Files
zig/src/codegen/spirv.zig
Robin Voetter 200bca360e spirv: replace most use of spv.ptrType with self.ptrType
To support self-referential pointers, in the future we will
need to pass the Zig type to any pointer that is created. This
lays some ground work for that by replacing most uses of
spv.ptrType with a new ptrType function that also accepts the
Zig type. This function's contents will soon be replaced by
a version that also supports self-referential pointers.

Also fixed some bugs regarding the use of direct/indirect.
2023-10-21 17:46:50 +02:00

4442 lines
189 KiB
Zig

const std = @import("std");
const Allocator = std.mem.Allocator;
const Target = std.Target;
const log = std.log.scoped(.codegen);
const assert = std.debug.assert;
const Module = @import("../Module.zig");
const Decl = Module.Decl;
const Type = @import("../type.zig").Type;
const Value = @import("../value.zig").Value;
const LazySrcLoc = Module.LazySrcLoc;
const Air = @import("../Air.zig");
const Zir = @import("../Zir.zig");
const Liveness = @import("../Liveness.zig");
const InternPool = @import("../InternPool.zig");
const spec = @import("spirv/spec.zig");
const Opcode = spec.Opcode;
const Word = spec.Word;
const IdRef = spec.IdRef;
const IdResult = spec.IdResult;
const IdResultType = spec.IdResultType;
const StorageClass = spec.StorageClass;
const SpvModule = @import("spirv/Module.zig");
const CacheRef = SpvModule.CacheRef;
const CacheString = SpvModule.CacheString;
const SpvSection = @import("spirv/Section.zig");
const SpvAssembler = @import("spirv/Assembler.zig");
const InstMap = std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef);
/// We want to store some extra facts about types as mapped from Zig to SPIR-V.
/// This structure is used to keep that extra information, as well as
/// the cached reference to the type.
const SpvTypeInfo = struct {
ty_ref: CacheRef,
};
const TypeMap = std.AutoHashMapUnmanaged(InternPool.Index, SpvTypeInfo);
const IncomingBlock = struct {
src_label_id: IdRef,
break_value_id: IdRef,
};
const Block = struct {
label_id: ?IdRef,
incoming_blocks: std.ArrayListUnmanaged(IncomingBlock),
};
const BlockMap = std.AutoHashMapUnmanaged(Air.Inst.Index, *Block);
/// This structure holds information that is relevant to the entire compilation,
/// in contrast to `DeclGen`, which only holds relevant information about a
/// single decl.
pub const Object = struct {
/// A general-purpose allocator that can be used for any allocation for this Object.
gpa: Allocator,
/// the SPIR-V module that represents the final binary.
spv: SpvModule,
/// The Zig module that this object file is generated for.
/// A map of Zig decl indices to SPIR-V decl indices.
decl_link: std.AutoHashMapUnmanaged(Decl.Index, SpvModule.Decl.Index) = .{},
/// A map of Zig InternPool indices for anonymous decls to SPIR-V decl indices.
anon_decl_link: std.AutoHashMapUnmanaged(struct { InternPool.Index, StorageClass }, SpvModule.Decl.Index) = .{},
/// A map that maps AIR intern pool indices to SPIR-V cache references (which
/// is basically the same thing except for SPIR-V).
/// This map is typically only used for structures that are deemed heavy enough
/// that it is worth to store them here. The SPIR-V module also interns types,
/// and so the main purpose of this map is to avoid recomputation and to
/// cache extra information about the type rather than to aid in validity
/// of the SPIR-V module.
type_map: TypeMap = .{},
pub fn init(gpa: Allocator) Object {
return .{
.gpa = gpa,
.spv = SpvModule.init(gpa),
};
}
pub fn deinit(self: *Object) void {
self.spv.deinit();
self.decl_link.deinit(self.gpa);
self.anon_decl_link.deinit(self.gpa);
self.type_map.deinit(self.gpa);
}
fn genDecl(
self: *Object,
mod: *Module,
decl_index: Decl.Index,
air: Air,
liveness: Liveness,
) !void {
var decl_gen = DeclGen{
.gpa = self.gpa,
.object = self,
.module = mod,
.spv = &self.spv,
.decl_index = decl_index,
.air = air,
.liveness = liveness,
.type_map = &self.type_map,
.current_block_label_id = undefined,
};
defer decl_gen.deinit();
decl_gen.genDecl() catch |err| switch (err) {
error.CodegenFail => {
try mod.failed_decls.put(mod.gpa, decl_index, decl_gen.error_msg.?);
},
else => |other| {
// There might be an error that happened *after* self.error_msg
// was already allocated, so be sure to free it.
if (decl_gen.error_msg) |error_msg| {
error_msg.deinit(mod.gpa);
}
return other;
},
};
}
pub fn updateFunc(
self: *Object,
mod: *Module,
func_index: InternPool.Index,
air: Air,
liveness: Liveness,
) !void {
const decl_index = mod.funcInfo(func_index).owner_decl;
// TODO: Separate types for generating decls and functions?
try self.genDecl(mod, decl_index, air, liveness);
}
pub fn updateDecl(
self: *Object,
mod: *Module,
decl_index: Decl.Index,
) !void {
try self.genDecl(mod, decl_index, undefined, undefined);
}
/// Fetch or allocate a result id for decl index. This function also marks the decl as alive.
/// Note: Function does not actually generate the decl, it just allocates an index.
pub fn resolveDecl(self: *Object, mod: *Module, decl_index: Decl.Index) !SpvModule.Decl.Index {
const decl = mod.declPtr(decl_index);
try mod.markDeclAlive(decl);
const entry = try self.decl_link.getOrPut(self.gpa, decl_index);
if (!entry.found_existing) {
// TODO: Extern fn?
const kind: SpvModule.DeclKind = if (decl.val.isFuncBody(mod))
.func
else
.global;
entry.value_ptr.* = try self.spv.allocDecl(kind);
}
return entry.value_ptr.*;
}
};
/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
const DeclGen = struct {
/// A general-purpose allocator that can be used for any allocations for this DeclGen.
gpa: Allocator,
/// The object that this decl is generated into.
object: *Object,
/// The Zig module that we are generating decls for.
module: *Module,
/// The SPIR-V module that instructions should be emitted into.
/// This is the same as `self.object.spv`, repeated here for brevity.
spv: *SpvModule,
/// The decl we are currently generating code for.
decl_index: Decl.Index,
/// The intermediate code of the declaration we are currently generating. Note: If
/// the declaration is not a function, this value will be undefined!
air: Air,
/// The liveness analysis of the intermediate code for the declaration we are currently generating.
/// Note: If the declaration is not a function, this value will be undefined!
liveness: Liveness,
/// An array of function argument result-ids. Each index corresponds with the
/// function argument of the same index.
args: std.ArrayListUnmanaged(IdRef) = .{},
/// A counter to keep track of how many `arg` instructions we've seen yet.
next_arg_index: u32 = 0,
/// A map keeping track of which instruction generated which result-id.
inst_results: InstMap = .{},
/// A map that maps AIR intern pool indices to SPIR-V cache references.
/// See Object.type_map
type_map: *TypeMap,
/// We need to keep track of result ids for block labels, as well as the 'incoming'
/// blocks for a block.
blocks: BlockMap = .{},
/// The label of the SPIR-V block we are currently generating.
current_block_label_id: IdRef,
/// The code (prologue and body) for the function we are currently generating code for.
func: SpvModule.Fn = .{},
/// Stack of the base offsets of the current decl, which is what `dbg_stmt` is relative to.
/// This is a stack to keep track of inline functions.
base_line_stack: std.ArrayListUnmanaged(u32) = .{},
/// If `gen` returned `Error.CodegenFail`, this contains an explanatory message.
/// Memory is owned by `module.gpa`.
error_msg: ?*Module.ErrorMsg = null,
/// Possible errors the `genDecl` function may return.
const Error = error{ CodegenFail, OutOfMemory };
/// This structure is used to return information about a type typically used for
/// arithmetic operations. These types may either be integers, floats, or a vector
/// of these. Most scalar operations also work on vectors, so we can easily represent
/// those as arithmetic types. If the type is a scalar, 'inner type' refers to the
/// scalar type. Otherwise, if its a vector, it refers to the vector's element type.
const ArithmeticTypeInfo = struct {
/// A classification of the inner type.
const Class = enum {
/// A boolean.
bool,
/// A regular, **native**, integer.
/// This is only returned when the backend supports this int as a native type (when
/// the relevant capability is enabled).
integer,
/// A regular float. These are all required to be natively supported. Floating points
/// for which the relevant capability is not enabled are not emulated.
float,
/// An integer of a 'strange' size (which' bit size is not the same as its backing
/// type. **Note**: this may **also** include power-of-2 integers for which the
/// relevant capability is not enabled), but still within the limits of the largest
/// natively supported integer type.
strange_integer,
/// An integer with more bits than the largest natively supported integer type.
composite_integer,
};
/// The number of bits in the inner type.
/// This is the actual number of bits of the type, not the size of the backing integer.
bits: u16,
/// The number of bits required to store the type.
/// For `integer` and `float`, this is equal to `bits`.
/// For `strange_integer` and `bool` this is the size of the backing integer.
/// For `composite_integer` this is 0 (TODO)
backing_bits: u16,
/// Whether the type is a vector.
is_vector: bool,
/// Whether the inner type is signed. Only relevant for integers.
signedness: std.builtin.Signedness,
/// A classification of the inner type. These scenarios
/// will all have to be handled slightly different.
class: Class,
};
/// Data can be lowered into in two basic representations: indirect, which is when
/// a type is stored in memory, and direct, which is how a type is stored when its
/// a direct SPIR-V value.
const Repr = enum {
/// A SPIR-V value as it would be used in operations.
direct,
/// A SPIR-V value as it is stored in memory.
indirect,
};
/// Free resources owned by the DeclGen.
pub fn deinit(self: *DeclGen) void {
self.args.deinit(self.gpa);
self.inst_results.deinit(self.gpa);
self.blocks.deinit(self.gpa);
self.func.deinit(self.gpa);
self.base_line_stack.deinit(self.gpa);
}
/// Return the target which we are currently compiling for.
pub fn getTarget(self: *DeclGen) std.Target {
return self.module.getTarget();
}
pub fn fail(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
@setCold(true);
const mod = self.module;
const src = LazySrcLoc.nodeOffset(0);
const src_loc = src.toSrcLoc(self.module.declPtr(self.decl_index), mod);
assert(self.error_msg == null);
self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, format, args);
return error.CodegenFail;
}
pub fn todo(self: *DeclGen, comptime format: []const u8, args: anytype) Error {
return self.fail("TODO (SPIR-V): " ++ format, args);
}
/// Fetch the result-id for a previously generated instruction or constant.
fn resolve(self: *DeclGen, inst: Air.Inst.Ref) !IdRef {
const mod = self.module;
if (try self.air.value(inst, mod)) |val| {
const ty = self.typeOf(inst);
if (ty.zigTypeTag(mod) == .Fn) {
const fn_decl_index = switch (mod.intern_pool.indexToKey(val.ip_index)) {
.extern_func => |extern_func| extern_func.decl,
.func => |func| func.owner_decl,
else => unreachable,
};
const spv_decl_index = try self.object.resolveDecl(mod, fn_decl_index);
try self.func.decl_deps.put(self.spv.gpa, spv_decl_index, {});
return self.spv.declPtr(spv_decl_index).result_id;
}
return try self.constant(ty, val, .direct);
}
const index = Air.refToIndex(inst).?;
return self.inst_results.get(index).?; // Assertion means instruction does not dominate usage.
}
fn resolveAnonDecl(self: *DeclGen, val: InternPool.Index, storage_class: StorageClass) !IdRef {
// TODO: This cannot be a function at this point, but it should probably be handled anyway.
const spv_decl_index = blk: {
const entry = try self.object.anon_decl_link.getOrPut(self.object.gpa, .{ val, storage_class });
if (entry.found_existing) {
try self.func.decl_deps.put(self.spv.gpa, entry.value_ptr.*, {});
return self.spv.declPtr(entry.value_ptr.*).result_id;
}
const spv_decl_index = try self.spv.allocDecl(.global);
try self.func.decl_deps.put(self.spv.gpa, spv_decl_index, {});
entry.value_ptr.* = spv_decl_index;
break :blk spv_decl_index;
};
const mod = self.module;
const ty = mod.intern_pool.typeOf(val).toType();
const ptr_ty_ref = try self.ptrType(ty, storage_class);
const var_id = self.spv.declPtr(spv_decl_index).result_id;
const section = &self.spv.sections.types_globals_constants;
try section.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = self.typeId(ptr_ty_ref),
.id_result = var_id,
.storage_class = storage_class,
});
// TODO: At some point we will be able to generate this all constant here, but then all of
// constant() will need to be implemented such that it doesn't generate any at-runtime code.
// NOTE: Because this is a global, we really only want to initialize it once. Therefore the
// constant lowering of this value will need to be deferred to some other function, which
// is then added to the list of initializers using endGlobal().
// Save the current state so that we can temporarily generate into a different function.
// TODO: This should probably be made a little more robust.
const func = self.func;
defer self.func = func;
const block_label_id = self.current_block_label_id;
defer self.current_block_label_id = block_label_id;
self.func = .{};
// TODO: Merge this with genDecl?
const begin = self.spv.beginGlobal();
const void_ty_ref = try self.resolveType(Type.void, .direct);
const initializer_proto_ty_ref = try self.spv.resolve(.{ .function_type = .{
.return_type = void_ty_ref,
.parameters = &.{},
} });
const initializer_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = self.typeId(void_ty_ref),
.id_result = initializer_id,
.function_control = .{},
.function_type = self.typeId(initializer_proto_ty_ref),
});
const root_block_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
.id_result = root_block_id,
});
self.current_block_label_id = root_block_id;
const val_id = try self.constant(ty, val.toValue(), .indirect);
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = var_id,
.object = val_id,
});
self.spv.endGlobal(spv_decl_index, begin, var_id, initializer_id);
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
try self.spv.addFunction(spv_decl_index, self.func);
try self.spv.debugNameFmt(var_id, "__anon_{d}", .{@intFromEnum(val)});
try self.spv.debugNameFmt(initializer_id, "initializer of __anon_{d}", .{@intFromEnum(val)});
return var_id;
}
/// Start a new SPIR-V block, Emits the label of the new block, and stores which
/// block we are currently generating.
/// Note that there is no such thing as nested blocks like in ZIR or AIR, so we don't need to
/// keep track of the previous block.
fn beginSpvBlock(self: *DeclGen, label_id: IdResult) !void {
try self.func.body.emit(self.spv.gpa, .OpLabel, .{ .id_result = label_id });
self.current_block_label_id = label_id;
}
/// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
/// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
/// included), the width of the underlying type which represents it, given the enabled features for the current target.
/// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
/// that size. In this case, multiple elements of the largest type should be used.
/// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
/// The result is valid to be used with OpTypeInt.
/// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
/// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
/// TODO: Should the result of this function be cached?
fn backingIntBits(self: *DeclGen, bits: u16) ?u16 {
const target = self.getTarget();
// The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function.
assert(bits != 0);
// 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
// 32-bit integers are always supported (see spec, 2.16.1, Data rules).
const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
.{ .bits = 8, .feature = .Int8 },
.{ .bits = 16, .feature = .Int16 },
.{ .bits = 32, .feature = null },
.{ .bits = 64, .feature = .Int64 },
};
for (ints) |int| {
const has_feature = if (int.feature) |feature|
Target.spirv.featureSetHas(target.cpu.features, feature)
else
true;
if (bits <= int.bits and has_feature) {
return int.bits;
}
}
return null;
}
/// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
/// the Int64 capability is enabled).
/// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
/// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
/// is no way of knowing whether those are actually supported.
/// TODO: Maybe this should be cached?
fn largestSupportedIntBits(self: *DeclGen) u16 {
const target = self.getTarget();
return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
64
else
32;
}
/// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
/// arrays of largestSupportedIntBits().
/// Asserts `ty` is an integer.
fn isCompositeInt(self: *DeclGen, ty: Type) bool {
return self.backingIntBits(ty) == null;
}
fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo {
const mod = self.module;
const target = self.getTarget();
return switch (ty.zigTypeTag(mod)) {
.Bool => ArithmeticTypeInfo{
.bits = 1, // Doesn't matter for this class.
.backing_bits = self.backingIntBits(1).?,
.is_vector = false,
.signedness = .unsigned, // Technically, but doesn't matter for this class.
.class = .bool,
},
.Float => ArithmeticTypeInfo{
.bits = ty.floatBits(target),
.backing_bits = ty.floatBits(target), // TODO: F80?
.is_vector = false,
.signedness = .signed, // Technically, but doesn't matter for this class.
.class = .float,
},
.Int => blk: {
const int_info = ty.intInfo(mod);
// TODO: Maybe it's useful to also return this value.
const maybe_backing_bits = self.backingIntBits(int_info.bits);
break :blk ArithmeticTypeInfo{
.bits = int_info.bits,
.backing_bits = maybe_backing_bits orelse 0,
.is_vector = false,
.signedness = int_info.signedness,
.class = if (maybe_backing_bits) |backing_bits|
if (backing_bits == int_info.bits)
ArithmeticTypeInfo.Class.integer
else
ArithmeticTypeInfo.Class.strange_integer
else
.composite_integer,
};
},
.Enum => return self.arithmeticTypeInfo(ty.intTagType(mod)),
// As of yet, there is no vector support in the self-hosted compiler.
.Vector => blk: {
const child_type = ty.childType(mod);
const child_ty_info = try self.arithmeticTypeInfo(child_type);
break :blk ArithmeticTypeInfo{
.bits = child_ty_info.bits,
.backing_bits = child_ty_info.backing_bits,
.is_vector = true,
.signedness = child_ty_info.signedness,
.class = child_ty_info.class,
};
},
// TODO: For which types is this the case?
// else => self.todo("implement arithmeticTypeInfo for {}", .{ty.fmt(self.module)}),
else => unreachable,
};
}
/// Emits a bool constant in a particular representation.
fn constBool(self: *DeclGen, value: bool, repr: Repr) !IdRef {
switch (repr) {
.indirect => {
const int_ty_ref = try self.intType(.unsigned, 1);
return self.constInt(int_ty_ref, @intFromBool(value));
},
.direct => {
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
return self.spv.constBool(bool_ty_ref, value);
},
}
}
/// Emits an integer constant.
/// This function, unlike SpvModule.constInt, takes care to bitcast
/// the value to an unsigned int first for Kernels.
fn constInt(self: *DeclGen, ty_ref: CacheRef, value: anytype) !IdRef {
if (value < 0) {
const ty = self.spv.cache.lookup(ty_ref).int_type;
// Manually truncate the value so that the resulting value
// fits within the unsigned type.
const bits: u64 = @bitCast(@as(i64, @intCast(value)));
const truncated_bits = if (ty.bits == 64)
bits
else
bits & (@as(u64, 1) << @intCast(ty.bits)) - 1;
return try self.spv.constInt(ty_ref, truncated_bits);
} else {
return try self.spv.constInt(ty_ref, value);
}
}
/// Construct a struct at runtime.
/// result_ty_ref must be a struct type.
/// Constituents should be in `indirect` representation (as the elements of a struct should be).
/// Result is in `direct` representation.
fn constructStruct(self: *DeclGen, result_ty_ref: CacheRef, constituents: []const IdRef) !IdRef {
// The Khronos LLVM-SPIRV translator crashes because it cannot construct structs which'
// operands are not constant.
// See https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/1349
// For now, just initialize the struct by setting the fields manually...
// TODO: Make this OpCompositeConstruct when we can
const ptr_ty_ref = try self.spv.ptrType(result_ty_ref, .Function);
const ptr_composite_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = self.typeId(ptr_ty_ref),
.id_result = ptr_composite_id,
.storage_class = .Function,
});
const spv_composite_ty = self.spv.cache.lookup(result_ty_ref).struct_type;
const member_types = spv_composite_ty.member_types;
for (constituents, member_types, 0..) |constitent_id, member_ty_ref, index| {
const ptr_member_ty_ref = try self.spv.ptrType(member_ty_ref, .Function);
const ptr_id = try self.accessChain(ptr_member_ty_ref, ptr_composite_id, &.{@as(u32, @intCast(index))});
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = ptr_id,
.object = constitent_id,
});
}
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = result_id,
.pointer = ptr_composite_id,
});
return result_id;
}
/// Construct an array at runtime.
/// result_ty_ref must be an array type.
/// Constituents should be in `indirect` representation (as the elements of an array should be).
/// Result is in `direct` representation.
fn constructArray(self: *DeclGen, ty: Type, constituents: []const IdRef) !IdRef {
// The Khronos LLVM-SPIRV translator crashes because it cannot construct structs which'
// operands are not constant.
// See https://github.com/KhronosGroup/SPIRV-LLVM-Translator/issues/1349
// For now, just initialize the struct by setting the fields manually...
// TODO: Make this OpCompositeConstruct when we can
const mod = self.module;
const ptr_composite_id = try self.alloc(ty, .{ .storage_class = .Function });
const ptr_elem_ty_ref = try self.ptrType(ty.elemType2(mod), .Function);
for (constituents, 0..) |constitent_id, index| {
const ptr_id = try self.accessChain(ptr_elem_ty_ref, ptr_composite_id, &.{@as(u32, @intCast(index))});
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = ptr_id,
.object = constitent_id,
});
}
return try self.load(ty, ptr_composite_id, .{});
}
/// This function generates a load for a constant in direct (ie, non-memory) representation.
/// When the constant is simple, it can be generated directly using OpConstant instructions.
/// When the constant is more complicated however, it needs to be constructed using multiple values. This
/// is done by emitting a sequence of instructions that initialize the value.
//
/// This function should only be called during function code generation.
fn constant(self: *DeclGen, ty: Type, arg_val: Value, repr: Repr) !IdRef {
const mod = self.module;
const target = self.getTarget();
const result_ty_ref = try self.resolveType(ty, repr);
const ip = &mod.intern_pool;
var val = arg_val;
switch (ip.indexToKey(val.toIntern())) {
.runtime_value => |rt| val = rt.val.toValue(),
else => {},
}
log.debug("constant: ty = {}, val = {}", .{ ty.fmt(mod), val.fmtValue(ty, mod) });
if (val.isUndefDeep(mod)) {
return self.spv.constUndef(result_ty_ref);
}
switch (ip.indexToKey(val.toIntern())) {
.int_type,
.ptr_type,
.array_type,
.vector_type,
.opt_type,
.anyframe_type,
.error_union_type,
.simple_type,
.struct_type,
.anon_struct_type,
.union_type,
.opaque_type,
.enum_type,
.func_type,
.error_set_type,
.inferred_error_set_type,
=> unreachable, // types, not values
.undef, .runtime_value => unreachable, // handled above
.variable,
.extern_func,
.func,
.enum_literal,
.empty_enum_value,
=> unreachable, // non-runtime values
.simple_value => |simple_value| switch (simple_value) {
.undefined,
.void,
.null,
.empty_struct,
.@"unreachable",
.generic_poison,
=> unreachable, // non-runtime values
.false, .true => return try self.constBool(val.toBool(), repr),
},
.int => {
if (ty.isSignedInt(mod)) {
return try self.constInt(result_ty_ref, val.toSignedInt(mod));
} else {
return try self.constInt(result_ty_ref, val.toUnsignedInt(mod));
}
},
.float => return switch (ty.floatBits(target)) {
16 => try self.spv.resolveId(.{ .float = .{ .ty = result_ty_ref, .value = .{ .float16 = val.toFloat(f16, mod) } } }),
32 => try self.spv.resolveId(.{ .float = .{ .ty = result_ty_ref, .value = .{ .float32 = val.toFloat(f32, mod) } } }),
64 => try self.spv.resolveId(.{ .float = .{ .ty = result_ty_ref, .value = .{ .float64 = val.toFloat(f64, mod) } } }),
80, 128 => unreachable, // TODO
else => unreachable,
},
.err => |err| {
const value = try mod.getErrorValue(err.name);
return try self.constInt(result_ty_ref, value);
},
.error_union => |error_union| {
// TODO: Error unions may be constructed with constant instructions if the payload type
// allows it. For now, just generate it here regardless.
const err_ty = switch (error_union.val) {
.err_name => ty.errorUnionSet(mod),
.payload => Type.err_int,
};
const err_val = switch (error_union.val) {
.err_name => |err_name| (try mod.intern(.{ .err = .{
.ty = ty.errorUnionSet(mod).toIntern(),
.name = err_name,
} })).toValue(),
.payload => try mod.intValue(Type.err_int, 0),
};
const payload_ty = ty.errorUnionPayload(mod);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
// We use the error type directly as the type.
return try self.constant(err_ty, err_val, .indirect);
}
const payload_val = switch (error_union.val) {
.err_name => try mod.intern(.{ .undef = payload_ty.toIntern() }),
.payload => |payload| payload,
}.toValue();
var constituents: [2]IdRef = undefined;
if (eu_layout.error_first) {
constituents[0] = try self.constant(err_ty, err_val, .indirect);
constituents[1] = try self.constant(payload_ty, payload_val, .indirect);
} else {
constituents[0] = try self.constant(payload_ty, payload_val, .indirect);
constituents[1] = try self.constant(err_ty, err_val, .indirect);
}
return try self.constructStruct(result_ty_ref, &constituents);
},
.enum_tag => {
const int_val = try val.intFromEnum(ty, mod);
const int_ty = ty.intTagType(mod);
return try self.constant(int_ty, int_val, repr);
},
.ptr => |ptr| {
const ptr_ty = switch (ptr.len) {
.none => ty,
else => ty.slicePtrFieldType(mod),
};
const ptr_id = try self.constantPtr(ptr_ty, val);
if (ptr.len == .none) {
return ptr_id;
}
const len_id = try self.constant(Type.usize, ptr.len.toValue(), .indirect);
return try self.constructStruct(result_ty_ref, &.{ ptr_id, len_id });
},
.opt => {
const payload_ty = ty.optionalChild(mod);
const maybe_payload_val = val.optionalValue(mod);
if (!payload_ty.hasRuntimeBits(mod)) {
return try self.constBool(maybe_payload_val != null, .indirect);
} else if (ty.optionalReprIsPayload(mod)) {
// Optional representation is a nullable pointer or slice.
if (maybe_payload_val) |payload_val| {
return try self.constant(payload_ty, payload_val, .indirect);
} else {
const ptr_ty_ref = try self.resolveType(ty, .indirect);
return self.spv.constNull(ptr_ty_ref);
}
}
// Optional representation is a structure.
// { Payload, Bool }
const has_pl_id = try self.constBool(maybe_payload_val != null, .indirect);
const payload_id = if (maybe_payload_val) |payload_val|
try self.constant(payload_ty, payload_val, .indirect)
else
try self.spv.constUndef(try self.resolveType(payload_ty, .indirect));
return try self.constructStruct(result_ty_ref, &.{ payload_id, has_pl_id });
},
.aggregate => |aggregate| switch (ip.indexToKey(ty.ip_index)) {
inline .array_type, .vector_type => |array_type, tag| {
const elem_ty = array_type.child.toType();
const elem_ty_ref = try self.resolveType(elem_ty, .indirect);
const constituents = try self.gpa.alloc(IdRef, @as(u32, @intCast(ty.arrayLenIncludingSentinel(mod))));
defer self.gpa.free(constituents);
switch (aggregate.storage) {
.bytes => |bytes| {
// TODO: This is really space inefficient, perhaps there is a better
// way to do it?
for (bytes, 0..) |byte, i| {
constituents[i] = try self.constInt(elem_ty_ref, byte);
}
},
.elems => |elems| {
for (0..@as(usize, @intCast(array_type.len))) |i| {
constituents[i] = try self.constant(elem_ty, elems[i].toValue(), .indirect);
}
},
.repeated_elem => |elem| {
const val_id = try self.constant(elem_ty, elem.toValue(), .indirect);
for (0..@as(usize, @intCast(array_type.len))) |i| {
constituents[i] = val_id;
}
},
}
switch (tag) {
inline .array_type => if (array_type.sentinel != .none) {
constituents[constituents.len - 1] = try self.constant(elem_ty, array_type.sentinel.toValue(), .indirect);
},
else => {},
}
return try self.constructArray(ty, constituents);
},
.struct_type => {
const struct_type = mod.typeToStruct(ty).?;
if (struct_type.layout == .Packed) {
return self.todo("packed struct constants", .{});
}
var constituents = std.ArrayList(IdRef).init(self.gpa);
defer constituents.deinit();
var it = struct_type.iterateRuntimeOrder(ip);
while (it.next()) |field_index| {
const field_ty = struct_type.field_types.get(ip)[field_index].toType();
if (!field_ty.hasRuntimeBitsIgnoreComptime(mod)) {
// This is a zero-bit field - we only needed it for the alignment.
continue;
}
// TODO: Padding?
const field_val = try val.fieldValue(mod, field_index);
const field_id = try self.constant(field_ty, field_val, .indirect);
try constituents.append(field_id);
}
return try self.constructStruct(result_ty_ref, constituents.items);
},
.anon_struct_type => unreachable, // TODO
else => unreachable,
},
.un => |un| {
const active_field = ty.unionTagFieldIndex(un.tag.toValue(), mod).?;
const layout = self.unionLayout(ty, active_field);
const payload = if (layout.active_field_size != 0)
try self.constant(layout.active_field_ty, un.val.toValue(), .direct)
else
null;
return try self.unionInit(ty, active_field, payload);
},
.memoized_call => unreachable,
}
}
fn constantPtr(self: *DeclGen, ptr_ty: Type, ptr_val: Value) Error!IdRef {
const result_ty_ref = try self.resolveType(ptr_ty, .direct);
const mod = self.module;
switch (mod.intern_pool.indexToKey(ptr_val.toIntern()).ptr.addr) {
.decl => |decl| return try self.constantDeclRef(ptr_ty, decl),
.mut_decl => |decl_mut| return try self.constantDeclRef(ptr_ty, decl_mut.decl),
.anon_decl => |anon_decl| return try self.constantAnonDeclRef(ptr_ty, anon_decl),
.int => |int| {
const ptr_id = self.spv.allocId();
// TODO: This can probably be an OpSpecConstantOp Bitcast, but
// that is not implemented by Mesa yet. Therefore, just generate it
// as a runtime operation.
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = ptr_id,
.integer_value = try self.constant(Type.usize, int.toValue(), .direct),
});
return ptr_id;
},
.eu_payload => unreachable, // TODO
.opt_payload => unreachable, // TODO
.comptime_field => unreachable,
.elem => |elem_ptr| {
const parent_ptr_ty = mod.intern_pool.typeOf(elem_ptr.base).toType();
const parent_ptr_id = try self.constantPtr(parent_ptr_ty, elem_ptr.base.toValue());
const size_ty_ref = try self.sizeType();
const index_id = try self.constInt(size_ty_ref, elem_ptr.index);
const elem_ptr_id = try self.ptrElemPtr(parent_ptr_ty, parent_ptr_id, index_id);
// TODO: Can we consolidate this in ptrElemPtr?
const elem_ty = parent_ptr_ty.elemType2(mod); // use elemType() so that we get T for *[N]T.
const elem_ptr_ty_ref = try self.ptrType(elem_ty, spvStorageClass(parent_ptr_ty.ptrAddressSpace(mod)));
if (elem_ptr_ty_ref == result_ty_ref) {
return elem_ptr_id;
}
// This may happen when we have pointer-to-array and the result is
// another pointer-to-array instead of a pointer-to-element.
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = result_id,
.operand = elem_ptr_id,
});
return result_id;
},
.field => |field| {
const base_ptr_ty = mod.intern_pool.typeOf(field.base).toType();
const base_ptr = try self.constantPtr(base_ptr_ty, field.base.toValue());
const field_index: u32 = @intCast(field.index);
return try self.structFieldPtr(ptr_ty, base_ptr_ty, base_ptr, field_index);
},
}
}
fn constantAnonDeclRef(self: *DeclGen, ty: Type, decl_val: InternPool.Index) !IdRef {
// TODO: Merge this function with constantDeclRef.
const mod = self.module;
const ip = &mod.intern_pool;
const ty_ref = try self.resolveType(ty, .direct);
const decl_ty = ip.typeOf(decl_val).toType();
if (decl_val.toValue().getFunction(mod)) |func| {
_ = func;
unreachable; // TODO
} else if (decl_val.toValue().getExternFunc(mod)) |func| {
_ = func;
unreachable;
}
// const is_fn_body = decl_ty.zigTypeTag(mod) == .Fn;
if (!decl_ty.isFnOrHasRuntimeBitsIgnoreComptime(mod)) {
// Pointer to nothing - return undefoined
return self.spv.constUndef(ty_ref);
}
if (decl_ty.zigTypeTag(mod) == .Fn) {
unreachable; // TODO
}
const final_storage_class = spvStorageClass(ty.ptrAddressSpace(mod));
const actual_storage_class = switch (final_storage_class) {
.Generic => .CrossWorkgroup,
else => |other| other,
};
const decl_id = try self.resolveAnonDecl(decl_val, actual_storage_class);
const decl_ptr_ty_ref = try self.ptrType(decl_ty, final_storage_class);
const ptr_id = switch (final_storage_class) {
.Generic => blk: {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpPtrCastToGeneric, .{
.id_result_type = self.typeId(decl_ptr_ty_ref),
.id_result = result_id,
.pointer = decl_id,
});
break :blk result_id;
},
else => decl_id,
};
if (decl_ptr_ty_ref != ty_ref) {
// Differing pointer types, insert a cast.
const casted_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = self.typeId(ty_ref),
.id_result = casted_ptr_id,
.operand = ptr_id,
});
return casted_ptr_id;
} else {
return ptr_id;
}
}
fn constantDeclRef(self: *DeclGen, ty: Type, decl_index: Decl.Index) !IdRef {
const mod = self.module;
const ty_ref = try self.resolveType(ty, .direct);
const ty_id = self.typeId(ty_ref);
const decl = mod.declPtr(decl_index);
switch (mod.intern_pool.indexToKey(decl.val.ip_index)) {
.func => {
// TODO: Properly lower function pointers. For now we are going to hack around it and
// just generate an empty pointer. Function pointers are represented by a pointer to usize.
return try self.spv.constUndef(ty_ref);
},
.extern_func => unreachable, // TODO
else => {},
}
if (!decl.ty.isFnOrHasRuntimeBitsIgnoreComptime(mod)) {
// Pointer to nothing - return undefined.
return self.spv.constUndef(ty_ref);
}
const spv_decl_index = try self.object.resolveDecl(mod, decl_index);
const decl_id = self.spv.declPtr(spv_decl_index).result_id;
try self.func.decl_deps.put(self.spv.gpa, spv_decl_index, {});
const final_storage_class = spvStorageClass(decl.@"addrspace");
const decl_ptr_ty_ref = try self.ptrType(decl.ty, final_storage_class);
const ptr_id = switch (final_storage_class) {
.Generic => blk: {
// Pointer should be Generic, but is actually placed in CrossWorkgroup.
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpPtrCastToGeneric, .{
.id_result_type = self.typeId(decl_ptr_ty_ref),
.id_result = result_id,
.pointer = decl_id,
});
break :blk result_id;
},
else => decl_id,
};
if (decl_ptr_ty_ref != ty_ref) {
// Differing pointer types, insert a cast.
const casted_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = ty_id,
.id_result = casted_ptr_id,
.operand = ptr_id,
});
return casted_ptr_id;
} else {
return ptr_id;
}
}
// Turn a Zig type's name into a cache reference.
fn resolveTypeName(self: *DeclGen, ty: Type) !CacheString {
var name = std.ArrayList(u8).init(self.gpa);
defer name.deinit();
try ty.print(name.writer(), self.module);
return try self.spv.resolveString(name.items);
}
/// Turn a Zig type into a SPIR-V Type, and return its type result-id.
fn resolveTypeId(self: *DeclGen, ty: Type) !IdResultType {
const type_ref = try self.resolveType(ty, .direct);
return self.spv.resultId(type_ref);
}
fn typeId(self: *DeclGen, ty_ref: CacheRef) IdRef {
return self.spv.resultId(ty_ref);
}
/// Create an integer type suitable for storing at least 'bits' bits.
/// The integer type that is returned by this function is the type that is used to perform
/// actual operations (as well as store) a Zig type of a particular number of bits. To create
/// a type with an exact size, use SpvModule.intType.
fn intType(self: *DeclGen, signedness: std.builtin.Signedness, bits: u16) !CacheRef {
const backing_bits = self.backingIntBits(bits) orelse {
// TODO: Integers too big for any native type are represented as "composite integers":
// An array of largestSupportedIntBits.
return self.todo("Implement {s} composite int type of {} bits", .{ @tagName(signedness), bits });
};
// Kernel only supports unsigned ints.
// TODO: Only do this with Kernels
return self.spv.intType(.unsigned, backing_bits);
}
/// Create an integer type that represents 'usize'.
fn sizeType(self: *DeclGen) !CacheRef {
return try self.intType(.unsigned, self.getTarget().ptrBitWidth());
}
fn ptrType(self: *DeclGen, child_ty: Type, storage_class: StorageClass) !CacheRef {
// TODO: This function will be rewritten so that forward declarations work properly
const child_ty_ref = try self.resolveType(child_ty, .indirect);
return try self.spv.ptrType(child_ty_ref, storage_class);
}
/// Generate a union type, optionally with a known field. If the tag alignment is greater
/// than that of the payload, a regular union (non-packed, with both tag and payload), will
/// be generated as follows:
/// If the active field is known:
/// struct {
/// tag: TagType,
/// payload: ActivePayloadType,
/// payload_padding: [payload_size - @sizeOf(ActivePayloadType)]u8,
/// padding: [padding_size]u8,
/// }
/// If the payload alignment is greater than that of the tag:
/// struct {
/// payload: ActivePayloadType,
/// payload_padding: [payload_size - @sizeOf(ActivePayloadType)]u8,
/// tag: TagType,
/// padding: [padding_size]u8,
/// }
/// If the active payload is unknown, it will default back to the most aligned field. This is
/// to make sure that the overal struct has the correct alignment in spir-v.
/// If any of the fields' size is 0, it will be omitted.
/// NOTE: When the active field is set to something other than the most aligned field, the
/// resulting struct will be *underaligned*.
fn resolveUnionType(self: *DeclGen, ty: Type, maybe_active_field: ?usize) !CacheRef {
const mod = self.module;
const ip = &mod.intern_pool;
const union_obj = mod.typeToUnion(ty).?;
if (union_obj.getLayout(ip) == .Packed) {
return self.todo("packed union types", .{});
}
const layout = self.unionLayout(ty, maybe_active_field);
if (layout.payload_size == 0) {
// No payload, so represent this as just the tag type.
return try self.resolveType(union_obj.enum_tag_ty.toType(), .indirect);
}
// TODO: We need to add the active field to the key, somehow.
if (maybe_active_field == null) {
if (self.type_map.get(ty.toIntern())) |info| return info.ty_ref;
}
var member_types: [4]CacheRef = undefined;
var member_names: [4]CacheString = undefined;
const u8_ty_ref = try self.intType(.unsigned, 8); // TODO: What if Int8Type is not enabled?
if (layout.tag_size != 0) {
const tag_ty_ref = try self.resolveType(union_obj.enum_tag_ty.toType(), .indirect);
member_types[layout.tag_index] = tag_ty_ref;
member_names[layout.tag_index] = try self.spv.resolveString("(tag)");
}
if (layout.active_field_size != 0) {
const active_payload_ty_ref = try self.resolveType(layout.active_field_ty, .indirect);
member_types[layout.active_field_index] = active_payload_ty_ref;
member_names[layout.active_field_index] = try self.spv.resolveString("(payload)");
}
if (layout.payload_padding_size != 0) {
const payload_padding_ty_ref = try self.spv.arrayType(@intCast(layout.payload_padding_size), u8_ty_ref);
member_types[layout.payload_padding_index] = payload_padding_ty_ref;
member_names[layout.payload_padding_index] = try self.spv.resolveString("(payload padding)");
}
if (layout.padding_size != 0) {
const padding_ty_ref = try self.spv.arrayType(@intCast(layout.padding_size), u8_ty_ref);
member_types[layout.padding_index] = padding_ty_ref;
member_names[layout.padding_index] = try self.spv.resolveString("(padding)");
}
const ty_ref = try self.spv.resolve(.{ .struct_type = .{
.name = try self.resolveTypeName(ty),
.member_types = member_types[0..layout.total_fields],
.member_names = member_names[0..layout.total_fields],
} });
if (maybe_active_field == null) {
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
}
return ty_ref;
}
fn resolveFnReturnType(self: *DeclGen, ret_ty: Type) !CacheRef {
const mod = self.module;
if (!ret_ty.hasRuntimeBitsIgnoreComptime(mod)) {
// If the return type is an error set or an error union, then we make this
// anyerror return type instead, so that it can be coerced into a function
// pointer type which has anyerror as the return type.
if (ret_ty.isError(mod)) {
return self.resolveType(Type.anyerror, .direct);
} else {
return self.resolveType(Type.void, .direct);
}
}
return try self.resolveType(ret_ty, .direct);
}
/// Turn a Zig type into a SPIR-V Type, and return a reference to it.
fn resolveType(self: *DeclGen, ty: Type, repr: Repr) Error!CacheRef {
const mod = self.module;
const ip = &mod.intern_pool;
log.debug("resolveType: ty = {}", .{ty.fmt(mod)});
const target = self.getTarget();
switch (ty.zigTypeTag(mod)) {
.NoReturn => {
assert(repr == .direct);
return try self.spv.resolve(.void_type);
},
.Void => switch (repr) {
.direct => return try self.spv.resolve(.void_type),
// Pointers to void
.indirect => return try self.spv.resolve(.{ .opaque_type = .{
.name = try self.spv.resolveString("void"),
} }),
},
.Bool => switch (repr) {
.direct => return try self.spv.resolve(.bool_type),
.indirect => return try self.intType(.unsigned, 1),
},
.Int => {
const int_info = ty.intInfo(mod);
if (int_info.bits == 0) {
// Some times, the backend will be asked to generate a pointer to i0. OpTypeInt
// with 0 bits is invalid, so return an opaque type in this case.
assert(repr == .indirect);
return try self.spv.resolve(.{ .opaque_type = .{
.name = try self.spv.resolveString("u0"),
} });
}
return try self.intType(int_info.signedness, int_info.bits);
},
.Enum => {
const tag_ty = ty.intTagType(mod);
return self.resolveType(tag_ty, repr);
},
.Float => {
// We can (and want) not really emulate floating points with other floating point types like with the integer types,
// so if the float is not supported, just return an error.
const bits = ty.floatBits(target);
const supported = switch (bits) {
16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
// 32-bit floats are always supported (see spec, 2.16.1, Data rules).
32 => true,
64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
else => false,
};
if (!supported) {
return self.fail("Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
}
return try self.spv.resolve(.{ .float_type = .{ .bits = bits } });
},
.Array => {
if (self.type_map.get(ty.toIntern())) |info| return info.ty_ref;
const elem_ty = ty.childType(mod);
const elem_ty_ref = try self.resolveType(elem_ty, .indirect);
var total_len = std.math.cast(u32, ty.arrayLenIncludingSentinel(mod)) orelse {
return self.fail("array type of {} elements is too large", .{ty.arrayLenIncludingSentinel(mod)});
};
const ty_ref = if (!elem_ty.hasRuntimeBitsIgnoreComptime(mod)) blk: {
// The size of the array would be 0, but that is not allowed in SPIR-V.
// This path can be reached when the backend is asked to generate a pointer to
// an array of some zero-bit type. This should always be an indirect path.
assert(repr == .indirect);
// We cannot use the child type here, so just use an opaque type.
break :blk try self.spv.resolve(.{ .opaque_type = .{
.name = try self.spv.resolveString("zero-sized array"),
} });
} else if (total_len == 0) blk: {
// The size of the array would be 0, but that is not allowed in SPIR-V.
// This path can be reached for example when there is a slicing of a pointer
// that produces a zero-length array. In all cases where this type can be generated,
// this should be an indirect path.
assert(repr == .indirect);
// In this case, we have an array of a non-zero sized type. In this case,
// generate an array of 1 element instead, so that ptr_elem_ptr instructions
// can be lowered to ptrAccessChain instead of manually performing the math.
break :blk try self.spv.arrayType(1, elem_ty_ref);
} else try self.spv.arrayType(total_len, elem_ty_ref);
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
},
.Fn => switch (repr) {
.direct => {
if (self.type_map.get(ty.toIntern())) |info| return info.ty_ref;
const fn_info = mod.typeToFunc(ty).?;
// TODO: Put this somewhere in Sema.zig
if (fn_info.is_var_args)
return self.fail("VarArgs functions are unsupported for SPIR-V", .{});
const param_ty_refs = try self.gpa.alloc(CacheRef, fn_info.param_types.len);
defer self.gpa.free(param_ty_refs);
var param_index: usize = 0;
for (fn_info.param_types.get(ip)) |param_ty_index| {
const param_ty = param_ty_index.toType();
if (!param_ty.hasRuntimeBitsIgnoreComptime(mod)) continue;
param_ty_refs[param_index] = try self.resolveType(param_ty, .direct);
param_index += 1;
}
const return_ty_ref = try self.resolveFnReturnType(fn_info.return_type.toType());
const ty_ref = try self.spv.resolve(.{ .function_type = .{
.return_type = return_ty_ref,
.parameters = param_ty_refs[0..param_index],
} });
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
},
.indirect => {
// TODO: Represent function pointers properly.
// For now, just use an usize type.
return try self.sizeType();
},
},
.Pointer => {
const ptr_info = ty.ptrInfo(mod);
const storage_class = spvStorageClass(ptr_info.flags.address_space);
const child_ty_ref = try self.resolveType(ptr_info.child.toType(), .indirect);
const ptr_ty_ref = try self.spv.resolve(.{ .ptr_type = .{
.storage_class = storage_class,
.child_type = child_ty_ref,
} });
if (ptr_info.flags.size != .Slice) {
return ptr_ty_ref;
}
const size_ty_ref = try self.sizeType();
return self.spv.resolve(.{ .struct_type = .{
.member_types = &.{ ptr_ty_ref, size_ty_ref },
.member_names = &.{
try self.spv.resolveString("ptr"),
try self.spv.resolveString("len"),
},
} });
},
.Vector => {
if (self.type_map.get(ty.toIntern())) |info| return info.ty_ref;
const elem_ty = ty.childType(mod);
const elem_ty_ref = try self.resolveType(elem_ty, .indirect);
const ty_ref = try self.spv.arrayType(ty.vectorLen(mod), elem_ty_ref);
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
},
.Struct => {
if (self.type_map.get(ty.toIntern())) |info| return info.ty_ref;
const struct_type = switch (ip.indexToKey(ty.toIntern())) {
.anon_struct_type => |tuple| {
const member_types = try self.gpa.alloc(CacheRef, tuple.values.len);
defer self.gpa.free(member_types);
var member_index: usize = 0;
for (tuple.types.get(ip), tuple.values.get(ip)) |field_ty, field_val| {
if (field_val != .none or !field_ty.toType().hasRuntimeBits(mod)) continue;
member_types[member_index] = try self.resolveType(field_ty.toType(), .indirect);
member_index += 1;
}
const ty_ref = try self.spv.resolve(.{ .struct_type = .{
.name = try self.resolveTypeName(ty),
.member_types = member_types[0..member_index],
} });
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
},
.struct_type => |struct_type| struct_type,
else => unreachable,
};
if (struct_type.layout == .Packed) {
return try self.resolveType(struct_type.backingIntType(ip).toType(), .direct);
}
var member_types = std.ArrayList(CacheRef).init(self.gpa);
defer member_types.deinit();
var member_names = std.ArrayList(CacheString).init(self.gpa);
defer member_names.deinit();
var it = struct_type.iterateRuntimeOrder(ip);
while (it.next()) |field_index| {
const field_ty = struct_type.field_types.get(ip)[field_index].toType();
if (!field_ty.hasRuntimeBitsIgnoreComptime(mod)) {
// This is a zero-bit field - we only needed it for the alignment.
continue;
}
const field_name = struct_type.fieldName(ip, field_index).unwrap() orelse
try ip.getOrPutStringFmt(mod.gpa, "{d}", .{field_index});
try member_types.append(try self.resolveType(field_ty, .indirect));
try member_names.append(try self.spv.resolveString(ip.stringToSlice(field_name)));
}
const ty_ref = try self.spv.resolve(.{ .struct_type = .{
.name = try self.resolveTypeName(ty),
.member_types = member_types.items,
.member_names = member_names.items,
} });
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
},
.Optional => {
const payload_ty = ty.optionalChild(mod);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(mod)) {
// Just use a bool.
// Note: Always generate the bool with indirect format, to save on some sanity
// Perform the conversion to a direct bool when the field is extracted.
return try self.resolveType(Type.bool, .indirect);
}
const payload_ty_ref = try self.resolveType(payload_ty, .indirect);
if (ty.optionalReprIsPayload(mod)) {
// Optional is actually a pointer or a slice.
return payload_ty_ref;
}
if (self.type_map.get(ty.toIntern())) |info| return info.ty_ref;
const bool_ty_ref = try self.resolveType(Type.bool, .indirect);
const ty_ref = try self.spv.resolve(.{ .struct_type = .{
.member_types = &.{ payload_ty_ref, bool_ty_ref },
.member_names = &.{
try self.spv.resolveString("payload"),
try self.spv.resolveString("valid"),
},
} });
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
},
.Union => return try self.resolveUnionType(ty, null),
.ErrorSet => return try self.intType(.unsigned, 16),
.ErrorUnion => {
const payload_ty = ty.errorUnionPayload(mod);
const error_ty_ref = try self.resolveType(Type.anyerror, .indirect);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return error_ty_ref;
}
if (self.type_map.get(ty.toIntern())) |info| return info.ty_ref;
const payload_ty_ref = try self.resolveType(payload_ty, .indirect);
var member_types: [2]CacheRef = undefined;
var member_names: [2]CacheString = undefined;
if (eu_layout.error_first) {
// Put the error first
member_types = .{ error_ty_ref, payload_ty_ref };
member_names = .{
try self.spv.resolveString("error"),
try self.spv.resolveString("payload"),
};
// TODO: ABI padding?
} else {
// Put the payload first.
member_types = .{ payload_ty_ref, error_ty_ref };
member_names = .{
try self.spv.resolveString("payload"),
try self.spv.resolveString("error"),
};
// TODO: ABI padding?
}
const ty_ref = try self.spv.resolve(.{ .struct_type = .{
.name = try self.resolveTypeName(ty),
.member_types = &member_types,
.member_names = &member_names,
} });
try self.type_map.put(self.gpa, ty.toIntern(), .{ .ty_ref = ty_ref });
return ty_ref;
},
.Opaque => {
return try self.spv.resolve(.{
.opaque_type = .{
.name = .none, // TODO
},
});
},
.Null,
.Undefined,
.EnumLiteral,
.ComptimeFloat,
.ComptimeInt,
.Type,
=> unreachable, // Must be comptime.
else => |tag| return self.todo("Implement zig type '{}'", .{tag}),
}
}
fn spvStorageClass(as: std.builtin.AddressSpace) StorageClass {
return switch (as) {
.generic => .Generic,
.shared => .Workgroup,
.local => .Private,
.global => .CrossWorkgroup,
.constant => .UniformConstant,
.gs,
.fs,
.ss,
.param,
.flash,
.flash1,
.flash2,
.flash3,
.flash4,
.flash5,
=> unreachable,
};
}
const ErrorUnionLayout = struct {
payload_has_bits: bool,
error_first: bool,
fn errorFieldIndex(self: @This()) u32 {
assert(self.payload_has_bits);
return if (self.error_first) 0 else 1;
}
fn payloadFieldIndex(self: @This()) u32 {
assert(self.payload_has_bits);
return if (self.error_first) 1 else 0;
}
};
fn errorUnionLayout(self: *DeclGen, payload_ty: Type) ErrorUnionLayout {
const mod = self.module;
const error_align = Type.anyerror.abiAlignment(mod);
const payload_align = payload_ty.abiAlignment(mod);
const error_first = error_align.compare(.gt, payload_align);
return .{
.payload_has_bits = payload_ty.hasRuntimeBitsIgnoreComptime(mod),
.error_first = error_first,
};
}
const UnionLayout = struct {
active_field: u32,
active_field_ty: Type,
payload_size: u32,
tag_size: u32,
tag_index: u32,
active_field_size: u32,
active_field_index: u32,
payload_padding_size: u32,
payload_padding_index: u32,
padding_size: u32,
padding_index: u32,
total_fields: u32,
};
fn unionLayout(self: *DeclGen, ty: Type, maybe_active_field: ?usize) UnionLayout {
const mod = self.module;
const ip = &mod.intern_pool;
const layout = ty.unionGetLayout(self.module);
const union_obj = mod.typeToUnion(ty).?;
const active_field = maybe_active_field orelse layout.most_aligned_field;
const active_field_ty = union_obj.field_types.get(ip)[active_field].toType();
var union_layout = UnionLayout{
.active_field = @intCast(active_field),
.active_field_ty = active_field_ty,
.payload_size = @intCast(layout.payload_size),
.tag_size = @intCast(layout.tag_size),
.tag_index = undefined,
.active_field_size = undefined,
.active_field_index = undefined,
.payload_padding_size = undefined,
.payload_padding_index = undefined,
.padding_size = @intCast(layout.padding),
.padding_index = undefined,
.total_fields = undefined,
};
union_layout.active_field_size = if (active_field_ty.hasRuntimeBitsIgnoreComptime(mod))
@intCast(active_field_ty.abiSize(mod))
else
0;
union_layout.payload_padding_size = @intCast(layout.payload_size - union_layout.active_field_size);
const tag_first = layout.tag_align.compare(.gte, layout.payload_align);
var field_index: u32 = 0;
if (union_layout.tag_size != 0 and tag_first) {
union_layout.tag_index = field_index;
field_index += 1;
}
if (union_layout.active_field_size != 0) {
union_layout.active_field_index = field_index;
field_index += 1;
}
if (union_layout.payload_padding_size != 0) {
union_layout.payload_padding_index = field_index;
field_index += 1;
}
if (union_layout.tag_size != 0 and !tag_first) {
union_layout.tag_index = field_index;
field_index += 1;
}
if (union_layout.padding_size != 0) {
union_layout.padding_index = field_index;
field_index += 1;
}
union_layout.total_fields = field_index;
return union_layout;
}
/// The SPIR-V backend is not yet advanced enough to support the std testing infrastructure.
/// In order to be able to run tests, we "temporarily" lower test kernels into separate entry-
/// points. The test executor will then be able to invoke these to run the tests.
/// Note that tests are lowered according to std.builtin.TestFn, which is `fn () anyerror!void`.
/// (anyerror!void has the same layout as anyerror).
/// Each test declaration generates a function like.
/// %anyerror = OpTypeInt 0 16
/// %p_anyerror = OpTypePointer CrossWorkgroup %anyerror
/// %K = OpTypeFunction %void %p_anyerror
///
/// %test = OpFunction %void %K
/// %p_err = OpFunctionParameter %p_anyerror
/// %lbl = OpLabel
/// %result = OpFunctionCall %anyerror %func
/// OpStore %p_err %result
/// OpFunctionEnd
/// TODO is to also write out the error as a function call parameter, and to somehow fetch
/// the name of an error in the text executor.
fn generateTestEntryPoint(self: *DeclGen, name: []const u8, spv_test_decl_index: SpvModule.Decl.Index) !void {
const anyerror_ty_ref = try self.resolveType(Type.anyerror, .direct);
const ptr_anyerror_ty_ref = try self.ptrType(Type.anyerror, .CrossWorkgroup);
const void_ty_ref = try self.resolveType(Type.void, .direct);
const kernel_proto_ty_ref = try self.spv.resolve(.{ .function_type = .{
.return_type = void_ty_ref,
.parameters = &.{ptr_anyerror_ty_ref},
} });
const test_id = self.spv.declPtr(spv_test_decl_index).result_id;
const spv_decl_index = try self.spv.allocDecl(.func);
const kernel_id = self.spv.declPtr(spv_decl_index).result_id;
const error_id = self.spv.allocId();
const p_error_id = self.spv.allocId();
const section = &self.spv.sections.functions;
try section.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = self.typeId(void_ty_ref),
.id_result = kernel_id,
.function_control = .{},
.function_type = self.typeId(kernel_proto_ty_ref),
});
try section.emit(self.spv.gpa, .OpFunctionParameter, .{
.id_result_type = self.typeId(ptr_anyerror_ty_ref),
.id_result = p_error_id,
});
try section.emit(self.spv.gpa, .OpLabel, .{
.id_result = self.spv.allocId(),
});
try section.emit(self.spv.gpa, .OpFunctionCall, .{
.id_result_type = self.typeId(anyerror_ty_ref),
.id_result = error_id,
.function = test_id,
});
// Note: Convert to direct not required.
try section.emit(self.spv.gpa, .OpStore, .{
.pointer = p_error_id,
.object = error_id,
});
try section.emit(self.spv.gpa, .OpReturn, {});
try section.emit(self.spv.gpa, .OpFunctionEnd, {});
try self.spv.declareDeclDeps(spv_decl_index, &.{spv_test_decl_index});
// Just generate a quick other name because the intel runtime crashes when the entry-
// point name is the same as a different OpName.
const test_name = try std.fmt.allocPrint(self.gpa, "test {s}", .{name});
defer self.gpa.free(test_name);
try self.spv.declareEntryPoint(spv_decl_index, test_name);
}
fn genDecl(self: *DeclGen) !void {
const mod = self.module;
const ip = &mod.intern_pool;
const decl = mod.declPtr(self.decl_index);
const spv_decl_index = try self.object.resolveDecl(mod, self.decl_index);
const decl_id = self.spv.declPtr(spv_decl_index).result_id;
try self.base_line_stack.append(self.gpa, decl.src_line);
if (decl.val.getFunction(mod)) |_| {
assert(decl.ty.zigTypeTag(mod) == .Fn);
const fn_info = mod.typeToFunc(decl.ty).?;
const return_ty_ref = try self.resolveFnReturnType(fn_info.return_type.toType());
const prototype_id = try self.resolveTypeId(decl.ty);
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = self.typeId(return_ty_ref),
.id_result = decl_id,
.function_control = .{}, // TODO: We can set inline here if the type requires it.
.function_type = prototype_id,
});
try self.args.ensureUnusedCapacity(self.gpa, fn_info.param_types.len);
for (fn_info.param_types.get(ip)) |param_ty_index| {
const param_ty = param_ty_index.toType();
if (!param_ty.hasRuntimeBitsIgnoreComptime(mod)) continue;
const param_type_id = try self.resolveTypeId(param_ty);
const arg_result_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpFunctionParameter, .{
.id_result_type = param_type_id,
.id_result = arg_result_id,
});
self.args.appendAssumeCapacity(arg_result_id);
}
// TODO: This could probably be done in a better way...
const root_block_id = self.spv.allocId();
// The root block of a function declaration should appear before OpVariable instructions,
// so it is generated into the function's prologue.
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
.id_result = root_block_id,
});
self.current_block_label_id = root_block_id;
const main_body = self.air.getMainBody();
try self.genBody(main_body);
// Append the actual code into the functions section.
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
try self.spv.addFunction(spv_decl_index, self.func);
const fqn = ip.stringToSlice(try decl.getFullyQualifiedName(self.module));
try self.spv.debugName(decl_id, fqn);
// Temporarily generate a test kernel declaration if this is a test function.
if (self.module.test_functions.contains(self.decl_index)) {
try self.generateTestEntryPoint(fqn, spv_decl_index);
}
} else {
const init_val = if (decl.val.getVariable(mod)) |payload|
payload.init.toValue()
else
decl.val;
if (init_val.ip_index == .unreachable_value) {
return self.todo("importing extern variables", .{});
}
// Currently, initializers for CrossWorkgroup variables is not implemented
// in Mesa. Therefore we generate an initialization kernel instead.
const void_ty_ref = try self.resolveType(Type.void, .direct);
const initializer_proto_ty_ref = try self.spv.resolve(.{ .function_type = .{
.return_type = void_ty_ref,
.parameters = &.{},
} });
// Generate the actual variable for the global...
const final_storage_class = spvStorageClass(decl.@"addrspace");
const actual_storage_class = switch (final_storage_class) {
.Generic => .CrossWorkgroup,
else => final_storage_class,
};
const ptr_ty_ref = try self.ptrType(decl.ty, actual_storage_class);
const begin = self.spv.beginGlobal();
try self.spv.globals.section.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = self.typeId(ptr_ty_ref),
.id_result = decl_id,
.storage_class = actual_storage_class,
});
// Now emit the instructions that initialize the variable.
const initializer_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
.id_result_type = self.typeId(void_ty_ref),
.id_result = initializer_id,
.function_control = .{},
.function_type = self.typeId(initializer_proto_ty_ref),
});
const root_block_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
.id_result = root_block_id,
});
self.current_block_label_id = root_block_id;
const val_id = try self.constant(decl.ty, init_val, .indirect);
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = decl_id,
.object = val_id,
});
// TODO: We should be able to get rid of this by now...
self.spv.endGlobal(spv_decl_index, begin, decl_id, initializer_id);
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
try self.spv.addFunction(spv_decl_index, self.func);
const fqn = ip.stringToSlice(try decl.getFullyQualifiedName(self.module));
try self.spv.debugName(decl_id, fqn);
try self.spv.debugNameFmt(initializer_id, "initializer of {s}", .{fqn});
}
}
fn intFromBool(self: *DeclGen, result_ty_ref: CacheRef, condition_id: IdRef) !IdRef {
const zero_id = try self.constInt(result_ty_ref, 0);
const one_id = try self.constInt(result_ty_ref, 1);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpSelect, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = result_id,
.condition = condition_id,
.object_1 = one_id,
.object_2 = zero_id,
});
return result_id;
}
/// Convert representation from indirect (in memory) to direct (in 'register')
/// This converts the argument type from resolveType(ty, .indirect) to resolveType(ty, .direct).
fn convertToDirect(self: *DeclGen, ty: Type, operand_id: IdRef) !IdRef {
const mod = self.module;
return switch (ty.zigTypeTag(mod)) {
.Bool => blk: {
const direct_bool_ty_ref = try self.resolveType(ty, .direct);
const indirect_bool_ty_ref = try self.resolveType(ty, .indirect);
const zero_id = try self.constInt(indirect_bool_ty_ref, 0);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpINotEqual, .{
.id_result_type = self.typeId(direct_bool_ty_ref),
.id_result = result_id,
.operand_1 = operand_id,
.operand_2 = zero_id,
});
break :blk result_id;
},
else => operand_id,
};
}
/// Convert representation from direct (in 'register) to direct (in memory)
/// This converts the argument type from resolveType(ty, .direct) to resolveType(ty, .indirect).
fn convertToIndirect(self: *DeclGen, ty: Type, operand_id: IdRef) !IdRef {
const mod = self.module;
return switch (ty.zigTypeTag(mod)) {
.Bool => blk: {
const indirect_bool_ty_ref = try self.resolveType(ty, .indirect);
break :blk self.intFromBool(indirect_bool_ty_ref, operand_id);
},
else => operand_id,
};
}
fn extractField(self: *DeclGen, result_ty: Type, object: IdRef, field: u32) !IdRef {
const result_ty_ref = try self.resolveType(result_ty, .indirect);
const result_id = self.spv.allocId();
const indexes = [_]u32{field};
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = result_id,
.composite = object,
.indexes = &indexes,
});
// Convert bools; direct structs have their field types as indirect values.
return try self.convertToDirect(result_ty, result_id);
}
fn load(self: *DeclGen, value_ty: Type, ptr_id: IdRef, is_volatile: bool) !IdRef {
const indirect_value_ty_ref = try self.resolveType(value_ty, .indirect);
const result_id = self.spv.allocId();
const access = spec.MemoryAccess.Extended{
.Volatile = is_volatile,
};
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
.id_result_type = self.typeId(indirect_value_ty_ref),
.id_result = result_id,
.pointer = ptr_id,
.memory_access = access,
});
return try self.convertToDirect(value_ty, result_id);
}
fn store(self: *DeclGen, value_ty: Type, ptr_id: IdRef, value_id: IdRef, is_volatile: bool) !void {
const indirect_value_id = try self.convertToIndirect(value_ty, value_id);
const access = spec.MemoryAccess.Extended{
.Volatile = is_volatile,
};
try self.func.body.emit(self.spv.gpa, .OpStore, .{
.pointer = ptr_id,
.object = indirect_value_id,
.memory_access = access,
});
}
fn genBody(self: *DeclGen, body: []const Air.Inst.Index) Error!void {
for (body) |inst| {
try self.genInst(inst);
}
}
fn genInst(self: *DeclGen, inst: Air.Inst.Index) !void {
const mod = self.module;
const ip = &mod.intern_pool;
// TODO: remove now-redundant isUnused calls from AIR handler functions
if (self.liveness.isUnused(inst) and !self.air.mustLower(inst, ip))
return;
const air_tags = self.air.instructions.items(.tag);
const maybe_result_id: ?IdRef = switch (air_tags[inst]) {
// zig fmt: off
.add, .add_wrap => try self.airArithOp(inst, .OpFAdd, .OpIAdd, .OpIAdd, true),
.sub, .sub_wrap => try self.airArithOp(inst, .OpFSub, .OpISub, .OpISub, true),
.mul, .mul_wrap => try self.airArithOp(inst, .OpFMul, .OpIMul, .OpIMul, true),
.div_float,
.div_float_optimized,
// TODO: Check that this is the right operation.
.div_trunc,
.div_trunc_optimized,
=> try self.airArithOp(inst, .OpFDiv, .OpSDiv, .OpUDiv, false),
// TODO: Check if this is the right operation
// TODO: Make airArithOp for rem not emit a mask for the LHS.
.rem,
.rem_optimized,
=> try self.airArithOp(inst, .OpFRem, .OpSRem, .OpSRem, false),
.add_with_overflow => try self.airAddSubOverflow(inst, .OpIAdd, .OpULessThan, .OpSLessThan),
.sub_with_overflow => try self.airAddSubOverflow(inst, .OpISub, .OpUGreaterThan, .OpSGreaterThan),
.shuffle => try self.airShuffle(inst),
.ptr_add => try self.airPtrAdd(inst),
.ptr_sub => try self.airPtrSub(inst),
.bit_and => try self.airBinOpSimple(inst, .OpBitwiseAnd),
.bit_or => try self.airBinOpSimple(inst, .OpBitwiseOr),
.xor => try self.airBinOpSimple(inst, .OpBitwiseXor),
.bool_and => try self.airBinOpSimple(inst, .OpLogicalAnd),
.bool_or => try self.airBinOpSimple(inst, .OpLogicalOr),
.shl => try self.airShift(inst, .OpShiftLeftLogical),
.min => try self.airMinMax(inst, .lt),
.max => try self.airMinMax(inst, .gt),
.bitcast => try self.airBitCast(inst),
.intcast, .trunc => try self.airIntCast(inst),
.int_from_ptr => try self.airIntFromPtr(inst),
.float_from_int => try self.airFloatFromInt(inst),
.int_from_float => try self.airIntFromFloat(inst),
.fpext, .fptrunc => try self.airFloatCast(inst),
.not => try self.airNot(inst),
.array_to_slice => try self.airArrayToSlice(inst),
.slice => try self.airSlice(inst),
.aggregate_init => try self.airAggregateInit(inst),
.memcpy => return self.airMemcpy(inst),
.slice_ptr => try self.airSliceField(inst, 0),
.slice_len => try self.airSliceField(inst, 1),
.slice_elem_ptr => try self.airSliceElemPtr(inst),
.slice_elem_val => try self.airSliceElemVal(inst),
.ptr_elem_ptr => try self.airPtrElemPtr(inst),
.ptr_elem_val => try self.airPtrElemVal(inst),
.array_elem_val => try self.airArrayElemVal(inst),
.set_union_tag => return self.airSetUnionTag(inst),
.get_union_tag => try self.airGetUnionTag(inst),
.union_init => try self.airUnionInit(inst),
.struct_field_val => try self.airStructFieldVal(inst),
.field_parent_ptr => try self.airFieldParentPtr(inst),
.struct_field_ptr_index_0 => try self.airStructFieldPtrIndex(inst, 0),
.struct_field_ptr_index_1 => try self.airStructFieldPtrIndex(inst, 1),
.struct_field_ptr_index_2 => try self.airStructFieldPtrIndex(inst, 2),
.struct_field_ptr_index_3 => try self.airStructFieldPtrIndex(inst, 3),
.cmp_eq => try self.airCmp(inst, .eq),
.cmp_neq => try self.airCmp(inst, .neq),
.cmp_gt => try self.airCmp(inst, .gt),
.cmp_gte => try self.airCmp(inst, .gte),
.cmp_lt => try self.airCmp(inst, .lt),
.cmp_lte => try self.airCmp(inst, .lte),
.cmp_vector => try self.airVectorCmp(inst),
.arg => self.airArg(),
.alloc => try self.airAlloc(inst),
// TODO: We probably need to have a special implementation of this for the C abi.
.ret_ptr => try self.airAlloc(inst),
.block => try self.airBlock(inst),
.load => try self.airLoad(inst),
.store, .store_safe => return self.airStore(inst),
.br => return self.airBr(inst),
.breakpoint => return,
.cond_br => return self.airCondBr(inst),
.loop => return self.airLoop(inst),
.ret => return self.airRet(inst),
.ret_load => return self.airRetLoad(inst),
.@"try" => try self.airTry(inst),
.switch_br => return self.airSwitchBr(inst),
.unreach, .trap => return self.airUnreach(),
.dbg_stmt => return self.airDbgStmt(inst),
.dbg_inline_begin => return self.airDbgInlineBegin(inst),
.dbg_inline_end => return self.airDbgInlineEnd(inst),
.dbg_var_ptr, .dbg_var_val => return self.airDbgVar(inst),
.dbg_block_begin => return,
.dbg_block_end => return,
.unwrap_errunion_err => try self.airErrUnionErr(inst),
.unwrap_errunion_payload => try self.airErrUnionPayload(inst),
.wrap_errunion_err => try self.airWrapErrUnionErr(inst),
.wrap_errunion_payload => try self.airWrapErrUnionPayload(inst),
.is_null => try self.airIsNull(inst, .is_null),
.is_non_null => try self.airIsNull(inst, .is_non_null),
.is_err => try self.airIsErr(inst, .is_err),
.is_non_err => try self.airIsErr(inst, .is_non_err),
.optional_payload => try self.airUnwrapOptional(inst),
.wrap_optional => try self.airWrapOptional(inst),
.assembly => try self.airAssembly(inst),
.call => try self.airCall(inst, .auto),
.call_always_tail => try self.airCall(inst, .always_tail),
.call_never_tail => try self.airCall(inst, .never_tail),
.call_never_inline => try self.airCall(inst, .never_inline),
// zig fmt: on
else => |tag| return self.todo("implement AIR tag {s}", .{@tagName(tag)}),
};
const result_id = maybe_result_id orelse return;
try self.inst_results.putNoClobber(self.gpa, inst, result_id);
}
fn binOpSimple(self: *DeclGen, ty: Type, lhs_id: IdRef, rhs_id: IdRef, comptime opcode: Opcode) !IdRef {
const mod = self.module;
if (ty.isVector(mod)) {
const child_ty = ty.childType(mod);
const vector_len = ty.vectorLen(mod);
var constituents = try self.gpa.alloc(IdRef, vector_len);
defer self.gpa.free(constituents);
for (constituents, 0..) |*constituent, i| {
const lhs_index_id = try self.extractField(child_ty, lhs_id, @intCast(i));
const rhs_index_id = try self.extractField(child_ty, rhs_id, @intCast(i));
const result_id = try self.binOpSimple(child_ty, lhs_index_id, rhs_index_id, opcode);
constituent.* = try self.convertToIndirect(child_ty, result_id);
}
return try self.constructArray(ty, constituents);
}
const result_id = self.spv.allocId();
const result_type_id = try self.resolveTypeId(ty);
try self.func.body.emit(self.spv.gpa, opcode, .{
.id_result_type = result_type_id,
.id_result = result_id,
.operand_1 = lhs_id,
.operand_2 = rhs_id,
});
return result_id;
}
fn airBinOpSimple(self: *DeclGen, inst: Air.Inst.Index, comptime opcode: Opcode) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
const ty = self.typeOf(bin_op.lhs);
return try self.binOpSimple(ty, lhs_id, rhs_id, opcode);
}
fn airShift(self: *DeclGen, inst: Air.Inst.Index, comptime opcode: Opcode) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
const result_type_id = try self.resolveTypeId(self.typeOfIndex(inst));
// the shift and the base must be the same type in SPIR-V, but in Zig the shift is a smaller int.
const shift_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpUConvert, .{
.id_result_type = result_type_id,
.id_result = shift_id,
.unsigned_value = rhs_id,
});
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, opcode, .{
.id_result_type = result_type_id,
.id_result = result_id,
.base = lhs_id,
.shift = shift_id,
});
return result_id;
}
fn airMinMax(self: *DeclGen, inst: Air.Inst.Index, op: std.math.CompareOperator) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
const result_ty = self.typeOfIndex(inst);
const result_ty_ref = try self.resolveType(result_ty, .direct);
const info = try self.arithmeticTypeInfo(result_ty);
// TODO: Use fmin for OpenCL
const cmp_id = try self.cmp(op, Type.bool, result_ty, lhs_id, rhs_id);
const selection_id = switch (info.class) {
.float => blk: {
// cmp uses OpFOrd. When we have 0 [<>] nan this returns false,
// but we want it to pick lhs. Therefore we also have to check if
// rhs is nan. We don't need to care about the result when both
// are nan.
const rhs_is_nan_id = self.spv.allocId();
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
try self.func.body.emit(self.spv.gpa, .OpIsNan, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = rhs_is_nan_id,
.x = rhs_id,
});
const float_cmp_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpLogicalOr, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = float_cmp_id,
.operand_1 = cmp_id,
.operand_2 = rhs_is_nan_id,
});
break :blk float_cmp_id;
},
else => cmp_id,
};
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpSelect, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = result_id,
.condition = selection_id,
.object_1 = lhs_id,
.object_2 = rhs_id,
});
return result_id;
}
/// This function canonicalizes a "strange" integer value:
/// For unsigned integers, the value is masked so that only the relevant bits can contain
/// non-zeros.
/// For signed integers, the value is also sign extended.
fn normalizeInt(self: *DeclGen, ty_ref: CacheRef, value_id: IdRef, info: ArithmeticTypeInfo) !IdRef {
assert(info.class != .composite_integer); // TODO
if (info.bits == info.backing_bits) {
return value_id;
}
switch (info.signedness) {
.unsigned => {
const mask_value = if (info.bits == 64) 0xFFFF_FFFF_FFFF_FFFF else (@as(u64, 1) << @as(u6, @intCast(info.bits))) - 1;
const result_id = self.spv.allocId();
const mask_id = try self.constInt(ty_ref, mask_value);
try self.func.body.emit(self.spv.gpa, .OpBitwiseAnd, .{
.id_result_type = self.typeId(ty_ref),
.id_result = result_id,
.operand_1 = value_id,
.operand_2 = mask_id,
});
return result_id;
},
.signed => {
// Shift left and right so that we can copy the sight bit that way.
const shift_amt_id = try self.constInt(ty_ref, info.backing_bits - info.bits);
const left_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpShiftLeftLogical, .{
.id_result_type = self.typeId(ty_ref),
.id_result = left_id,
.base = value_id,
.shift = shift_amt_id,
});
const right_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpShiftRightArithmetic, .{
.id_result_type = self.typeId(ty_ref),
.id_result = right_id,
.base = left_id,
.shift = shift_amt_id,
});
return right_id;
},
}
}
fn airArithOp(
self: *DeclGen,
inst: Air.Inst.Index,
comptime fop: Opcode,
comptime sop: Opcode,
comptime uop: Opcode,
/// true if this operation holds under modular arithmetic.
comptime modular: bool,
) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
// LHS and RHS are guaranteed to have the same type, and AIR guarantees
// the result to be the same as the LHS and RHS, which matches SPIR-V.
const ty = self.typeOfIndex(inst);
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
assert(self.typeOf(bin_op.lhs).eql(ty, self.module));
assert(self.typeOf(bin_op.rhs).eql(ty, self.module));
return try self.arithOp(ty, lhs_id, rhs_id, fop, sop, uop, modular);
}
fn arithOp(
self: *DeclGen,
ty: Type,
lhs_id_: IdRef,
rhs_id_: IdRef,
comptime fop: Opcode,
comptime sop: Opcode,
comptime uop: Opcode,
/// true if this operation holds under modular arithmetic.
comptime modular: bool,
) !IdRef {
var rhs_id = rhs_id_;
var lhs_id = lhs_id_;
const mod = self.module;
const result_ty_ref = try self.resolveType(ty, .direct);
if (ty.isVector(mod)) {
const child_ty = ty.childType(mod);
const vector_len = ty.vectorLen(mod);
var constituents = try self.gpa.alloc(IdRef, vector_len);
defer self.gpa.free(constituents);
for (constituents, 0..) |*constituent, i| {
const lhs_index_id = try self.extractField(child_ty, lhs_id, @intCast(i));
const rhs_index_id = try self.extractField(child_ty, rhs_id, @intCast(i));
constituent.* = try self.arithOp(child_ty, lhs_index_id, rhs_index_id, fop, sop, uop, modular);
}
return self.constructArray(ty, constituents);
}
// Binary operations are generally applicable to both scalar and vector operations
// in SPIR-V, but int and float versions of operations require different opcodes.
const info = try self.arithmeticTypeInfo(ty);
const opcode_index: usize = switch (info.class) {
.composite_integer => {
return self.todo("binary operations for composite integers", .{});
},
.strange_integer => blk: {
if (!modular) {
lhs_id = try self.normalizeInt(result_ty_ref, lhs_id, info);
rhs_id = try self.normalizeInt(result_ty_ref, rhs_id, info);
}
break :blk switch (info.signedness) {
.signed => @as(usize, 1),
.unsigned => @as(usize, 2),
};
},
.integer => switch (info.signedness) {
.signed => @as(usize, 1),
.unsigned => @as(usize, 2),
},
.float => 0,
.bool => unreachable,
};
const result_id = self.spv.allocId();
const operands = .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = result_id,
.operand_1 = lhs_id,
.operand_2 = rhs_id,
};
switch (opcode_index) {
0 => try self.func.body.emit(self.spv.gpa, fop, operands),
1 => try self.func.body.emit(self.spv.gpa, sop, operands),
2 => try self.func.body.emit(self.spv.gpa, uop, operands),
else => unreachable,
}
// TODO: Trap on overflow? Probably going to be annoying.
// TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap.
return result_id;
}
fn airAddSubOverflow(
self: *DeclGen,
inst: Air.Inst.Index,
comptime add: Opcode,
comptime ucmp: Opcode,
comptime scmp: Opcode,
) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
const lhs = try self.resolve(extra.lhs);
const rhs = try self.resolve(extra.rhs);
const operand_ty = self.typeOf(extra.lhs);
const result_ty = self.typeOfIndex(inst);
const info = try self.arithmeticTypeInfo(operand_ty);
switch (info.class) {
.composite_integer => return self.todo("overflow ops for composite integers", .{}),
.strange_integer => return self.todo("overflow ops for strange integers", .{}),
.integer => {},
.float, .bool => unreachable,
}
// The operand type must be the same as the result type in SPIR-V, which
// is the same as in Zig.
const operand_ty_ref = try self.resolveType(operand_ty, .direct);
const operand_ty_id = self.typeId(operand_ty_ref);
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
const ov_ty = result_ty.structFieldType(1, self.module);
// Note: result is stored in a struct, so indirect representation.
const ov_ty_ref = try self.resolveType(ov_ty, .indirect);
// TODO: Operations other than addition.
const value_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, add, .{
.id_result_type = operand_ty_id,
.id_result = value_id,
.operand_1 = lhs,
.operand_2 = rhs,
});
const overflowed_id = switch (info.signedness) {
.unsigned => blk: {
// Overflow happened if the result is smaller than either of the operands. It doesn't matter which.
// For subtraction the conditions need to be swapped.
const overflowed_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, ucmp, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = overflowed_id,
.operand_1 = value_id,
.operand_2 = lhs,
});
break :blk overflowed_id;
},
.signed => blk: {
// lhs - rhs
// For addition, overflow happened if:
// - rhs is negative and value > lhs
// - rhs is positive and value < lhs
// This can be shortened to:
// (rhs < 0 and value > lhs) or (rhs >= 0 and value <= lhs)
// = (rhs < 0) == (value > lhs)
// = (rhs < 0) == (lhs < value)
// Note that signed overflow is also wrapping in spir-v.
// For subtraction, overflow happened if:
// - rhs is negative and value < lhs
// - rhs is positive and value > lhs
// This can be shortened to:
// (rhs < 0 and value < lhs) or (rhs >= 0 and value >= lhs)
// = (rhs < 0) == (value < lhs)
// = (rhs < 0) == (lhs > value)
const rhs_lt_zero_id = self.spv.allocId();
const zero_id = try self.constInt(operand_ty_ref, 0);
try self.func.body.emit(self.spv.gpa, .OpSLessThan, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = rhs_lt_zero_id,
.operand_1 = rhs,
.operand_2 = zero_id,
});
const value_gt_lhs_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, scmp, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = value_gt_lhs_id,
.operand_1 = lhs,
.operand_2 = value_id,
});
const overflowed_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpLogicalEqual, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = overflowed_id,
.operand_1 = rhs_lt_zero_id,
.operand_2 = value_gt_lhs_id,
});
break :blk overflowed_id;
},
};
// Construct the struct that Zig wants as result.
// The value should already be the correct type.
const ov_id = try self.intFromBool(ov_ty_ref, overflowed_id);
const result_ty_ref = try self.resolveType(result_ty, .direct);
return try self.constructStruct(result_ty_ref, &.{
value_id,
ov_id,
});
}
fn airShuffle(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const mod = self.module;
if (self.liveness.isUnused(inst)) return null;
const ty = self.typeOfIndex(inst);
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const extra = self.air.extraData(Air.Shuffle, ty_pl.payload).data;
const a = try self.resolve(extra.a);
const b = try self.resolve(extra.b);
const mask = extra.mask.toValue();
const mask_len = extra.mask_len;
const a_len = self.typeOf(extra.a).vectorLen(mod);
const result_id = self.spv.allocId();
const result_type_id = try self.resolveTypeId(ty);
// Similar to LLVM, SPIR-V uses indices larger than the length of the first vector
// to index into the second vector.
try self.func.body.emitRaw(self.spv.gpa, .OpVectorShuffle, 4 + mask_len);
self.func.body.writeOperand(spec.IdResultType, result_type_id);
self.func.body.writeOperand(spec.IdResult, result_id);
self.func.body.writeOperand(spec.IdRef, a);
self.func.body.writeOperand(spec.IdRef, b);
var i: usize = 0;
while (i < mask_len) : (i += 1) {
const elem = try mask.elemValue(mod, i);
if (elem.isUndef(mod)) {
self.func.body.writeOperand(spec.LiteralInteger, 0xFFFF_FFFF);
} else {
const int = elem.toSignedInt(mod);
const unsigned = if (int >= 0) @as(u32, @intCast(int)) else @as(u32, @intCast(~int + a_len));
self.func.body.writeOperand(spec.LiteralInteger, unsigned);
}
}
return result_id;
}
fn indicesToIds(self: *DeclGen, indices: []const u32) ![]IdRef {
const index_ty_ref = try self.intType(.unsigned, 32);
const ids = try self.gpa.alloc(IdRef, indices.len);
errdefer self.gpa.free(ids);
for (indices, ids) |index, *id| {
id.* = try self.constInt(index_ty_ref, index);
}
return ids;
}
fn accessChainId(
self: *DeclGen,
result_ty_ref: CacheRef,
base: IdRef,
indices: []const IdRef,
) !IdRef {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpInBoundsAccessChain, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = result_id,
.base = base,
.indexes = indices,
});
return result_id;
}
/// AccessChain is essentially PtrAccessChain with 0 as initial argument. The effective
/// difference lies in whether the resulting type of the first dereference will be the
/// same as that of the base pointer, or that of a dereferenced base pointer. AccessChain
/// is the latter and PtrAccessChain is the former.
fn accessChain(
self: *DeclGen,
result_ty_ref: CacheRef,
base: IdRef,
indices: []const u32,
) !IdRef {
const ids = try self.indicesToIds(indices);
defer self.gpa.free(ids);
return try self.accessChainId(result_ty_ref, base, ids);
}
fn ptrAccessChain(
self: *DeclGen,
result_ty_ref: CacheRef,
base: IdRef,
element: IdRef,
indices: []const u32,
) !IdRef {
const ids = try self.indicesToIds(indices);
defer self.gpa.free(ids);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpInBoundsPtrAccessChain, .{
.id_result_type = self.typeId(result_ty_ref),
.id_result = result_id,
.base = base,
.element = element,
.indexes = ids,
});
return result_id;
}
fn ptrAdd(self: *DeclGen, result_ty: Type, ptr_ty: Type, ptr_id: IdRef, offset_id: IdRef) !IdRef {
const mod = self.module;
const result_ty_ref = try self.resolveType(result_ty, .direct);
switch (ptr_ty.ptrSize(mod)) {
.One => {
// Pointer to array
// TODO: Is this correct?
return try self.accessChainId(result_ty_ref, ptr_id, &.{offset_id});
},
.C, .Many => {
return try self.ptrAccessChain(result_ty_ref, ptr_id, offset_id, &.{});
},
.Slice => {
// TODO: This is probably incorrect. A slice should be returned here, though this is what llvm does.
const slice_ptr_id = try self.extractField(result_ty, ptr_id, 0);
return try self.ptrAccessChain(result_ty_ref, slice_ptr_id, offset_id, &.{});
},
}
}
fn airPtrAdd(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr_id = try self.resolve(bin_op.lhs);
const offset_id = try self.resolve(bin_op.rhs);
const ptr_ty = self.typeOf(bin_op.lhs);
const result_ty = self.typeOfIndex(inst);
return try self.ptrAdd(result_ty, ptr_ty, ptr_id, offset_id);
}
fn airPtrSub(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr_id = try self.resolve(bin_op.lhs);
const ptr_ty = self.typeOf(bin_op.lhs);
const offset_id = try self.resolve(bin_op.rhs);
const offset_ty = self.typeOf(bin_op.rhs);
const offset_ty_ref = try self.resolveType(offset_ty, .direct);
const result_ty = self.typeOfIndex(inst);
const negative_offset_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpSNegate, .{
.id_result_type = self.typeId(offset_ty_ref),
.id_result = negative_offset_id,
.operand = offset_id,
});
return try self.ptrAdd(result_ty, ptr_ty, ptr_id, negative_offset_id);
}
fn cmp(
self: *DeclGen,
op: std.math.CompareOperator,
result_ty: Type,
ty: Type,
lhs_id: IdRef,
rhs_id: IdRef,
) !IdRef {
const mod = self.module;
var cmp_lhs_id = lhs_id;
var cmp_rhs_id = rhs_id;
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
const op_ty = switch (ty.zigTypeTag(mod)) {
.Int, .Bool, .Float => ty,
.Enum => ty.intTagType(mod),
.ErrorSet => Type.u16,
.Pointer => blk: {
// Note that while SPIR-V offers OpPtrEqual and OpPtrNotEqual, they are
// currently not implemented in the SPIR-V LLVM translator. Thus, we emit these using
// OpConvertPtrToU...
cmp_lhs_id = self.spv.allocId();
cmp_rhs_id = self.spv.allocId();
const usize_ty_id = self.typeId(try self.sizeType());
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
.id_result_type = usize_ty_id,
.id_result = cmp_lhs_id,
.pointer = lhs_id,
});
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
.id_result_type = usize_ty_id,
.id_result = cmp_rhs_id,
.pointer = rhs_id,
});
break :blk Type.usize;
},
.Optional => {
const payload_ty = ty.optionalChild(mod);
if (ty.optionalReprIsPayload(mod)) {
assert(payload_ty.hasRuntimeBitsIgnoreComptime(mod));
assert(!payload_ty.isSlice(mod));
return self.cmp(op, Type.bool, payload_ty, lhs_id, rhs_id);
}
const lhs_valid_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(mod))
try self.extractField(Type.bool, lhs_id, 1)
else
try self.convertToDirect(Type.bool, lhs_id);
const rhs_valid_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(mod))
try self.extractField(Type.bool, rhs_id, 1)
else
try self.convertToDirect(Type.bool, rhs_id);
const valid_cmp_id = try self.cmp(op, Type.bool, Type.bool, lhs_valid_id, rhs_valid_id);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(mod)) {
return valid_cmp_id;
}
// TODO: Should we short circuit here? It shouldn't affect correctness, but
// perhaps it will generate more efficient code.
const lhs_pl_id = try self.extractField(payload_ty, lhs_id, 0);
const rhs_pl_id = try self.extractField(payload_ty, rhs_id, 0);
const pl_cmp_id = try self.cmp(op, Type.bool, payload_ty, lhs_pl_id, rhs_pl_id);
// op == .eq => lhs_valid == rhs_valid && lhs_pl == rhs_pl
// op == .neq => lhs_valid != rhs_valid || lhs_pl != rhs_pl
const result_id = self.spv.allocId();
const args = .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = result_id,
.operand_1 = valid_cmp_id,
.operand_2 = pl_cmp_id,
};
switch (op) {
.eq => try self.func.body.emit(self.spv.gpa, .OpLogicalAnd, args),
.neq => try self.func.body.emit(self.spv.gpa, .OpLogicalOr, args),
else => unreachable,
}
return result_id;
},
.Vector => {
const child_ty = ty.childType(mod);
const vector_len = ty.vectorLen(mod);
var constituents = try self.gpa.alloc(IdRef, vector_len);
defer self.gpa.free(constituents);
for (constituents, 0..) |*constituent, i| {
const lhs_index_id = try self.extractField(child_ty, cmp_lhs_id, @intCast(i));
const rhs_index_id = try self.extractField(child_ty, cmp_rhs_id, @intCast(i));
const result_id = try self.cmp(op, Type.bool, child_ty, lhs_index_id, rhs_index_id);
constituent.* = try self.convertToIndirect(Type.bool, result_id);
}
return try self.constructArray(result_ty, constituents);
},
else => unreachable,
};
const opcode: Opcode = opcode: {
const info = try self.arithmeticTypeInfo(op_ty);
const signedness = switch (info.class) {
.composite_integer => {
return self.todo("binary operations for composite integers", .{});
},
.float => break :opcode switch (op) {
.eq => .OpFOrdEqual,
.neq => .OpFUnordNotEqual,
.lt => .OpFOrdLessThan,
.lte => .OpFOrdLessThanEqual,
.gt => .OpFOrdGreaterThan,
.gte => .OpFOrdGreaterThanEqual,
},
.bool => break :opcode switch (op) {
.eq => .OpLogicalEqual,
.neq => .OpLogicalNotEqual,
else => unreachable,
},
.strange_integer => sign: {
const op_ty_ref = try self.resolveType(op_ty, .direct);
// Mask operands before performing comparison.
cmp_lhs_id = try self.normalizeInt(op_ty_ref, cmp_lhs_id, info);
cmp_rhs_id = try self.normalizeInt(op_ty_ref, cmp_rhs_id, info);
break :sign info.signedness;
},
.integer => info.signedness,
};
break :opcode switch (signedness) {
.unsigned => switch (op) {
.eq => .OpIEqual,
.neq => .OpINotEqual,
.lt => .OpULessThan,
.lte => .OpULessThanEqual,
.gt => .OpUGreaterThan,
.gte => .OpUGreaterThanEqual,
},
.signed => switch (op) {
.eq => .OpIEqual,
.neq => .OpINotEqual,
.lt => .OpSLessThan,
.lte => .OpSLessThanEqual,
.gt => .OpSGreaterThan,
.gte => .OpSGreaterThanEqual,
},
};
};
const result_id = self.spv.allocId();
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
self.func.body.writeOperand(spec.IdResultType, self.typeId(bool_ty_ref));
self.func.body.writeOperand(spec.IdResult, result_id);
self.func.body.writeOperand(spec.IdResultType, cmp_lhs_id);
self.func.body.writeOperand(spec.IdResultType, cmp_rhs_id);
return result_id;
}
fn airCmp(
self: *DeclGen,
inst: Air.Inst.Index,
comptime op: std.math.CompareOperator,
) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const lhs_id = try self.resolve(bin_op.lhs);
const rhs_id = try self.resolve(bin_op.rhs);
const ty = self.typeOf(bin_op.lhs);
const result_ty = self.typeOfIndex(inst);
return try self.cmp(op, result_ty, ty, lhs_id, rhs_id);
}
fn airVectorCmp(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const vec_cmp = self.air.extraData(Air.VectorCmp, ty_pl.payload).data;
const lhs_id = try self.resolve(vec_cmp.lhs);
const rhs_id = try self.resolve(vec_cmp.rhs);
const op = vec_cmp.compareOperator();
const ty = self.typeOf(vec_cmp.lhs);
const result_ty = self.typeOfIndex(inst);
return try self.cmp(op, result_ty, ty, lhs_id, rhs_id);
}
fn bitCast(
self: *DeclGen,
dst_ty: Type,
src_ty: Type,
src_id: IdRef,
) !IdRef {
const mod = self.module;
const src_ty_ref = try self.resolveType(src_ty, .direct);
const dst_ty_ref = try self.resolveType(dst_ty, .direct);
if (src_ty_ref == dst_ty_ref) {
return src_id;
}
// TODO: Some more cases are missing here
// See fn bitCast in llvm.zig
if (src_ty.zigTypeTag(mod) == .Int and dst_ty.isPtrAtRuntime(mod)) {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
.id_result_type = self.typeId(dst_ty_ref),
.id_result = result_id,
.integer_value = src_id,
});
return result_id;
}
// We can only use OpBitcast for specific conversions: between numerical types, and
// between pointers. If the resolved spir-v types fall into this category then emit OpBitcast,
// otherwise use a temporary and perform a pointer cast.
const src_key = self.spv.cache.lookup(src_ty_ref);
const dst_key = self.spv.cache.lookup(dst_ty_ref);
if ((src_key.isNumericalType() and dst_key.isNumericalType()) or (src_key == .ptr_type and dst_key == .ptr_type)) {
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = self.typeId(dst_ty_ref),
.id_result = result_id,
.operand = src_id,
});
return result_id;
}
const dst_ptr_ty_ref = try self.ptrType(dst_ty, .Function);
const tmp_id = try self.alloc(src_ty, .{ .storage_class = .Function });
try self.store(src_ty, tmp_id, src_id, false);
const casted_ptr_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = self.typeId(dst_ptr_ty_ref),
.id_result = casted_ptr_id,
.operand = tmp_id,
});
return try self.load(dst_ty, casted_ptr_id, false);
}
fn airBitCast(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const operand_ty = self.typeOf(ty_op.operand);
const result_ty = self.typeOfIndex(inst);
return try self.bitCast(result_ty, operand_ty, operand_id);
}
fn airIntCast(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const src_ty = self.typeOf(ty_op.operand);
const dst_ty = self.typeOfIndex(inst);
const src_ty_ref = try self.resolveType(src_ty, .direct);
const dst_ty_ref = try self.resolveType(dst_ty, .direct);
const src_info = try self.arithmeticTypeInfo(src_ty);
const dst_info = try self.arithmeticTypeInfo(dst_ty);
// While intcast promises that the value already fits, the upper bits of a
// strange integer may contain garbage. Therefore, mask/sign extend it before.
const src_id = try self.normalizeInt(src_ty_ref, operand_id, src_info);
if (src_info.backing_bits == dst_info.backing_bits) {
return src_id;
}
const result_id = self.spv.allocId();
switch (dst_info.signedness) {
.signed => try self.func.body.emit(self.spv.gpa, .OpSConvert, .{
.id_result_type = self.typeId(dst_ty_ref),
.id_result = result_id,
.signed_value = src_id,
}),
.unsigned => try self.func.body.emit(self.spv.gpa, .OpUConvert, .{
.id_result_type = self.typeId(dst_ty_ref),
.id_result = result_id,
.unsigned_value = src_id,
}),
}
return result_id;
}
fn intFromPtr(self: *DeclGen, operand_id: IdRef) !IdRef {
const result_type_id = try self.resolveTypeId(Type.usize);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
.id_result_type = result_type_id,
.id_result = result_id,
.pointer = operand_id,
});
return result_id;
}
fn airIntFromPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const un_op = self.air.instructions.items(.data)[inst].un_op;
const operand_id = try self.resolve(un_op);
return try self.intFromPtr(operand_id);
}
fn airFloatFromInt(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand_ty = self.typeOf(ty_op.operand);
const operand_id = try self.resolve(ty_op.operand);
const operand_info = try self.arithmeticTypeInfo(operand_ty);
const dest_ty = self.typeOfIndex(inst);
const dest_ty_id = try self.resolveTypeId(dest_ty);
const result_id = self.spv.allocId();
switch (operand_info.signedness) {
.signed => try self.func.body.emit(self.spv.gpa, .OpConvertSToF, .{
.id_result_type = dest_ty_id,
.id_result = result_id,
.signed_value = operand_id,
}),
.unsigned => try self.func.body.emit(self.spv.gpa, .OpConvertUToF, .{
.id_result_type = dest_ty_id,
.id_result = result_id,
.unsigned_value = operand_id,
}),
}
return result_id;
}
fn airIntFromFloat(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const dest_ty = self.typeOfIndex(inst);
const dest_info = try self.arithmeticTypeInfo(dest_ty);
const dest_ty_id = try self.resolveTypeId(dest_ty);
const result_id = self.spv.allocId();
switch (dest_info.signedness) {
.signed => try self.func.body.emit(self.spv.gpa, .OpConvertFToS, .{
.id_result_type = dest_ty_id,
.id_result = result_id,
.float_value = operand_id,
}),
.unsigned => try self.func.body.emit(self.spv.gpa, .OpConvertFToU, .{
.id_result_type = dest_ty_id,
.id_result = result_id,
.float_value = operand_id,
}),
}
return result_id;
}
fn airFloatCast(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const dest_ty = self.typeOfIndex(inst);
const dest_ty_id = try self.resolveTypeId(dest_ty);
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpFConvert, .{
.id_result_type = dest_ty_id,
.id_result = result_id,
.float_value = operand_id,
});
return result_id;
}
fn airNot(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const result_ty = self.typeOfIndex(inst);
const result_ty_id = try self.resolveTypeId(result_ty);
const info = try self.arithmeticTypeInfo(result_ty);
const result_id = self.spv.allocId();
switch (info.class) {
.bool => {
try self.func.body.emit(self.spv.gpa, .OpLogicalNot, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.operand = operand_id,
});
},
.float => unreachable,
.composite_integer => unreachable, // TODO
.strange_integer, .integer => {
// Note: strange integer bits will be masked before operations that do not hold under modulo.
try self.func.body.emit(self.spv.gpa, .OpNot, .{
.id_result_type = result_ty_id,
.id_result = result_id,
.operand = operand_id,
});
},
}
return result_id;
}
fn airArrayToSlice(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const array_ptr_ty = self.typeOf(ty_op.operand);
const array_ty = array_ptr_ty.childType(mod);
const slice_ty = self.typeOfIndex(inst);
const elem_ptr_ty = slice_ty.slicePtrFieldType(mod);
const elem_ptr_ty_ref = try self.resolveType(elem_ptr_ty, .direct);
const slice_ty_ref = try self.resolveType(slice_ty, .direct);
const size_ty_ref = try self.sizeType();
const array_ptr_id = try self.resolve(ty_op.operand);
const len_id = try self.constInt(size_ty_ref, array_ty.arrayLen(mod));
const elem_ptr_id = if (!array_ty.hasRuntimeBitsIgnoreComptime(mod))
// Note: The pointer is something like *opaque{}, so we need to bitcast it to the element type.
try self.bitCast(elem_ptr_ty, array_ptr_ty, array_ptr_id)
else
// Convert the pointer-to-array to a pointer to the first element.
try self.accessChain(elem_ptr_ty_ref, array_ptr_id, &.{0});
return try self.constructStruct(slice_ty_ref, &.{ elem_ptr_id, len_id });
}
fn airSlice(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const ptr_id = try self.resolve(bin_op.lhs);
const len_id = try self.resolve(bin_op.rhs);
const slice_ty = self.typeOfIndex(inst);
const slice_ty_ref = try self.resolveType(slice_ty, .direct);
return try self.constructStruct(slice_ty_ref, &.{
ptr_id, // Note: Type should not need to be converted to direct.
len_id, // Note: Type should not need to be converted to direct.
});
}
fn airAggregateInit(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ip = &mod.intern_pool;
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const result_ty = self.typeOfIndex(inst);
const result_ty_ref = try self.resolveType(result_ty, .direct);
const len: usize = @intCast(result_ty.arrayLen(mod));
const elements: []const Air.Inst.Ref = @ptrCast(self.air.extra[ty_pl.payload..][0..len]);
switch (result_ty.zigTypeTag(mod)) {
.Vector => unreachable, // TODO
.Struct => {
if (mod.typeToPackedStruct(result_ty)) |struct_type| {
_ = struct_type;
unreachable; // TODO
}
const constituents = try self.gpa.alloc(IdRef, elements.len);
defer self.gpa.free(constituents);
var index: usize = 0;
switch (ip.indexToKey(result_ty.toIntern())) {
.anon_struct_type => |tuple| {
for (tuple.types.get(ip), elements, 0..) |field_ty, element, i| {
if ((try result_ty.structFieldValueComptime(mod, i)) != null) continue;
assert(field_ty.toType().hasRuntimeBits(mod));
const id = try self.resolve(element);
constituents[index] = try self.convertToIndirect(field_ty.toType(), id);
index += 1;
}
},
.struct_type => |struct_type| {
var it = struct_type.iterateRuntimeOrder(ip);
for (elements, 0..) |element, i| {
const field_index = it.next().?;
if ((try result_ty.structFieldValueComptime(mod, i)) != null) continue;
const field_ty = struct_type.field_types.get(ip)[field_index].toType();
assert(field_ty.hasRuntimeBitsIgnoreComptime(mod));
const id = try self.resolve(element);
constituents[index] = try self.convertToIndirect(field_ty, id);
index += 1;
}
},
else => unreachable,
}
return try self.constructStruct(result_ty_ref, constituents[0..index]);
},
.Array => {
const array_info = result_ty.arrayInfo(mod);
const n_elems: usize = @intCast(result_ty.arrayLenIncludingSentinel(mod));
const elem_ids = try self.gpa.alloc(IdRef, n_elems);
defer self.gpa.free(elem_ids);
for (elements, 0..) |element, i| {
const id = try self.resolve(element);
elem_ids[i] = try self.convertToIndirect(array_info.elem_type, id);
}
if (array_info.sentinel) |sentinel_val| {
elem_ids[n_elems - 1] = try self.constant(array_info.elem_type, sentinel_val, .indirect);
}
return try self.constructArray(result_ty, elem_ids);
},
else => unreachable,
}
}
fn sliceOrArrayLen(self: *DeclGen, operand_id: IdRef, ty: Type) !IdRef {
const mod = self.module;
switch (ty.ptrSize(mod)) {
.Slice => return self.extractField(Type.usize, operand_id, 1),
.One => {
const array_ty = ty.childType(mod);
const elem_ty = array_ty.childType(mod);
const abi_size = elem_ty.abiSize(mod);
const usize_ty_ref = try self.resolveType(Type.usize, .direct);
return self.spv.constInt(usize_ty_ref, array_ty.arrayLenIncludingSentinel(mod) * abi_size);
},
.Many, .C => unreachable,
}
}
fn sliceOrArrayPtr(self: *DeclGen, operand_id: IdRef, ty: Type) !IdRef {
const mod = self.module;
if (ty.isSlice(mod)) {
const ptr_ty = ty.slicePtrFieldType(mod);
return self.extractField(ptr_ty, operand_id, 0);
}
return operand_id;
}
fn airMemcpy(self: *DeclGen, inst: Air.Inst.Index) !void {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const dest_slice = try self.resolve(bin_op.lhs);
const src_slice = try self.resolve(bin_op.rhs);
const dest_ty = self.typeOf(bin_op.lhs);
const src_ty = self.typeOf(bin_op.rhs);
const dest_ptr = try self.sliceOrArrayPtr(dest_slice, dest_ty);
const src_ptr = try self.sliceOrArrayPtr(src_slice, src_ty);
const len = try self.sliceOrArrayLen(dest_slice, dest_ty);
try self.func.body.emit(self.spv.gpa, .OpCopyMemorySized, .{
.target = dest_ptr,
.source = src_ptr,
.size = len,
});
}
fn airSliceField(self: *DeclGen, inst: Air.Inst.Index, field: u32) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const field_ty = self.typeOfIndex(inst);
const operand_id = try self.resolve(ty_op.operand);
return try self.extractField(field_ty, operand_id, field);
}
fn airSliceElemPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const mod = self.module;
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const slice_ty = self.typeOf(bin_op.lhs);
if (!slice_ty.isVolatilePtr(mod) and self.liveness.isUnused(inst)) return null;
const slice_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
const ptr_ty = self.typeOfIndex(inst);
const ptr_ty_ref = try self.resolveType(ptr_ty, .direct);
const slice_ptr = try self.extractField(ptr_ty, slice_id, 0);
return try self.ptrAccessChain(ptr_ty_ref, slice_ptr, index_id, &.{});
}
fn airSliceElemVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const mod = self.module;
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const slice_ty = self.typeOf(bin_op.lhs);
if (!slice_ty.isVolatilePtr(mod) and self.liveness.isUnused(inst)) return null;
const slice_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
const ptr_ty = slice_ty.slicePtrFieldType(mod);
const ptr_ty_ref = try self.resolveType(ptr_ty, .direct);
const slice_ptr = try self.extractField(ptr_ty, slice_id, 0);
const elem_ptr = try self.ptrAccessChain(ptr_ty_ref, slice_ptr, index_id, &.{});
return try self.load(slice_ty.childType(mod), elem_ptr, slice_ty.isVolatilePtr(mod));
}
fn ptrElemPtr(self: *DeclGen, ptr_ty: Type, ptr_id: IdRef, index_id: IdRef) !IdRef {
const mod = self.module;
// Construct new pointer type for the resulting pointer
const elem_ty = ptr_ty.elemType2(mod); // use elemType() so that we get T for *[N]T.
const elem_ptr_ty_ref = try self.ptrType(elem_ty, spvStorageClass(ptr_ty.ptrAddressSpace(mod)));
if (ptr_ty.isSinglePointer(mod)) {
// Pointer-to-array. In this case, the resulting pointer is not of the same type
// as the ptr_ty (we want a *T, not a *[N]T), and hence we need to use accessChain.
return try self.accessChainId(elem_ptr_ty_ref, ptr_id, &.{index_id});
} else {
// Resulting pointer type is the same as the ptr_ty, so use ptrAccessChain
return try self.ptrAccessChain(elem_ptr_ty_ref, ptr_id, index_id, &.{});
}
}
fn airPtrElemPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
const src_ptr_ty = self.typeOf(bin_op.lhs);
const elem_ty = src_ptr_ty.childType(mod);
const ptr_id = try self.resolve(bin_op.lhs);
if (!elem_ty.hasRuntimeBitsIgnoreComptime(mod)) {
const dst_ptr_ty = self.typeOfIndex(inst);
return try self.bitCast(dst_ptr_ty, src_ptr_ty, ptr_id);
}
const index_id = try self.resolve(bin_op.rhs);
return try self.ptrElemPtr(src_ptr_ty, ptr_id, index_id);
}
fn airArrayElemVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const array_ty = self.typeOf(bin_op.lhs);
const elem_ty = array_ty.childType(mod);
const array_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
// SPIR-V doesn't have an array indexing function for some damn reason.
// For now, just generate a temporary and use that.
// TODO: This backend probably also should use isByRef from llvm...
const elem_ptr_ty_ref = try self.ptrType(elem_ty, .Function);
const tmp_id = try self.alloc(array_ty, .{ .storage_class = .Function });
try self.store(array_ty, tmp_id, array_id, false);
const elem_ptr_id = try self.accessChainId(elem_ptr_ty_ref, tmp_id, &.{index_id});
return try self.load(elem_ty, elem_ptr_id, false);
}
fn airPtrElemVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const ptr_ty = self.typeOf(bin_op.lhs);
const elem_ty = self.typeOfIndex(inst);
const ptr_id = try self.resolve(bin_op.lhs);
const index_id = try self.resolve(bin_op.rhs);
const elem_ptr_id = try self.ptrElemPtr(ptr_ty, ptr_id, index_id);
return try self.load(elem_ty, elem_ptr_id, ptr_ty.isVolatilePtr(mod));
}
fn airSetUnionTag(self: *DeclGen, inst: Air.Inst.Index) !void {
const mod = self.module;
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const un_ptr_ty = self.typeOf(bin_op.lhs);
const un_ty = un_ptr_ty.childType(mod);
const layout = self.unionLayout(un_ty, null);
if (layout.tag_size == 0) return;
const tag_ty = un_ty.unionTagTypeSafety(mod).?;
const tag_ptr_ty_ref = try self.ptrType(tag_ty, spvStorageClass(un_ptr_ty.ptrAddressSpace(mod)));
const union_ptr_id = try self.resolve(bin_op.lhs);
const new_tag_id = try self.resolve(bin_op.rhs);
if (layout.payload_size == 0) {
try self.store(tag_ty, union_ptr_id, new_tag_id, un_ptr_ty.isVolatilePtr(mod));
} else {
const ptr_id = try self.accessChain(tag_ptr_ty_ref, union_ptr_id, &.{layout.tag_index});
try self.store(tag_ty, ptr_id, new_tag_id, un_ptr_ty.isVolatilePtr(mod));
}
}
fn airGetUnionTag(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const un_ty = self.typeOf(ty_op.operand);
const mod = self.module;
const layout = self.unionLayout(un_ty, null);
if (layout.tag_size == 0) return null;
const union_handle = try self.resolve(ty_op.operand);
if (layout.payload_size == 0) return union_handle;
const tag_ty = un_ty.unionTagTypeSafety(mod).?;
return try self.extractField(tag_ty, union_handle, layout.tag_index);
}
fn unionInit(
self: *DeclGen,
ty: Type,
active_field: u32,
payload: ?IdRef,
) !IdRef {
// To initialize a union, generate a temporary variable with the
// type that has the right field active, then pointer-cast and store
// the active field, and finally load and return the entire union.
const mod = self.module;
const ip = &mod.intern_pool;
const union_ty = mod.typeToUnion(ty).?;
if (union_ty.getLayout(ip) == .Packed) {
unreachable; // TODO
}
const maybe_tag_ty = ty.unionTagTypeSafety(mod);
const layout = self.unionLayout(ty, active_field);
const tag_int = if (layout.tag_size != 0) blk: {
const tag_ty = maybe_tag_ty.?;
const union_field_name = union_ty.field_names.get(ip)[active_field];
const enum_field_index = tag_ty.enumFieldIndex(union_field_name, mod).?;
const tag_val = try mod.enumValueFieldIndex(tag_ty, enum_field_index);
const tag_int_val = try tag_val.intFromEnum(tag_ty, mod);
break :blk tag_int_val.toUnsignedInt(mod);
} else 0;
if (layout.payload_size == 0) {
const tag_ty_ref = try self.resolveType(maybe_tag_ty.?, .direct);
return try self.constInt(tag_ty_ref, tag_int);
}
// TODO: Make this use self.ptrType
const un_active_ty_ref = try self.resolveUnionType(ty, active_field);
const un_active_ptr_ty_ref = try self.spv.ptrType(un_active_ty_ref, .Function);
const un_general_ty_ref = try self.resolveType(ty, .direct);
const un_general_ptr_ty_ref = try self.spv.ptrType(un_general_ty_ref, .Function);
const tmp_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = self.typeId(un_active_ptr_ty_ref),
.id_result = tmp_id,
.storage_class = .Function,
});
if (layout.tag_size != 0) {
const tag_ty_ref = try self.resolveType(maybe_tag_ty.?, .direct);
const tag_ptr_ty_ref = try self.ptrType(maybe_tag_ty.?, .Function);
const ptr_id = try self.accessChain(tag_ptr_ty_ref, tmp_id, &.{@as(u32, @intCast(layout.tag_index))});
const tag_id = try self.constInt(tag_ty_ref, tag_int);
try self.store(maybe_tag_ty.?, ptr_id, tag_id, false);
}
if (layout.active_field_size != 0) {
const active_field_ptr_ty_ref = try self.ptrType(layout.active_field_ty, .Function);
const ptr_id = try self.accessChain(active_field_ptr_ty_ref, tmp_id, &.{@as(u32, @intCast(layout.active_field_index))});
try self.store(layout.active_field_ty, ptr_id, payload.?, false);
} else {
assert(payload == null);
}
// Just leave the padding fields uninitialized...
// TODO: Or should we initialize them with undef explicitly?
// Now cast the pointer and load it as the 'generic' union type.
const casted_var_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = self.typeId(un_general_ptr_ty_ref),
.id_result = casted_var_id,
.operand = tmp_id,
});
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
.id_result_type = self.typeId(un_general_ty_ref),
.id_result = result_id,
.pointer = casted_var_id,
});
return result_id;
}
fn airUnionInit(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const extra = self.air.extraData(Air.UnionInit, ty_pl.payload).data;
const ty = self.typeOfIndex(inst);
const layout = self.unionLayout(ty, extra.field_index);
const payload = if (layout.active_field_size != 0)
try self.resolve(extra.init)
else
null;
return try self.unionInit(ty, extra.field_index, payload);
}
fn airStructFieldVal(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const struct_field = self.air.extraData(Air.StructField, ty_pl.payload).data;
const object_ty = self.typeOf(struct_field.struct_operand);
const object_id = try self.resolve(struct_field.struct_operand);
const field_index = struct_field.field_index;
const field_ty = object_ty.structFieldType(field_index, mod);
if (!field_ty.hasRuntimeBitsIgnoreComptime(mod)) return null;
switch (object_ty.zigTypeTag(mod)) {
.Struct => switch (object_ty.containerLayout(mod)) {
.Packed => unreachable, // TODO
else => return try self.extractField(field_ty, object_id, field_index),
},
.Union => switch (object_ty.containerLayout(mod)) {
.Packed => unreachable, // TODO
else => {
// Store, pointer-cast, load
const un_general_ty_ref = try self.resolveType(object_ty, .indirect);
const un_general_ptr_ty_ref = try self.spv.ptrType(un_general_ty_ref, .Function);
const un_active_ty_ref = try self.resolveUnionType(object_ty, field_index);
const un_active_ptr_ty_ref = try self.spv.ptrType(un_active_ty_ref, .Function);
const field_ty_ref = try self.resolveType(field_ty, .indirect);
const field_ptr_ty_ref = try self.spv.ptrType(field_ty_ref, .Function);
const tmp_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = self.typeId(un_general_ptr_ty_ref),
.id_result = tmp_id,
.storage_class = .Function,
});
try self.store(object_ty, tmp_id, object_id, false);
const casted_tmp_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = self.typeId(un_active_ptr_ty_ref),
.id_result = casted_tmp_id,
.operand = tmp_id,
});
const layout = self.unionLayout(object_ty, field_index);
const field_ptr_id = try self.accessChain(field_ptr_ty_ref, casted_tmp_id, &.{layout.active_field_index});
return try self.load(field_ty, field_ptr_id, false);
},
},
else => unreachable,
}
}
fn airFieldParentPtr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const mod = self.module;
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const extra = self.air.extraData(Air.FieldParentPtr, ty_pl.payload).data;
const parent_ty = self.air.getRefType(ty_pl.ty).childType(mod);
const res_ty = try self.resolveType(self.air.getRefType(ty_pl.ty), .indirect);
const usize_ty = Type.usize;
const usize_ty_ref = try self.resolveType(usize_ty, .direct);
const field_ptr = try self.resolve(extra.field_ptr);
const field_ptr_int = try self.intFromPtr(field_ptr);
const field_offset = parent_ty.structFieldOffset(extra.field_index, mod);
const base_ptr_int = base_ptr_int: {
if (field_offset == 0) break :base_ptr_int field_ptr_int;
const field_offset_id = try self.constInt(usize_ty_ref, field_offset);
break :base_ptr_int try self.binOpSimple(usize_ty, field_ptr_int, field_offset_id, .OpISub);
};
const base_ptr = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
.id_result_type = self.spv.resultId(res_ty),
.id_result = base_ptr,
.integer_value = base_ptr_int,
});
return base_ptr;
}
fn structFieldPtr(
self: *DeclGen,
result_ptr_ty: Type,
object_ptr_ty: Type,
object_ptr: IdRef,
field_index: u32,
) !IdRef {
const result_ty_ref = try self.resolveType(result_ptr_ty, .direct);
const mod = self.module;
const object_ty = object_ptr_ty.childType(mod);
switch (object_ty.zigTypeTag(mod)) {
.Struct => switch (object_ty.containerLayout(mod)) {
.Packed => unreachable, // TODO
else => {
return try self.accessChain(result_ty_ref, object_ptr, &.{field_index});
},
},
.Union => switch (object_ty.containerLayout(mod)) {
.Packed => unreachable, // TODO
else => {
const storage_class = spvStorageClass(object_ptr_ty.ptrAddressSpace(mod));
const un_active_ty_ref = try self.resolveUnionType(object_ty, field_index);
const un_active_ptr_ty_ref = try self.spv.ptrType(un_active_ty_ref, storage_class);
const casted_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
.id_result_type = self.typeId(un_active_ptr_ty_ref),
.id_result = casted_id,
.operand = object_ptr,
});
const layout = self.unionLayout(object_ty, field_index);
return try self.accessChain(result_ty_ref, casted_id, &.{layout.active_field_index});
},
},
else => unreachable,
}
}
fn airStructFieldPtrIndex(self: *DeclGen, inst: Air.Inst.Index, field_index: u32) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const struct_ptr = try self.resolve(ty_op.operand);
const struct_ptr_ty = self.typeOf(ty_op.operand);
const result_ptr_ty = self.typeOfIndex(inst);
return try self.structFieldPtr(result_ptr_ty, struct_ptr_ty, struct_ptr, field_index);
}
const AllocOptions = struct {
initializer: ?IdRef = null,
/// The final storage class of the pointer. This may be either `.Generic` or `.Function`.
/// In either case, the local is allocated in the `.Function` storage class, and optionally
/// cast back to `.Generic`.
storage_class: StorageClass = .Generic,
};
// Allocate a function-local variable, with possible initializer.
// This function returns a pointer to a variable of type `ty_ref`,
// which is in the Generic address space. The variable is actually
// placed in the Function address space.
fn alloc(
self: *DeclGen,
ty: Type,
options: AllocOptions,
) !IdRef {
const ptr_fn_ty_ref = try self.ptrType(ty, .Function);
// SPIR-V requires that OpVariable declarations for locals go into the first block, so we are just going to
// directly generate them into func.prologue instead of the body.
const var_id = self.spv.allocId();
try self.func.prologue.emit(self.spv.gpa, .OpVariable, .{
.id_result_type = self.typeId(ptr_fn_ty_ref),
.id_result = var_id,
.storage_class = .Function,
.initializer = options.initializer,
});
switch (options.storage_class) {
.Generic => {
const ptr_gn_ty_ref = try self.ptrType(ty, .Generic);
// Convert to a generic pointer
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpPtrCastToGeneric, .{
.id_result_type = self.typeId(ptr_gn_ty_ref),
.id_result = result_id,
.pointer = var_id,
});
return result_id;
},
.Function => return var_id,
else => unreachable,
}
}
fn airAlloc(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ptr_ty = self.typeOfIndex(inst);
assert(ptr_ty.ptrAddressSpace(mod) == .generic);
const child_ty = ptr_ty.childType(mod);
return try self.alloc(child_ty, .{});
}
fn airArg(self: *DeclGen) IdRef {
defer self.next_arg_index += 1;
return self.args.items[self.next_arg_index];
}
fn airBlock(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
// In AIR, a block doesn't really define an entry point like a block, but
// more like a scope that breaks can jump out of and "return" a value from.
// This cannot be directly modelled in SPIR-V, so in a block instruction,
// we're going to split up the current block by first generating the code
// of the block, then a label, and then generate the rest of the current
// ir.Block in a different SPIR-V block.
const mod = self.module;
const ty = self.typeOfIndex(inst);
const inst_datas = self.air.instructions.items(.data);
const extra = self.air.extraData(Air.Block, inst_datas[inst].ty_pl.payload);
const body = self.air.extra[extra.end..][0..extra.data.body_len];
const have_block_result = ty.isFnOrHasRuntimeBitsIgnoreComptime(mod);
// 4 chosen as arbitrary initial capacity.
var block = Block{
// Label id is lazily allocated if needed.
.label_id = null,
.incoming_blocks = try std.ArrayListUnmanaged(IncomingBlock).initCapacity(self.gpa, 4),
};
defer block.incoming_blocks.deinit(self.gpa);
try self.blocks.putNoClobber(self.gpa, inst, &block);
defer assert(self.blocks.remove(inst));
try self.genBody(body);
// Only begin a new block if there were actually any breaks towards it.
if (block.label_id) |label_id| {
try self.beginSpvBlock(label_id);
}
if (!have_block_result)
return null;
assert(block.label_id != null);
const result_id = self.spv.allocId();
const result_type_id = try self.resolveTypeId(ty);
try self.func.body.emitRaw(self.spv.gpa, .OpPhi, 2 + @as(u16, @intCast(block.incoming_blocks.items.len * 2))); // result type + result + variable/parent...
self.func.body.writeOperand(spec.IdResultType, result_type_id);
self.func.body.writeOperand(spec.IdRef, result_id);
for (block.incoming_blocks.items) |incoming| {
self.func.body.writeOperand(spec.PairIdRefIdRef, .{ incoming.break_value_id, incoming.src_label_id });
}
return result_id;
}
fn airBr(self: *DeclGen, inst: Air.Inst.Index) !void {
const br = self.air.instructions.items(.data)[inst].br;
const operand_ty = self.typeOf(br.operand);
const block = self.blocks.get(br.block_inst).?;
const mod = self.module;
if (operand_ty.isFnOrHasRuntimeBitsIgnoreComptime(mod)) {
const operand_id = try self.resolve(br.operand);
// current_block_label_id should not be undefined here, lest there is a br or br_void in the function's body.
try block.incoming_blocks.append(self.gpa, .{
.src_label_id = self.current_block_label_id,
.break_value_id = operand_id,
});
}
if (block.label_id == null) {
block.label_id = self.spv.allocId();
}
try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = block.label_id.? });
}
fn airCondBr(self: *DeclGen, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
const cond_br = self.air.extraData(Air.CondBr, pl_op.payload);
const then_body = self.air.extra[cond_br.end..][0..cond_br.data.then_body_len];
const else_body = self.air.extra[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len];
const condition_id = try self.resolve(pl_op.operand);
// These will always generate a new SPIR-V block, since they are ir.Body and not ir.Block.
const then_label_id = self.spv.allocId();
const else_label_id = self.spv.allocId();
// TODO: We can generate OpSelectionMerge here if we know the target block that both of these will resolve to,
// but i don't know if those will always resolve to the same block.
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = condition_id,
.true_label = then_label_id,
.false_label = else_label_id,
});
try self.beginSpvBlock(then_label_id);
try self.genBody(then_body);
try self.beginSpvBlock(else_label_id);
try self.genBody(else_body);
}
fn airLoad(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const mod = self.module;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const ptr_ty = self.typeOf(ty_op.operand);
const elem_ty = self.typeOfIndex(inst);
const operand = try self.resolve(ty_op.operand);
if (!ptr_ty.isVolatilePtr(mod) and self.liveness.isUnused(inst)) return null;
return try self.load(elem_ty, operand, ptr_ty.isVolatilePtr(mod));
}
fn airStore(self: *DeclGen, inst: Air.Inst.Index) !void {
const bin_op = self.air.instructions.items(.data)[inst].bin_op;
const ptr_ty = self.typeOf(bin_op.lhs);
const elem_ty = ptr_ty.childType(self.module);
const ptr = try self.resolve(bin_op.lhs);
const value = try self.resolve(bin_op.rhs);
try self.store(elem_ty, ptr, value, ptr_ty.isVolatilePtr(self.module));
}
fn airLoop(self: *DeclGen, inst: Air.Inst.Index) !void {
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const loop = self.air.extraData(Air.Block, ty_pl.payload);
const body = self.air.extra[loop.end..][0..loop.data.body_len];
const loop_label_id = self.spv.allocId();
// Jump to the loop entry point
try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = loop_label_id });
// TODO: Look into OpLoopMerge.
try self.beginSpvBlock(loop_label_id);
try self.genBody(body);
try self.func.body.emit(self.spv.gpa, .OpBranch, .{ .target_label = loop_label_id });
}
fn airRet(self: *DeclGen, inst: Air.Inst.Index) !void {
const operand = self.air.instructions.items(.data)[inst].un_op;
const ret_ty = self.typeOf(operand);
const mod = self.module;
if (!ret_ty.hasRuntimeBitsIgnoreComptime(mod)) {
const decl = mod.declPtr(self.decl_index);
const fn_info = mod.typeToFunc(decl.ty).?;
if (fn_info.return_type.toType().isError(mod)) {
// Functions with an empty error set are emitted with an error code
// return type and return zero so they can be function pointers coerced
// to functions that return anyerror.
const err_ty_ref = try self.resolveType(Type.anyerror, .direct);
const no_err_id = try self.constInt(err_ty_ref, 0);
return try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = no_err_id });
} else {
return try self.func.body.emit(self.spv.gpa, .OpReturn, {});
}
}
const operand_id = try self.resolve(operand);
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = operand_id });
}
fn airRetLoad(self: *DeclGen, inst: Air.Inst.Index) !void {
const mod = self.module;
const un_op = self.air.instructions.items(.data)[inst].un_op;
const ptr_ty = self.typeOf(un_op);
const ret_ty = ptr_ty.childType(mod);
if (!ret_ty.hasRuntimeBitsIgnoreComptime(mod)) {
const decl = mod.declPtr(self.decl_index);
const fn_info = mod.typeToFunc(decl.ty).?;
if (fn_info.return_type.toType().isError(mod)) {
// Functions with an empty error set are emitted with an error code
// return type and return zero so they can be function pointers coerced
// to functions that return anyerror.
const err_ty_ref = try self.resolveType(Type.anyerror, .direct);
const no_err_id = try self.constInt(err_ty_ref, 0);
return try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = no_err_id });
} else {
return try self.func.body.emit(self.spv.gpa, .OpReturn, {});
}
}
const ptr = try self.resolve(un_op);
const value = try self.load(ret_ty, ptr, ptr_ty.isVolatilePtr(mod));
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{
.value = value,
});
}
fn airTry(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const mod = self.module;
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
const err_union_id = try self.resolve(pl_op.operand);
const extra = self.air.extraData(Air.Try, pl_op.payload);
const body = self.air.extra[extra.end..][0..extra.data.body_len];
const err_union_ty = self.typeOf(pl_op.operand);
const payload_ty = self.typeOfIndex(inst);
const err_ty_ref = try self.resolveType(Type.anyerror, .direct);
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!err_union_ty.errorUnionSet(mod).errorSetIsEmpty(mod)) {
const err_id = if (eu_layout.payload_has_bits)
try self.extractField(Type.anyerror, err_union_id, eu_layout.errorFieldIndex())
else
err_union_id;
const zero_id = try self.constInt(err_ty_ref, 0);
const is_err_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpINotEqual, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = is_err_id,
.operand_1 = err_id,
.operand_2 = zero_id,
});
// When there is an error, we must evaluate `body`. Otherwise we must continue
// with the current body.
// Just generate a new block here, then generate a new block inline for the remainder of the body.
const err_block = self.spv.allocId();
const ok_block = self.spv.allocId();
// TODO: Merge block
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
.condition = is_err_id,
.true_label = err_block,
.false_label = ok_block,
});
try self.beginSpvBlock(err_block);
try self.genBody(body);
try self.beginSpvBlock(ok_block);
// Now just extract the payload, if required.
}
if (self.liveness.isUnused(inst)) {
return null;
}
if (!eu_layout.payload_has_bits) {
return null;
}
return try self.extractField(payload_ty, err_union_id, eu_layout.payloadFieldIndex());
}
fn airErrUnionErr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const err_union_ty = self.typeOf(ty_op.operand);
const err_ty_ref = try self.resolveType(Type.anyerror, .direct);
if (err_union_ty.errorUnionSet(mod).errorSetIsEmpty(mod)) {
// No error possible, so just return undefined.
return try self.spv.constUndef(err_ty_ref);
}
const payload_ty = err_union_ty.errorUnionPayload(mod);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
// If no payload, error union is represented by error set.
return operand_id;
}
return try self.extractField(Type.anyerror, operand_id, eu_layout.errorFieldIndex());
}
fn airErrUnionPayload(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const payload_ty = self.typeOfIndex(inst);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return null; // No error possible.
}
return try self.extractField(payload_ty, operand_id, eu_layout.payloadFieldIndex());
}
fn airWrapErrUnionErr(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const err_union_ty = self.typeOfIndex(inst);
const payload_ty = err_union_ty.errorUnionPayload(mod);
const operand_id = try self.resolve(ty_op.operand);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return operand_id;
}
const payload_ty_ref = try self.resolveType(payload_ty, .indirect);
var members: [2]IdRef = undefined;
members[eu_layout.errorFieldIndex()] = operand_id;
members[eu_layout.payloadFieldIndex()] = try self.spv.constUndef(payload_ty_ref);
const err_union_ty_ref = try self.resolveType(err_union_ty, .direct);
return try self.constructStruct(err_union_ty_ref, &members);
}
fn airWrapErrUnionPayload(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const err_union_ty = self.typeOfIndex(inst);
const operand_id = try self.resolve(ty_op.operand);
const payload_ty = self.typeOf(ty_op.operand);
const err_ty_ref = try self.resolveType(Type.anyerror, .direct);
const eu_layout = self.errorUnionLayout(payload_ty);
if (!eu_layout.payload_has_bits) {
return try self.constInt(err_ty_ref, 0);
}
var members: [2]IdRef = undefined;
members[eu_layout.errorFieldIndex()] = try self.constInt(err_ty_ref, 0);
members[eu_layout.payloadFieldIndex()] = try self.convertToIndirect(payload_ty, operand_id);
const err_union_ty_ref = try self.resolveType(err_union_ty, .direct);
return try self.constructStruct(err_union_ty_ref, &members);
}
fn airIsNull(self: *DeclGen, inst: Air.Inst.Index, pred: enum { is_null, is_non_null }) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const un_op = self.air.instructions.items(.data)[inst].un_op;
const operand_id = try self.resolve(un_op);
const optional_ty = self.typeOf(un_op);
const payload_ty = optional_ty.optionalChild(mod);
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
if (optional_ty.optionalReprIsPayload(mod)) {
// Pointer payload represents nullability: pointer or slice.
const ptr_ty = if (payload_ty.isSlice(mod))
payload_ty.slicePtrFieldType(mod)
else
payload_ty;
const ptr_id = if (payload_ty.isSlice(mod))
try self.extractField(ptr_ty, operand_id, 0)
else
operand_id;
const payload_ty_ref = try self.resolveType(ptr_ty, .direct);
const null_id = try self.spv.constNull(payload_ty_ref);
const op: std.math.CompareOperator = switch (pred) {
.is_null => .eq,
.is_non_null => .neq,
};
return try self.cmp(op, Type.bool, ptr_ty, ptr_id, null_id);
}
const is_non_null_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(mod))
try self.extractField(Type.bool, operand_id, 1)
else
// Optional representation is bool indicating whether the optional is set
// Optionals with no payload are represented as an (indirect) bool, so convert
// it back to the direct bool here.
try self.convertToDirect(Type.bool, operand_id);
return switch (pred) {
.is_null => blk: {
// Invert condition
const result_id = self.spv.allocId();
try self.func.body.emit(self.spv.gpa, .OpLogicalNot, .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = result_id,
.operand = is_non_null_id,
});
break :blk result_id;
},
.is_non_null => is_non_null_id,
};
}
fn airIsErr(self: *DeclGen, inst: Air.Inst.Index, pred: enum { is_err, is_non_err }) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const un_op = self.air.instructions.items(.data)[inst].un_op;
const operand_id = try self.resolve(un_op);
const err_union_ty = self.typeOf(un_op);
if (err_union_ty.errorUnionSet(mod).errorSetIsEmpty(mod)) {
return try self.constBool(pred == .is_non_err, .direct);
}
const payload_ty = err_union_ty.errorUnionPayload(mod);
const eu_layout = self.errorUnionLayout(payload_ty);
const bool_ty_ref = try self.resolveType(Type.bool, .direct);
const err_ty_ref = try self.resolveType(Type.anyerror, .direct);
const error_id = if (!eu_layout.payload_has_bits)
operand_id
else
try self.extractField(Type.anyerror, operand_id, eu_layout.errorFieldIndex());
const result_id = self.spv.allocId();
const operands = .{
.id_result_type = self.typeId(bool_ty_ref),
.id_result = result_id,
.operand_1 = error_id,
.operand_2 = try self.constInt(err_ty_ref, 0),
};
switch (pred) {
.is_err => try self.func.body.emit(self.spv.gpa, .OpINotEqual, operands),
.is_non_err => try self.func.body.emit(self.spv.gpa, .OpIEqual, operands),
}
return result_id;
}
fn airUnwrapOptional(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const operand_id = try self.resolve(ty_op.operand);
const optional_ty = self.typeOf(ty_op.operand);
const payload_ty = self.typeOfIndex(inst);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(mod)) return null;
if (optional_ty.optionalReprIsPayload(mod)) {
return operand_id;
}
return try self.extractField(payload_ty, operand_id, 0);
}
fn airWrapOptional(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
if (self.liveness.isUnused(inst)) return null;
const mod = self.module;
const ty_op = self.air.instructions.items(.data)[inst].ty_op;
const payload_ty = self.typeOf(ty_op.operand);
if (!payload_ty.hasRuntimeBitsIgnoreComptime(mod)) {
return try self.constBool(true, .indirect);
}
const operand_id = try self.resolve(ty_op.operand);
const optional_ty = self.typeOfIndex(inst);
if (optional_ty.optionalReprIsPayload(mod)) {
return operand_id;
}
const optional_ty_ref = try self.resolveType(optional_ty, .direct);
const payload_id = try self.convertToIndirect(payload_ty, operand_id);
const members = [_]IdRef{ payload_id, try self.constBool(true, .indirect) };
return try self.constructStruct(optional_ty_ref, &members);
}
fn airSwitchBr(self: *DeclGen, inst: Air.Inst.Index) !void {
const mod = self.module;
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
const cond_ty = self.typeOf(pl_op.operand);
const cond = try self.resolve(pl_op.operand);
const cond_indirect = try self.convertToIndirect(cond_ty, cond);
const switch_br = self.air.extraData(Air.SwitchBr, pl_op.payload);
const cond_words: u32 = switch (cond_ty.zigTypeTag(mod)) {
.Bool => 1,
.Int => blk: {
const bits = cond_ty.intInfo(mod).bits;
const backing_bits = self.backingIntBits(bits) orelse {
return self.todo("implement composite int switch", .{});
};
break :blk if (backing_bits <= 32) @as(u32, 1) else 2;
},
.Enum => blk: {
const int_ty = cond_ty.intTagType(mod);
const int_info = int_ty.intInfo(mod);
const backing_bits = self.backingIntBits(int_info.bits) orelse {
return self.todo("implement composite int switch", .{});
};
break :blk if (backing_bits <= 32) @as(u32, 1) else 2;
},
.ErrorSet => 1,
else => return self.todo("implement switch for type {s}", .{@tagName(cond_ty.zigTypeTag(mod))}), // TODO: Figure out which types apply here, and work around them as we can only do integers.
};
const num_cases = switch_br.data.cases_len;
// Compute the total number of arms that we need.
// Zig switches are grouped by condition, so we need to loop through all of them
const num_conditions = blk: {
var extra_index: usize = switch_br.end;
var case_i: u32 = 0;
var num_conditions: u32 = 0;
while (case_i < num_cases) : (case_i += 1) {
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
const case_body = self.air.extra[case.end + case.data.items_len ..][0..case.data.body_len];
extra_index = case.end + case.data.items_len + case_body.len;
num_conditions += case.data.items_len;
}
break :blk num_conditions;
};
// First, pre-allocate the labels for the cases.
const first_case_label = self.spv.allocIds(num_cases);
// We always need the default case - if zig has none, we will generate unreachable there.
const default = self.spv.allocId();
// Emit the instruction before generating the blocks.
try self.func.body.emitRaw(self.spv.gpa, .OpSwitch, 2 + (cond_words + 1) * num_conditions);
self.func.body.writeOperand(IdRef, cond_indirect);
self.func.body.writeOperand(IdRef, default);
// Emit each of the cases
{
var extra_index: usize = switch_br.end;
var case_i: u32 = 0;
while (case_i < num_cases) : (case_i += 1) {
// SPIR-V needs a literal here, which' width depends on the case condition.
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
const items = @as([]const Air.Inst.Ref, @ptrCast(self.air.extra[case.end..][0..case.data.items_len]));
const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len];
extra_index = case.end + case.data.items_len + case_body.len;
const label = IdRef{ .id = first_case_label.id + case_i };
for (items) |item| {
const value = (try self.air.value(item, mod)) orelse {
return self.todo("switch on runtime value???", .{});
};
const int_val = switch (cond_ty.zigTypeTag(mod)) {
.Bool, .Int => if (cond_ty.isSignedInt(mod)) @as(u64, @bitCast(value.toSignedInt(mod))) else value.toUnsignedInt(mod),
.Enum => blk: {
// TODO: figure out of cond_ty is correct (something with enum literals)
break :blk (try value.intFromEnum(cond_ty, mod)).toUnsignedInt(mod); // TODO: composite integer constants
},
.ErrorSet => value.getErrorInt(mod),
else => unreachable,
};
const int_lit: spec.LiteralContextDependentNumber = switch (cond_words) {
1 => .{ .uint32 = @as(u32, @intCast(int_val)) },
2 => .{ .uint64 = int_val },
else => unreachable,
};
self.func.body.writeOperand(spec.LiteralContextDependentNumber, int_lit);
self.func.body.writeOperand(IdRef, label);
}
}
}
// Now, finally, we can start emitting each of the cases.
var extra_index: usize = switch_br.end;
var case_i: u32 = 0;
while (case_i < num_cases) : (case_i += 1) {
const case = self.air.extraData(Air.SwitchBr.Case, extra_index);
const items = @as([]const Air.Inst.Ref, @ptrCast(self.air.extra[case.end..][0..case.data.items_len]));
const case_body = self.air.extra[case.end + items.len ..][0..case.data.body_len];
extra_index = case.end + case.data.items_len + case_body.len;
const label = IdResult{ .id = first_case_label.id + case_i };
try self.beginSpvBlock(label);
try self.genBody(case_body);
}
const else_body = self.air.extra[extra_index..][0..switch_br.data.else_body_len];
try self.beginSpvBlock(default);
if (else_body.len != 0) {
try self.genBody(else_body);
} else {
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
}
}
fn airUnreach(self: *DeclGen) !void {
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
}
fn airDbgStmt(self: *DeclGen, inst: Air.Inst.Index) !void {
const dbg_stmt = self.air.instructions.items(.data)[inst].dbg_stmt;
const mod = self.module;
const decl = mod.declPtr(self.decl_index);
const path = decl.getFileScope(mod).sub_file_path;
const src_fname_id = try self.spv.resolveSourceFileName(path);
const base_line = self.base_line_stack.getLast();
try self.func.body.emit(self.spv.gpa, .OpLine, .{
.file = src_fname_id,
.line = base_line + dbg_stmt.line + 1,
.column = dbg_stmt.column + 1,
});
}
fn airDbgInlineBegin(self: *DeclGen, inst: Air.Inst.Index) !void {
const mod = self.module;
const fn_ty = self.air.instructions.items(.data)[inst].ty_fn;
const decl_index = mod.funcInfo(fn_ty.func).owner_decl;
const decl = mod.declPtr(decl_index);
try self.base_line_stack.append(self.gpa, decl.src_line);
}
fn airDbgInlineEnd(self: *DeclGen, inst: Air.Inst.Index) !void {
_ = inst;
_ = self.base_line_stack.pop();
}
fn airDbgVar(self: *DeclGen, inst: Air.Inst.Index) !void {
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
const target_id = try self.resolve(pl_op.operand);
const name = self.air.nullTerminatedString(pl_op.payload);
try self.spv.debugName(target_id, name);
}
fn airAssembly(self: *DeclGen, inst: Air.Inst.Index) !?IdRef {
const mod = self.module;
const ty_pl = self.air.instructions.items(.data)[inst].ty_pl;
const extra = self.air.extraData(Air.Asm, ty_pl.payload);
const is_volatile = @as(u1, @truncate(extra.data.flags >> 31)) != 0;
const clobbers_len = @as(u31, @truncate(extra.data.flags));
if (!is_volatile and self.liveness.isUnused(inst)) return null;
var extra_i: usize = extra.end;
const outputs = @as([]const Air.Inst.Ref, @ptrCast(self.air.extra[extra_i..][0..extra.data.outputs_len]));
extra_i += outputs.len;
const inputs = @as([]const Air.Inst.Ref, @ptrCast(self.air.extra[extra_i..][0..extra.data.inputs_len]));
extra_i += inputs.len;
if (outputs.len > 1) {
return self.todo("implement inline asm with more than 1 output", .{});
}
var output_extra_i = extra_i;
for (outputs) |output| {
if (output != .none) {
return self.todo("implement inline asm with non-returned output", .{});
}
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
// TODO: Record output and use it somewhere.
}
var input_extra_i = extra_i;
for (inputs) |input| {
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
const constraint = std.mem.sliceTo(extra_bytes, 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
// TODO: Record input and use it somewhere.
_ = input;
}
{
var clobber_i: u32 = 0;
while (clobber_i < clobbers_len) : (clobber_i += 1) {
const clobber = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
extra_i += clobber.len / 4 + 1;
// TODO: Record clobber and use it somewhere.
}
}
const asm_source = std.mem.sliceAsBytes(self.air.extra[extra_i..])[0..extra.data.source_len];
var as = SpvAssembler{
.gpa = self.gpa,
.src = asm_source,
.spv = self.spv,
.func = &self.func,
};
defer as.deinit();
for (inputs) |input| {
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[input_extra_i..]);
const constraint = std.mem.sliceTo(extra_bytes, 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
// This equation accounts for the fact that even if we have exactly 4 bytes
// for the string, we still use the next u32 for the null terminator.
input_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
const value = try self.resolve(input);
try as.value_map.put(as.gpa, name, .{ .value = value });
}
as.assemble() catch |err| switch (err) {
error.AssembleFail => {
// TODO: For now the compiler only supports a single error message per decl,
// so to translate the possible multiple errors from the assembler, emit
// them as notes here.
// TODO: Translate proper error locations.
assert(as.errors.items.len != 0);
assert(self.error_msg == null);
const loc = LazySrcLoc.nodeOffset(0);
const src_loc = loc.toSrcLoc(self.module.declPtr(self.decl_index), mod);
self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, "failed to assemble SPIR-V inline assembly", .{});
const notes = try self.module.gpa.alloc(Module.ErrorMsg, as.errors.items.len);
// Sub-scope to prevent `return error.CodegenFail` from running the errdefers.
{
errdefer self.module.gpa.free(notes);
var i: usize = 0;
errdefer for (notes[0..i]) |*note| {
note.deinit(self.module.gpa);
};
while (i < as.errors.items.len) : (i += 1) {
notes[i] = try Module.ErrorMsg.init(self.module.gpa, src_loc, "{s}", .{as.errors.items[i].msg});
}
}
self.error_msg.?.notes = notes;
return error.CodegenFail;
},
else => |others| return others,
};
for (outputs) |output| {
_ = output;
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[output_extra_i..]);
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[output_extra_i..]), 0);
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
output_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
const result = as.value_map.get(name) orelse return {
return self.fail("invalid asm output '{s}'", .{name});
};
switch (result) {
.just_declared, .unresolved_forward_reference => unreachable,
.ty => return self.fail("cannot return spir-v type as value from assembly", .{}),
.value => |ref| return ref,
}
// TODO: Multiple results
}
return null;
}
fn airCall(self: *DeclGen, inst: Air.Inst.Index, modifier: std.builtin.CallModifier) !?IdRef {
_ = modifier;
const mod = self.module;
const pl_op = self.air.instructions.items(.data)[inst].pl_op;
const extra = self.air.extraData(Air.Call, pl_op.payload);
const args = @as([]const Air.Inst.Ref, @ptrCast(self.air.extra[extra.end..][0..extra.data.args_len]));
const callee_ty = self.typeOf(pl_op.operand);
const zig_fn_ty = switch (callee_ty.zigTypeTag(mod)) {
.Fn => callee_ty,
.Pointer => return self.fail("cannot call function pointers", .{}),
else => unreachable,
};
const fn_info = mod.typeToFunc(zig_fn_ty).?;
const return_type = fn_info.return_type;
const result_type_ref = try self.resolveFnReturnType(return_type.toType());
const result_id = self.spv.allocId();
const callee_id = try self.resolve(pl_op.operand);
const params = try self.gpa.alloc(spec.IdRef, args.len);
defer self.gpa.free(params);
var n_params: usize = 0;
for (args) |arg| {
// Note: resolve() might emit instructions, so we need to call it
// before starting to emit OpFunctionCall instructions. Hence the
// temporary params buffer.
const arg_ty = self.typeOf(arg);
if (!arg_ty.hasRuntimeBitsIgnoreComptime(mod)) continue;
const arg_id = try self.resolve(arg);
params[n_params] = arg_id;
n_params += 1;
}
try self.func.body.emit(self.spv.gpa, .OpFunctionCall, .{
.id_result_type = self.typeId(result_type_ref),
.id_result = result_id,
.function = callee_id,
.id_ref_3 = params[0..n_params],
});
if (return_type == .noreturn_type) {
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
}
if (self.liveness.isUnused(inst) or !return_type.toType().hasRuntimeBitsIgnoreComptime(mod)) {
return null;
}
return result_id;
}
fn typeOf(self: *DeclGen, inst: Air.Inst.Ref) Type {
const mod = self.module;
return self.air.typeOf(inst, &mod.intern_pool);
}
fn typeOfIndex(self: *DeclGen, inst: Air.Inst.Index) Type {
const mod = self.module;
return self.air.typeOfIndex(inst, &mod.intern_pool);
}
};