produced, it is sent to the linker. Aside from simplifying the call
graph (by preventing N linkers from each calling into M codegen
backends!), this has the huge benefit that it is possible to
parallellize codegen separately from linking. The threading model can
look like this:

* 1 semantic analysis thread, which generates AIR
* N codegen threads, which process AIR into MIR
* 1 linker thread, which emits MIR to the binary

The codegen threads are also responsible for `Air.Legalize` and
`Air.Liveness`; it's more efficient to do this work here instead of
blocking the main thread for this trivially parallel task.

I have repurposed the `Zcu.Feature.separate_thread` backend feature to
indicate support for this 1:N:1 threading pattern. This commit makes the
C backend support this feature, since it was relatively easy to divorce
from `link.C`: it just required eliminating some shared buffers. Other
backends don't currently support this feature. In fact, they don't even
compile -- the next few commits will fix them back up.
2025-06-12 13:55:40 +01:00
mlugg
66d15d9d09 link: make checking for failed types the responsibility of Compilation 2025-06-12 13:55:40 +01:00
mlugg
2fb6f5c1ad link: divorce LLD from the self-hosted linkers
Similar to the previous commit, this commit untangles LLD integration
from the self-hosted linkers. Despite the big network of functions which
were involved, it turns out what was going on here is quite simple. The
LLD linking logic is actually very self-contained; it requires a few
flags from the `link.File.OpenOptions`, but that's really about it. We
don't need any of the mutable state on `Elf`/`Coff`/`Wasm`, for
instance. There was some legacy code trying to handle support for using
self-hosted codegen with LLD, but that's not a supported use case, so
I've just stripped it out.

For now, I've just pasted the logic for linking the 3 targets we
currently support using LLD for into this new linker implementation,
`link.Lld`; however, it's almost certainly possible to combine some of
the logic and simplify this file a bit. But to be honest, it's not
actually that bad right now.

This commit ends up eliminating the distinction between `flush` and
`flushZcu` (formerly `flushModule`) in linkers, where the latter
previously meant something along the lines of "flush, but if you're
going to be linking with LLD, just flush the ZCU object file, don't
actually link"?. The distinction here doesn't seem like it was properly
defined, and most linkers seem to treat them as essentially identical
anyway. Regardless, all calls to `flushZcu` are gone now, so it's
deleted -- one `flush` to rule them all!

The end result of this commit and the preceding one is that LLVM and LLD
fit into the pipeline much more sanely:

* If we're using LLVM for the ZCU, that state is on `zcu.llvm_object`
* If we're using LLD to link, then the `link.File` is a `link.Lld`
* Calls to "ZCU link functions" (e.g. `updateNav`) lower to calls to the
  LLVM object if it's available, or otherwise to the `link.File` if it's
  available (neither is available under `-fno-emit-bin`)
* After everything is done, linking is finalized by calling `flush` on
  the `link.File`; for `link.Lld` this invokes LLD, for other linkers it
  flushes self-hosted linker state

There's one messy thing remaining, and that's how self-hosted function
codegen in a ZCU works; right now, we process AIR with a call sequence
something like this:

* `link.doTask`
* `Zcu.PerThread.linkerUpdateFunc`
* `link.File.updateFunc`
* `link.Elf.updateFunc`
* `link.Elf.ZigObject.updateFunc`
* `codegen.generateFunction`
* `arch.x86_64.CodeGen.generate`

So, we start in the linker, take a scenic detour through `Zcu`, go back
to the linker, into its implementation, and then... right back out, into
code which is generic over the linker implementation, and then dispatch
on the *backend* instead! Of course, within `arch.x86_64.CodeGen`, there
are some more places which switch on the `link` implementation being
used. This is all pretty silly... so it shall be my next target.
2025-06-12 13:55:39 +01:00
mlugg
3743c3e39c compiler: slightly untangle LLVM from the linkers
The main goal of this commit is to make it easier to decouple codegen
from the linkers by being able to do LLVM codegen without going through
the `link.File`; however, this ended up being a nice refactor anyway.

Previously, every linker stored an optional `llvm.Object`, which was
populated when using LLVM for the ZCU *and* linking an output binary;
and `Zcu` also stored an optional `llvm.Object`, which was used only
when we needed LLVM for the ZCU (e.g. for `-femit-llvm-bc`) but were not
emitting a binary.

This situation was incredibly silly. It meant there were N+1 places the
LLVM object might be instead of just 1, and it meant that every linker
had to start a bunch of methods by checking for an LLVM object, and just
dispatching to the corresponding method on *it* instead if it was not
`null`.

Instead, we now always store the LLVM object on the `Zcu` -- which makes
sense, because it corresponds to the object emitted by, well, the Zig
Compilation Unit! The linkers now mostly don't make reference to LLVM.
`Compilation` makes sure to emit the LLVM object if necessary before
calling `flush`, so it is ready for the linker. Also, all of the
`link.File` methods which act on the ZCU -- like `updateNav` -- now
check for the LLVM object in `link.zig` instead of in every single
individual linker implementation. Notably, the change to LLVM emit
improves this rather ludicrous call chain in the `-fllvm -flld` case:

* Compilation.flush
* link.File.flush
* link.Elf.flush
* link.Elf.linkWithLLD
* link.Elf.flushModule
* link.emitLlvmObject
* Compilation.emitLlvmObject
* llvm.Object.emit

Replacing it with this one:

* Compilation.flush
* llvm.Object.emit

...although we do currently still end up in `link.Elf.linkWithLLD` to do
the actual linking. The logic for invoking LLD should probably also be
unified at least somewhat; I haven't done that in this commit.
2025-06-12 13:55:39 +01:00
mlugg
424e6ac54b compiler: minor refactors to ZCU linking
* The `codegen_nav`, `codegen_func`, `codegen_type` tasks are renamed to
  `link_nav`, `link_func`, and `link_type`, to more accurately reflect
  their purpose of sending data to the *linker*. Currently, `link_func`
  remains responsible for codegen; this will change in an upcoming
  commit.

* Don't go on a pointless detour through `PerThread` when linking ZCU
  functions/`Nav`s; so, the `linkerUpdateNav` etc logic now lives in
  `link.zig`. Currently, `linkerUpdateFunc` is an exception, because it
  has broader responsibilities including codegen, but this will be
  solved in an upcoming commit.
2025-06-12 13:55:39 +01:00
Jacob Young
37f763560b x86_64: fix switch dispatch bug
Also closes #23902
2025-06-06 23:42:15 -07:00
Jacob Young
5986bdf868 Compilation: enable the x86_64 backend by default for debug builds
Closes #22257
2025-06-06 23:42:14 -07:00
Alex Rønne Petersen
9d534790eb std.Target: Introduce Cpu convenience functions for feature tests.
Before:

* std.Target.arm.featureSetHas(target.cpu.features, .has_v7)
* std.Target.x86.featureSetHasAny(target.cpu.features, .{ .sse, .avx, .cmov })
* std.Target.wasm.featureSetHasAll(target.cpu.features, .{ .atomics, .bulk_memory })

After:

* target.cpu.has(.arm, .has_v7)
* target.cpu.hasAny(.x86, &.{ .sse, .avx, .cmov })
* target.cpu.hasAll(.wasm, &.{ .atomics, .bulk_memory })
2025-06-05 06:12:00 +02:00
Alex Rønne Petersen
14873f9a34 Merge pull request #24068 from alexrp/android-pic-pie
compiler: Rework PIE option logic.
2025-06-05 01:14:03 +02:00
Alex Rønne Petersen
bc8ace2a6d compiler-rt: Issue VALGRIND_DISCARD_TRANSLATIONS request in __clear_cache().
Closes #24030.
2025-06-04 13:25:21 +02:00
Alex Rønne Petersen
c620836945 zig cc: Pass -f(no-)PIE to clang.
Otherwise we rely on Clang's default which is known to not always match ours.
2025-06-04 10:32:30 +02:00
Alex Rønne Petersen
cd03a0a153 compiler: Don't link ucrtbased.dll when targeting *-windows-msvc in Debug mode.
Linking it by default means that we produce binaries that, effectively, only run
on systems which have the Windows SDK installed because ucrtbased.dll is not
redistributable, and the Windows SDK is what actually installs ucrtbased.dll
into %SYSTEM32%. The resulting binaries also can't run under Wine because Wine
does not provide ucrtbased.dll.

It is also inconsistent with our behavior for *-windows-gnu where we always link
ucrtbase.dll. See #23983, #24019, and #24053 for more details.

So just use ucrtbase.dll regardless of mode. With this change, we can also drop
the implicit definition of the _DEBUG macro in zig cc, which has in some cases
been problematic for users.

Users who want to opt into the old behavior can do so, both for *-windows-msvc
and *-windows-gnu, by explicitly passing -lucrtbased and -D_DEBUG. We might
consider adding a more ergonomic flag like -fdebug-crt to the zig build-* family
of commands in the future.

Closes #24052.
2025-06-04 05:04:29 +02:00
Alex Rønne Petersen
fa8073795a Revert "mingw: Link to ucrtbased.dll instead of API set DLLs in Debug mode."
This reverts commit 4641e9556d.

See discussion on #24052.
2025-06-02 08:06:37 +02:00
Jacob Young
b48d6ff619 Legalize: implement scalarization of @select 2025-06-01 08:24:01 +01:00
Alex Rønne Petersen
4641e9556d mingw: Link to ucrtbased.dll instead of API set DLLs in Debug mode.
By using the debug UCRT, we get access to functions like _CrtDbgReport.

Closes #23983.
2025-05-30 02:11:36 +02:00
mlugg
aeed5f9ebd compiler: introduce incremental debug server
In a compiler built with debug extensions, pass `--debug-incremental` to
spawn the "incremental debug server". This is a TCP server exposing a
REPL which allows querying a bunch of compiler state, some of which is
stored only when that flag is passed. Eventually, this will probably
move into `std.zig.Server`/`std.zig.Client`, but this is easier to work
with right now. The easiest way to interact with the server is `telnet`.
2025-05-25 04:43:43 +01:00
mlugg
3416452d56 compiler: fix ZIR hash not including compiler version
This was an unintentional regression in 23c8175 which meant that
backwards-incompatible ZIR changes would have caused compiler crashes if
old caches were present.
2025-05-21 11:11:28 +01:00
Alex Rønne Petersen
7c9035f635 link.Elf: Don't require linking libc for dynamic linker path to take effect.
Closes #23813.
2025-05-21 06:08:50 +02:00
Alex Rønne Petersen
b27c5fbbde Merge pull request #23913 from alexrp/netbsd-libc
Support dynamically-linked NetBSD libc when cross-compiling
2025-05-20 07:46:08 +02:00
mlugg
37a9a4e0f1 compiler: refactor Zcu.File and path representation
This commit makes some big changes to how we track state for Zig source
files. In particular, it changes:

* How `File` tracks its path on-disk
* How AstGen discovers files
* How file-level errors are tracked
* How `builtin.zig` files and modules are created

The original motivation here was to address incremental compilation bugs
with the handling of files, such as #22696. To fix this, a few changes
are necessary.

Just like declarations may become unreferenced on an incremental update,
meaning we suppress analysis errors associated with them, it is also
possible for all imports of a file to be removed on an incremental
update, in which case file-level errors for that file should be
suppressed. As such, after AstGen, the compiler must traverse files
(starting from analysis roots) and discover the set of "live files" for
this update.

Additionally, the compiler's previous handling of retryable file errors
was not very good; the source location the error was reported as was
based only on the first discovered import of that file. This source
location also disappeared on future incremental updates. So, as a part
of the file traversal above, we also need to figure out the source
locations of imports which errors should be reported against.

Another observation I made is that the "file exists in multiple modules"
error was not implemented in a particularly good way (I get to say that
because I wrote it!). It was subject to races, where the order in which
different imports of a file were discovered affects both how errors are
printed, and which module the file is arbitrarily assigned, with the
latter in turn affecting which other files are considered for import.
The thing I realised here is that while the AstGen worker pool is
running, we cannot know for sure which module(s) a file is in; we could
always discover an import later which changes the answer.

So, here's how the AstGen workers have changed. We initially ensure that
`zcu.import_table` contains the root files for all modules in this Zcu,
even if we don't know any imports for them yet. Then, the AstGen
workers do not need to be aware of modules. Instead, they simply ignore
module imports, and only spin off more workers when they see a by-path
import.

During AstGen, we can't use module-root-relative paths, since we don't
know which modules files are in; but we don't want to unnecessarily use
absolute files either, because those are non-portable and can make
`error.NameTooLong` more likely. As such, I have introduced a new
abstraction, `Compilation.Path`. This type is a way of representing a
filesystem path which has a *canonical form*. The path is represented
relative to one of a few special directories: the lib directory, the
global cache directory, or the local cache directory. As a fallback, we
use absolute (or cwd-relative on WASI) paths. This is kind of similar to
`std.Build.Cache.Path` with a pre-defined list of possible
`std.Build.Cache.Directory`, but has stricter canonicalization rules
based on path resolution to make sure deduplicating files works
properly. A `Compilation.Path` can be trivially converted to a
`std.Build.Cache.Path` from a `Compilation`, but is smaller, has a
canonical form, and has a digest which will be consistent across
different compiler processes with the same lib and cache directories
(important when we serialize incremental compilation state in the
future). `Zcu.File` and `Zcu.EmbedFile` both contain a
`Compilation.Path`, which is used to access the file on-disk;
module-relative sub paths are used quite rarely (`EmbedFile` doesn't
even have one now for simplicity).

After the AstGen workers all complete, we know that any file which might
be imported is definitely in `import_table` and up-to-date. So, we
perform a single-threaded graph traversal; similar to what
`resolveReferences` plays for `AnalUnit`s, but for files instead. We
figure out which files are alive, and which module each file is in. If a
file turns out to be in multiple modules, we set a field on `Zcu` to
indicate this error. If a file is in a different module to a prior
update, we set a flag instructing `updateZirRefs` to invalidate all
dependencies on the file. This traversal also discovers "import errors";
these are errors associated with a specific `@import`. With Zig's
current design, there is only one possible error here: "import outside
of module root". This must be identified during this traversal instead
of during AstGen, because it depends on which module the file is in. I
tried also representing "module not found" errors in this same way, but
it turns out to be much more useful to report those in Sema, because of
use cases like optional dependencies where a module import is behind a
comptime-known build option.

For simplicity, `failed_files` now just maps to `?[]u8`, since the
source location is always the whole file. In fact, this allows removing
`LazySrcLoc.Offset.entire_file` completely, slightly simplifying some
error reporting logic. File-level errors are now directly built in the
`std.zig.ErrorBundle.Wip`. If the payload is not `null`, it is the
message for a retryable error (i.e. an error loading the source file),
and will be reported with a "file imported here" note pointing to the
import site discovered during the single-threaded file traversal.

The last piece of fallout here is how `Builtin` works. Rather than
constructing "builtin" modules when creating `Package.Module`s, they are
now constructed on-the-fly by `Zcu`. The map `Zcu.builtin_modules` maps
from digests to `*Package.Module`s. These digests are abstract hashes of
the `Builtin` value; i.e. all of the options which are placed into
"builtin.zig". During the file traversal, we populate `builtin_modules`
as needed, so that when we see this imports in Sema, we just grab the
relevant entry from this map. This eliminates a bunch of awkward state
tracking during construction of the module graph. It's also now clearer
exactly what options the builtin module has, since previously it
inherited some options arbitrarily from the first-created module with
that "builtin" module!

The user-visible effects of this commit are:
* retryable file errors are now consistently reported against the whole
  file, with a note pointing to a live import of that file
* some theoretical bugs where imports are wrongly considered distinct
  (when the import path moves out of the cwd and then back in) are fixed
* some consistency issues with how file-level errors are reported are
  fixed; these errors will now always be printed in the same order
  regardless of how the AstGen pass assigns file indices
* incremental updates do not print retryable file errors differently
  between updates or depending on file structure/contents
* incremental updates support files changing modules
* incremental updates support files becoming unreferenced

Resolves: #22696
2025-05-18 17:37:02 +01:00
Alex Rønne Petersen
a97e417ab1 compiler: Support building NetBSD crt1.o/Scrt1.o and stub shared libraries.
Only works for NetBSD 10.1+. Note that we still default to targeting NetBSD 9.

Contributes to #2877.
2025-05-17 20:12:56 +02:00
Alex Rønne Petersen
e20fb7071c compiler: Define __NetBSD_Version__ when targeting NetBSD libc. 2025-05-17 04:41:27 +02:00
mlugg
d717c96877 compiler: include inline calls in the reference trace
Inline calls which happened in the erroring `AnalUnit` still show as
error notes, because they tend to make very important context (e.g. to
see how comptime values propagate through them). However, "earlier"
inline calls are still useful to see to understand how something is
being referenced, so we should include them in the reference trace.
2025-05-16 13:28:15 +01:00
mlugg
70040778fb Compilation: fix reference trace behavior without -freference-trace
When `-freference-trace` is not passed, we want to show exactly one
reference trace. Previously, we set the reference trace root in `Sema`
iff there were no other failed analyses. However, this results in an
arbitrary error being the one with the reference trace after error
sorting. It is also incompatible with incremental compilation, where
some errors might be unreferenced. Instead, set the field on all
analysis errors, and decide in `Compilation.getAllErrorsAlloc` which
reference trace[s] to actually show.
2025-05-16 11:55:35 +01:00
Alex Rønne Petersen
2116f2e3b2 Compilation: Don't pass -mabi to Clang on powerpc64(le)-freebsd.
The driver doesn't support it, and FreeBSD 13+ on PPC64 uses ELFv2 anyway.
2025-05-10 20:58:28 +02:00
Alex Rønne Petersen
d3a6236eef compiler: Support building FreeBSD crt1.o/Scrt1.o and stub shared libraries.
Only works for FreeBSD 14+. Note that we still default to targeting FreeBSD 13.

Contributes to #2876.
2025-05-10 20:58:15 +02:00
Alex Rønne Petersen
9e23e1d16c compiler: Define __FreeBSD_version when targeting FreeBSD libc. 2025-05-10 12:19:26 +02:00
Alex Rønne Petersen
610d3cf9de compiler: Move vendored library support to libs subdirectory. 2025-05-10 12:19:26 +02:00
mlugg
787020b30b Compilation: don't warn about failure to delete missing C depfile
If clang encountered bad imports, the depfile will not be generated. It
doesn't make sense to warn the user in this case. In fact,
`FileNotFound` is never worth warning about here; it just means that
the file we were deleting to save space isn't there in the first place!
If the missing file actually affected the compilation (e.g. another
process raced to delete it for some reason) we would already error in
the normal code path which reads these files, so we can safely omit the
warning in the `FileNotFound` case always, only warning when the file
might still exist.

To see what this fixes, create the following file...

```c
#include <nonexist>
```

...and run `zig build-obj` on it. Before this commit, you will get a
redundant warning; after this commit, that warning is gone.
2025-05-09 11:52:26 +01:00
Alex Rønne Petersen
7401f06f99 compiler: Set libc++ ABI version to 2 for Emscripten.
It remains 1 everywhere else.

Also remove some code that allowed setting the libc++ ABI version on the
Compilation since there are no current plans to actually expose this in the CLI.
2025-05-05 14:34:05 +02:00
Ali Cheraghi
710f9325ff Compilation: don't build compiler_rt for amdgcn and ubsan_rt for ptx 2025-04-28 10:49:17 +03:30
Kevin Primm
19b43ee627 compiler: Fix -m<os>-version-min=... ordering 2025-04-27 19:28:48 +02:00
mlugg
3783b1b23c std.Build.Cache: fix several bugs
Aside from adding comments to document the logic in `Cache.Manifest.hit`
better, this commit fixes two serious bugs.

The first, spotted by Andrew, is that when upgrading from a shared to an
exclusive lock on the manifest file, we do not seek it back to the
start. This is a simple fix.

The second is more subtle, and has to do with the computation of file
digests. Broadly speaking, the goal of the main loop in `hit` is to
iterate the files listed in the manifest file, and check if they've
changed, based on stat and a file hash. While doing this, the
`bin_digest` field of `std.Build.Cache.File`, which is initially
`undefined`, is populated for all files, either straight from the
manifest (if the stat matches) or recomputed from the file on-disk. This
file digest is then used to update `man.hash.hasher`, which is building
the final hash used as, for instance, the output directory name when the
compiler emits into the cache directory. When `hit` returns a cache
miss, it is expected that `man.hash.hasher` includes the digests of all
"initial files"; that is, those which have been already added with e.g.
`addFilePath`, but not those which will later be added with
`addFilePost` (even though the manifest file has told us about some such
files). Previously, `hit` was using the `unhit` function to do this in a
few cases. However, this is incorrect, because `hit` assumes that all
files already have their `bin_digest` field populated; this function is
only valid to call *after* `hit` returns. Instead, we need to actually
compute the hashes which haven't yet been populated. Even if this logic
has been working, there was still a bug here, because we called `unhit`
when upgrading from a shared to an exclusive lock, writing the
(potentially `undefined`) file digests, but the loop itself writes the
file digests *again*! All in all, the hashing logic here was actually
incredibly broken.

I've taken the opportunity to restructure this section of the code into
what I think is a more readable format. A new function,
`hitWithCurrentLock`, uses the open manifest file to try and find a
cache hit. It returns a tagged union which, in the miss case, tells the
caller (`hit`) how many files already have their hash populated. This
avoids redundant work recomputing the same hash multiple times in
situations where the lock needs upgrading. This also eliminates the
outer loop from `hit`, which was a little confusing because it iterated
no more than twice!

The bugs fixed here could manifest in several different ways depending
on how contended file locks were satisfied. Most notably, on a cache
miss, the Zig compiler might have written the compilation output to the
incorrect directory (because it incorrectly constructed a hash using
`undefined` or repeated file digests), resulting in all future hits on
this manifest causing `error.FileNotFound`. This is #23110. I have been
able to reproduce #23110 on `master`, and have not been able to after
this commit, so I am relatively sure this commit resolves that issue.

Resolves: #23110
2025-04-27 05:42:18 +01:00
Alex Rønne Petersen
b3537d0f4a compiler: Allow configuring UBSan mode at the module level.
* Accept -fsanitize-c=trap|full in addition to the existing form.
* Accept -f(no-)sanitize-trap=undefined in zig cc.
* Change type of std.Build.Module.sanitize_c to std.zig.SanitizeC.
* Add some missing Compilation.Config fields to the cache.

Closes #23216.
2025-04-26 22:54:34 +02:00
Matthew Lugg
6a7ca4b8b0 Merge pull request #23617 from mlugg/incr-fixes
incremental: fixes
2025-04-22 18:04:52 +01:00
Ali Cheraghi
13541bc1c0 Module: ignore xnack and sramecc features on some gpu models 2025-04-21 09:49:19 +02:00
mlugg
8c9c24e09b compiler: integrate @compileLog with incremental compilation
Compile log output is now separated based on the `AnalUnit` which
perfomred the `@compileLog` call, so that we can omit the output for
unreferenced ("dead") units. The units are also sorted when collecting
the `ErrorBundle`, so that compile logs are always printed in a
consistent order, like compile errors are. This is important not only
for incremental compilation, but also for parallel analysis.

Resolves: #23609
2025-04-20 18:11:53 +01:00
Alex Rønne Petersen
9352f379e8 Merge pull request #23529 from alexrp/2879-groundwork
Introduce libzigc for libc function implementations in Zig
2025-04-12 18:14:17 +02:00
Alex Rønne Petersen
1f896c1bf8 Introduce libzigc for libc function implementations in Zig.
This lays the groundwork for #2879. This library will be built and linked when a
static libc is going to be linked into the compilation. Currently, that means
musl, wasi-libc, and MinGW-w64. As a demonstration, this commit removes the musl
C code for a few string functions and implements them in libzigc. This means
that those libzigc functions are now load-bearing for musl and wasi-libc.

Note that if a function has an implementation in compiler-rt already, libzigc
should not implement it. Instead, as we recently did for memcpy/memmove, we
should delete the libc copy and rely on the compiler-rt implementation.

I repurposed the existing "universal libc" code to do this. That code hadn't
seen development beyond basic string functions in years, and was only usable-ish
on freestanding. I think that if we want to seriously pursue the idea of Zig
providing a freestanding libc, we should do so only after defining clear goals
(and non-goals) for it. See also #22240 for a similar case.
2025-04-11 17:12:31 +02:00
Alex Rønne Petersen
a9ff2d56ce Compilation: Pass -m<os>-version-min=... to Clang for all applicable Darwin targets. 2025-04-10 22:11:13 +02:00
Techatrix
3830fc041b Compilation: Fix logic in addCCArgs() for various file types and flags.
Co-authored-by: Alex Rønne Petersen <alex@alexrp.com>
2025-04-09 10:12:42 +02:00
imreallybadatnames™️
7733b5dbe6 Merge pull request #23501 from imreallybadatnames/master
Step.Compile: use LtoMode enum for lto option
2025-04-09 05:16:36 +00:00
Alex Rønne Petersen
9e4199d629 Compilation: Remove the PowerPC soft float preprocessor workaround.
Closes #21411.
2025-04-04 06:08:10 +02:00