6660 lines
279 KiB
Zig
6660 lines
279 KiB
Zig
const std = @import("std");
|
||
const Allocator = std.mem.Allocator;
|
||
const Target = std.Target;
|
||
const log = std.log.scoped(.codegen);
|
||
const assert = std.debug.assert;
|
||
const Signedness = std.builtin.Signedness;
|
||
|
||
const Zcu = @import("../Zcu.zig");
|
||
const Decl = Zcu.Decl;
|
||
const Type = @import("../Type.zig");
|
||
const Value = @import("../Value.zig");
|
||
const Air = @import("../Air.zig");
|
||
const Liveness = @import("../Liveness.zig");
|
||
const InternPool = @import("../InternPool.zig");
|
||
|
||
const spec = @import("spirv/spec.zig");
|
||
const Opcode = spec.Opcode;
|
||
const Word = spec.Word;
|
||
const IdRef = spec.IdRef;
|
||
const IdResult = spec.IdResult;
|
||
const IdResultType = spec.IdResultType;
|
||
const StorageClass = spec.StorageClass;
|
||
|
||
const SpvModule = @import("spirv/Module.zig");
|
||
const IdRange = SpvModule.IdRange;
|
||
|
||
const SpvSection = @import("spirv/Section.zig");
|
||
const SpvAssembler = @import("spirv/Assembler.zig");
|
||
|
||
const InstMap = std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef);
|
||
|
||
pub const zig_call_abi_ver = 3;
|
||
|
||
const InternMap = std.AutoHashMapUnmanaged(struct { InternPool.Index, NavGen.Repr }, IdResult);
|
||
const PtrTypeMap = std.AutoHashMapUnmanaged(
|
||
struct { InternPool.Index, StorageClass, NavGen.Repr },
|
||
struct { ty_id: IdRef, fwd_emitted: bool },
|
||
);
|
||
|
||
const ControlFlow = union(enum) {
|
||
const Structured = struct {
|
||
/// This type indicates the way that a block is terminated. The
|
||
/// state of a particular block is used to track how a jump from
|
||
/// inside the block must reach the outside.
|
||
const Block = union(enum) {
|
||
const Incoming = struct {
|
||
src_label: IdRef,
|
||
/// Instruction that returns an u32 value of the
|
||
/// `Air.Inst.Index` that control flow should jump to.
|
||
next_block: IdRef,
|
||
};
|
||
|
||
const SelectionMerge = struct {
|
||
/// Incoming block from the `then` label.
|
||
/// Note that hte incoming block from the `else` label is
|
||
/// either given by the next element in the stack.
|
||
incoming: Incoming,
|
||
/// The label id of the cond_br's merge block.
|
||
/// For the top-most element in the stack, this
|
||
/// value is undefined.
|
||
merge_block: IdRef,
|
||
};
|
||
|
||
/// For a `selection` type block, we cannot use early exits, and we
|
||
/// must generate a 'merge ladder' of OpSelection instructions. To that end,
|
||
/// we keep a stack of the merges that still must be closed at the end of
|
||
/// a block.
|
||
///
|
||
/// This entire structure basically just resembles a tree like
|
||
/// a x
|
||
/// \ /
|
||
/// b o merge
|
||
/// \ /
|
||
/// c o merge
|
||
/// \ /
|
||
/// o merge
|
||
/// /
|
||
/// o jump to next block
|
||
selection: struct {
|
||
/// In order to know which merges we still need to do, we need to keep
|
||
/// a stack of those.
|
||
merge_stack: std.ArrayListUnmanaged(SelectionMerge) = .empty,
|
||
},
|
||
/// For a `loop` type block, we can early-exit the block by
|
||
/// jumping to the loop exit node, and we don't need to generate
|
||
/// an entire stack of merges.
|
||
loop: struct {
|
||
/// The next block to jump to can be determined from any number
|
||
/// of conditions that jump to the loop exit.
|
||
merges: std.ArrayListUnmanaged(Incoming) = .empty,
|
||
/// The label id of the loop's merge block.
|
||
merge_block: IdRef,
|
||
},
|
||
|
||
fn deinit(self: *Structured.Block, a: Allocator) void {
|
||
switch (self.*) {
|
||
.selection => |*merge| merge.merge_stack.deinit(a),
|
||
.loop => |*merge| merge.merges.deinit(a),
|
||
}
|
||
self.* = undefined;
|
||
}
|
||
};
|
||
/// The stack of (structured) blocks that we are currently in. This determines
|
||
/// how exits from the current block must be handled.
|
||
block_stack: std.ArrayListUnmanaged(*Structured.Block) = .empty,
|
||
/// Maps `block` inst indices to the variable that the block's result
|
||
/// value must be written to.
|
||
block_results: std.AutoHashMapUnmanaged(Air.Inst.Index, IdRef) = .empty,
|
||
};
|
||
|
||
const Unstructured = struct {
|
||
const Incoming = struct {
|
||
src_label: IdRef,
|
||
break_value_id: IdRef,
|
||
};
|
||
|
||
const Block = struct {
|
||
label: ?IdRef = null,
|
||
incoming_blocks: std.ArrayListUnmanaged(Incoming) = .empty,
|
||
};
|
||
|
||
/// We need to keep track of result ids for block labels, as well as the 'incoming'
|
||
/// blocks for a block.
|
||
blocks: std.AutoHashMapUnmanaged(Air.Inst.Index, *Block) = .empty,
|
||
};
|
||
|
||
structured: Structured,
|
||
unstructured: Unstructured,
|
||
|
||
pub fn deinit(self: *ControlFlow, a: Allocator) void {
|
||
switch (self.*) {
|
||
.structured => |*cf| {
|
||
cf.block_stack.deinit(a);
|
||
cf.block_results.deinit(a);
|
||
},
|
||
.unstructured => |*cf| {
|
||
cf.blocks.deinit(a);
|
||
},
|
||
}
|
||
self.* = undefined;
|
||
}
|
||
};
|
||
|
||
/// This structure holds information that is relevant to the entire compilation,
|
||
/// in contrast to `NavGen`, which only holds relevant information about a
|
||
/// single decl.
|
||
pub const Object = struct {
|
||
/// A general-purpose allocator that can be used for any allocation for this Object.
|
||
gpa: Allocator,
|
||
|
||
/// the SPIR-V module that represents the final binary.
|
||
spv: SpvModule,
|
||
|
||
/// The Zig module that this object file is generated for.
|
||
/// A map of Zig decl indices to SPIR-V decl indices.
|
||
nav_link: std.AutoHashMapUnmanaged(InternPool.Nav.Index, SpvModule.Decl.Index) = .empty,
|
||
|
||
/// A map of Zig InternPool indices for anonymous decls to SPIR-V decl indices.
|
||
uav_link: std.AutoHashMapUnmanaged(struct { InternPool.Index, StorageClass }, SpvModule.Decl.Index) = .empty,
|
||
|
||
/// A map that maps AIR intern pool indices to SPIR-V result-ids.
|
||
intern_map: InternMap = .empty,
|
||
|
||
/// This map serves a dual purpose:
|
||
/// - It keeps track of pointers that are currently being emitted, so that we can tell
|
||
/// if they are recursive and need an OpTypeForwardPointer.
|
||
/// - It caches pointers by child-type. This is required because sometimes we rely on
|
||
/// ID-equality for pointers, and pointers constructed via `ptrType()` aren't interned
|
||
/// via the usual `intern_map` mechanism.
|
||
ptr_types: PtrTypeMap = .{},
|
||
|
||
/// For test declarations for Vulkan, we have to add a push constant with a pointer to a
|
||
/// buffer that we can use. We only need to generate this once, this holds the link information
|
||
/// related to that.
|
||
error_push_constant: ?struct {
|
||
push_constant_ptr: SpvModule.Decl.Index,
|
||
} = null,
|
||
|
||
pub fn init(gpa: Allocator, target: std.Target) Object {
|
||
return .{
|
||
.gpa = gpa,
|
||
.spv = SpvModule.init(gpa, target),
|
||
};
|
||
}
|
||
|
||
pub fn deinit(self: *Object) void {
|
||
self.spv.deinit();
|
||
self.nav_link.deinit(self.gpa);
|
||
self.uav_link.deinit(self.gpa);
|
||
self.intern_map.deinit(self.gpa);
|
||
self.ptr_types.deinit(self.gpa);
|
||
}
|
||
|
||
fn genNav(
|
||
self: *Object,
|
||
pt: Zcu.PerThread,
|
||
nav_index: InternPool.Nav.Index,
|
||
air: Air,
|
||
liveness: Liveness,
|
||
do_codegen: bool,
|
||
) !void {
|
||
const zcu = pt.zcu;
|
||
const gpa = zcu.gpa;
|
||
const structured_cfg = zcu.navFileScope(nav_index).mod.structured_cfg;
|
||
|
||
var nav_gen = NavGen{
|
||
.gpa = gpa,
|
||
.object = self,
|
||
.pt = pt,
|
||
.spv = &self.spv,
|
||
.owner_nav = nav_index,
|
||
.air = air,
|
||
.liveness = liveness,
|
||
.intern_map = &self.intern_map,
|
||
.ptr_types = &self.ptr_types,
|
||
.control_flow = switch (structured_cfg) {
|
||
true => .{ .structured = .{} },
|
||
false => .{ .unstructured = .{} },
|
||
},
|
||
.current_block_label = undefined,
|
||
.base_line = zcu.navSrcLine(nav_index),
|
||
};
|
||
defer nav_gen.deinit();
|
||
|
||
nav_gen.genNav(do_codegen) catch |err| switch (err) {
|
||
error.CodegenFail => {
|
||
try zcu.failed_codegen.put(gpa, nav_index, nav_gen.error_msg.?);
|
||
},
|
||
else => |other| {
|
||
// There might be an error that happened *after* self.error_msg
|
||
// was already allocated, so be sure to free it.
|
||
if (nav_gen.error_msg) |error_msg| {
|
||
error_msg.deinit(gpa);
|
||
}
|
||
|
||
return other;
|
||
},
|
||
};
|
||
}
|
||
|
||
pub fn updateFunc(
|
||
self: *Object,
|
||
pt: Zcu.PerThread,
|
||
func_index: InternPool.Index,
|
||
air: Air,
|
||
liveness: Liveness,
|
||
) !void {
|
||
const nav = pt.zcu.funcInfo(func_index).owner_nav;
|
||
// TODO: Separate types for generating decls and functions?
|
||
try self.genNav(pt, nav, air, liveness, true);
|
||
}
|
||
|
||
pub fn updateNav(
|
||
self: *Object,
|
||
pt: Zcu.PerThread,
|
||
nav: InternPool.Nav.Index,
|
||
) !void {
|
||
try self.genNav(pt, nav, undefined, undefined, false);
|
||
}
|
||
|
||
/// Fetch or allocate a result id for nav index. This function also marks the nav as alive.
|
||
/// Note: Function does not actually generate the nav, it just allocates an index.
|
||
pub fn resolveNav(self: *Object, zcu: *Zcu, nav_index: InternPool.Nav.Index) !SpvModule.Decl.Index {
|
||
const ip = &zcu.intern_pool;
|
||
const entry = try self.nav_link.getOrPut(self.gpa, nav_index);
|
||
if (!entry.found_existing) {
|
||
const nav = ip.getNav(nav_index);
|
||
// TODO: Extern fn?
|
||
const kind: SpvModule.Decl.Kind = if (ip.isFunctionType(nav.typeOf(ip)))
|
||
.func
|
||
else switch (nav.getAddrspace()) {
|
||
.generic => .invocation_global,
|
||
else => .global,
|
||
};
|
||
|
||
entry.value_ptr.* = try self.spv.allocDecl(kind);
|
||
}
|
||
|
||
return entry.value_ptr.*;
|
||
}
|
||
};
|
||
|
||
/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
|
||
const NavGen = struct {
|
||
/// A general-purpose allocator that can be used for any allocations for this NavGen.
|
||
gpa: Allocator,
|
||
|
||
/// The object that this decl is generated into.
|
||
object: *Object,
|
||
|
||
/// The Zig module that we are generating decls for.
|
||
pt: Zcu.PerThread,
|
||
|
||
/// The SPIR-V module that instructions should be emitted into.
|
||
/// This is the same as `self.object.spv`, repeated here for brevity.
|
||
spv: *SpvModule,
|
||
|
||
/// The decl we are currently generating code for.
|
||
owner_nav: InternPool.Nav.Index,
|
||
|
||
/// The intermediate code of the declaration we are currently generating. Note: If
|
||
/// the declaration is not a function, this value will be undefined!
|
||
air: Air,
|
||
|
||
/// The liveness analysis of the intermediate code for the declaration we are currently generating.
|
||
/// Note: If the declaration is not a function, this value will be undefined!
|
||
liveness: Liveness,
|
||
|
||
/// An array of function argument result-ids. Each index corresponds with the
|
||
/// function argument of the same index.
|
||
args: std.ArrayListUnmanaged(IdRef) = .empty,
|
||
|
||
/// A counter to keep track of how many `arg` instructions we've seen yet.
|
||
next_arg_index: u32 = 0,
|
||
|
||
/// A map keeping track of which instruction generated which result-id.
|
||
inst_results: InstMap = .empty,
|
||
|
||
/// A map that maps AIR intern pool indices to SPIR-V result-ids.
|
||
/// See `Object.intern_map`.
|
||
intern_map: *InternMap,
|
||
|
||
/// Module's pointer types, see `Object.ptr_types`.
|
||
ptr_types: *PtrTypeMap,
|
||
|
||
/// This field keeps track of the current state wrt structured or unstructured control flow.
|
||
control_flow: ControlFlow,
|
||
|
||
/// The label of the SPIR-V block we are currently generating.
|
||
current_block_label: IdRef,
|
||
|
||
/// The code (prologue and body) for the function we are currently generating code for.
|
||
func: SpvModule.Fn = .{},
|
||
|
||
/// The base offset of the current decl, which is what `dbg_stmt` is relative to.
|
||
base_line: u32,
|
||
|
||
/// If `gen` returned `Error.CodegenFail`, this contains an explanatory message.
|
||
/// Memory is owned by `module.gpa`.
|
||
error_msg: ?*Zcu.ErrorMsg = null,
|
||
|
||
/// Possible errors the `genDecl` function may return.
|
||
const Error = error{ CodegenFail, OutOfMemory };
|
||
|
||
/// This structure is used to return information about a type typically used for
|
||
/// arithmetic operations. These types may either be integers, floats, or a vector
|
||
/// of these. Most scalar operations also work on vectors, so we can easily represent
|
||
/// those as arithmetic types. If the type is a scalar, 'inner type' refers to the
|
||
/// scalar type. Otherwise, if its a vector, it refers to the vector's element type.
|
||
const ArithmeticTypeInfo = struct {
|
||
/// A classification of the inner type.
|
||
const Class = enum {
|
||
/// A boolean.
|
||
bool,
|
||
|
||
/// A regular, **native**, integer.
|
||
/// This is only returned when the backend supports this int as a native type (when
|
||
/// the relevant capability is enabled).
|
||
integer,
|
||
|
||
/// A regular float. These are all required to be natively supported. Floating points
|
||
/// for which the relevant capability is not enabled are not emulated.
|
||
float,
|
||
|
||
/// An integer of a 'strange' size (which' bit size is not the same as its backing
|
||
/// type. **Note**: this may **also** include power-of-2 integers for which the
|
||
/// relevant capability is not enabled), but still within the limits of the largest
|
||
/// natively supported integer type.
|
||
strange_integer,
|
||
|
||
/// An integer with more bits than the largest natively supported integer type.
|
||
composite_integer,
|
||
};
|
||
|
||
/// The number of bits in the inner type.
|
||
/// This is the actual number of bits of the type, not the size of the backing integer.
|
||
bits: u16,
|
||
|
||
/// The number of bits required to store the type.
|
||
/// For `integer` and `float`, this is equal to `bits`.
|
||
/// For `strange_integer` and `bool` this is the size of the backing integer.
|
||
/// For `composite_integer` this is 0 (TODO)
|
||
backing_bits: u16,
|
||
|
||
/// Null if this type is a scalar, or the length
|
||
/// of the vector otherwise.
|
||
vector_len: ?u32,
|
||
|
||
/// Whether the inner type is signed. Only relevant for integers.
|
||
signedness: std.builtin.Signedness,
|
||
|
||
/// A classification of the inner type. These scenarios
|
||
/// will all have to be handled slightly different.
|
||
class: Class,
|
||
};
|
||
|
||
/// Data can be lowered into in two basic representations: indirect, which is when
|
||
/// a type is stored in memory, and direct, which is how a type is stored when its
|
||
/// a direct SPIR-V value.
|
||
const Repr = enum {
|
||
/// A SPIR-V value as it would be used in operations.
|
||
direct,
|
||
/// A SPIR-V value as it is stored in memory.
|
||
indirect,
|
||
};
|
||
|
||
/// Free resources owned by the NavGen.
|
||
pub fn deinit(self: *NavGen) void {
|
||
self.args.deinit(self.gpa);
|
||
self.inst_results.deinit(self.gpa);
|
||
self.control_flow.deinit(self.gpa);
|
||
self.func.deinit(self.gpa);
|
||
}
|
||
|
||
pub fn fail(self: *NavGen, comptime format: []const u8, args: anytype) Error {
|
||
@branchHint(.cold);
|
||
const zcu = self.pt.zcu;
|
||
const src_loc = zcu.navSrcLoc(self.owner_nav);
|
||
assert(self.error_msg == null);
|
||
self.error_msg = try Zcu.ErrorMsg.create(zcu.gpa, src_loc, format, args);
|
||
return error.CodegenFail;
|
||
}
|
||
|
||
pub fn todo(self: *NavGen, comptime format: []const u8, args: anytype) Error {
|
||
return self.fail("TODO (SPIR-V): " ++ format, args);
|
||
}
|
||
|
||
/// This imports the "default" extended instruction set for the target
|
||
/// For OpenCL, OpenCL.std.100. For Vulkan and OpenGL, GLSL.std.450.
|
||
fn importExtendedSet(self: *NavGen) !IdResult {
|
||
const target = self.spv.target;
|
||
return switch (target.os.tag) {
|
||
.opencl => try self.spv.importInstructionSet(.@"OpenCL.std"),
|
||
.vulkan, .opengl => try self.spv.importInstructionSet(.@"GLSL.std.450"),
|
||
else => unreachable,
|
||
};
|
||
}
|
||
|
||
/// Fetch the result-id for a previously generated instruction or constant.
|
||
fn resolve(self: *NavGen, inst: Air.Inst.Ref) !IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
if (try self.air.value(inst, pt)) |val| {
|
||
const ty = self.typeOf(inst);
|
||
if (ty.zigTypeTag(zcu) == .@"fn") {
|
||
const fn_nav = switch (zcu.intern_pool.indexToKey(val.ip_index)) {
|
||
.@"extern" => |@"extern"| @"extern".owner_nav,
|
||
.func => |func| func.owner_nav,
|
||
else => unreachable,
|
||
};
|
||
const spv_decl_index = try self.object.resolveNav(zcu, fn_nav);
|
||
try self.func.decl_deps.put(self.spv.gpa, spv_decl_index, {});
|
||
return self.spv.declPtr(spv_decl_index).result_id;
|
||
}
|
||
|
||
return try self.constant(ty, val, .direct);
|
||
}
|
||
const index = inst.toIndex().?;
|
||
return self.inst_results.get(index).?; // Assertion means instruction does not dominate usage.
|
||
}
|
||
|
||
fn resolveUav(self: *NavGen, val: InternPool.Index) !IdRef {
|
||
// TODO: This cannot be a function at this point, but it should probably be handled anyway.
|
||
|
||
const zcu = self.pt.zcu;
|
||
const ty = Type.fromInterned(zcu.intern_pool.typeOf(val));
|
||
const decl_ptr_ty_id = try self.ptrType(ty, self.spvStorageClass(.generic), .indirect);
|
||
|
||
const spv_decl_index = blk: {
|
||
const entry = try self.object.uav_link.getOrPut(self.object.gpa, .{ val, .Function });
|
||
if (entry.found_existing) {
|
||
try self.addFunctionDep(entry.value_ptr.*, .Function);
|
||
|
||
const result_id = self.spv.declPtr(entry.value_ptr.*).result_id;
|
||
return try self.castToGeneric(decl_ptr_ty_id, result_id);
|
||
}
|
||
|
||
const spv_decl_index = try self.spv.allocDecl(.invocation_global);
|
||
try self.addFunctionDep(spv_decl_index, .Function);
|
||
entry.value_ptr.* = spv_decl_index;
|
||
break :blk spv_decl_index;
|
||
};
|
||
|
||
// TODO: At some point we will be able to generate this all constant here, but then all of
|
||
// constant() will need to be implemented such that it doesn't generate any at-runtime code.
|
||
// NOTE: Because this is a global, we really only want to initialize it once. Therefore the
|
||
// constant lowering of this value will need to be deferred to an initializer similar to
|
||
// other globals.
|
||
|
||
const result_id = self.spv.declPtr(spv_decl_index).result_id;
|
||
|
||
{
|
||
// Save the current state so that we can temporarily generate into a different function.
|
||
// TODO: This should probably be made a little more robust.
|
||
const func = self.func;
|
||
defer self.func = func;
|
||
const block_label = self.current_block_label;
|
||
defer self.current_block_label = block_label;
|
||
|
||
self.func = .{};
|
||
defer self.func.deinit(self.gpa);
|
||
|
||
const initializer_proto_ty_id = try self.functionType(Type.void, &.{});
|
||
|
||
const initializer_id = self.spv.allocId();
|
||
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
|
||
.id_result_type = try self.resolveType(Type.void, .direct),
|
||
.id_result = initializer_id,
|
||
.function_control = .{},
|
||
.function_type = initializer_proto_ty_id,
|
||
});
|
||
const root_block_id = self.spv.allocId();
|
||
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
|
||
.id_result = root_block_id,
|
||
});
|
||
self.current_block_label = root_block_id;
|
||
|
||
const val_id = try self.constant(ty, Value.fromInterned(val), .indirect);
|
||
try self.func.body.emit(self.spv.gpa, .OpStore, .{
|
||
.pointer = result_id,
|
||
.object = val_id,
|
||
});
|
||
|
||
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
|
||
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
|
||
try self.spv.addFunction(spv_decl_index, self.func);
|
||
|
||
try self.spv.debugNameFmt(initializer_id, "initializer of __anon_{d}", .{@intFromEnum(val)});
|
||
|
||
const fn_decl_ptr_ty_id = try self.ptrType(ty, .Function, .indirect);
|
||
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpExtInst, .{
|
||
.id_result_type = fn_decl_ptr_ty_id,
|
||
.id_result = result_id,
|
||
.set = try self.spv.importInstructionSet(.zig),
|
||
.instruction = .{ .inst = 0 }, // TODO: Put this definition somewhere...
|
||
.id_ref_4 = &.{initializer_id},
|
||
});
|
||
}
|
||
|
||
return try self.castToGeneric(decl_ptr_ty_id, result_id);
|
||
}
|
||
|
||
fn addFunctionDep(self: *NavGen, decl_index: SpvModule.Decl.Index, storage_class: StorageClass) !void {
|
||
if (self.spv.version.minor < 4) {
|
||
// Before version 1.4, the interface’s storage classes are limited to the Input and Output
|
||
if (storage_class == .Input or storage_class == .Output) {
|
||
try self.func.decl_deps.put(self.spv.gpa, decl_index, {});
|
||
}
|
||
} else {
|
||
try self.func.decl_deps.put(self.spv.gpa, decl_index, {});
|
||
}
|
||
}
|
||
|
||
fn castToGeneric(self: *NavGen, type_id: IdRef, ptr_id: IdRef) !IdRef {
|
||
if (self.spv.hasFeature(.kernel)) {
|
||
const result_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpPtrCastToGeneric, .{
|
||
.id_result_type = type_id,
|
||
.id_result = result_id,
|
||
.pointer = ptr_id,
|
||
});
|
||
return result_id;
|
||
}
|
||
|
||
return ptr_id;
|
||
}
|
||
|
||
/// Start a new SPIR-V block, Emits the label of the new block, and stores which
|
||
/// block we are currently generating.
|
||
/// Note that there is no such thing as nested blocks like in ZIR or AIR, so we don't need to
|
||
/// keep track of the previous block.
|
||
fn beginSpvBlock(self: *NavGen, label: IdResult) !void {
|
||
try self.func.body.emit(self.spv.gpa, .OpLabel, .{ .id_result = label });
|
||
self.current_block_label = label;
|
||
}
|
||
|
||
/// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
|
||
/// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
|
||
/// included), the width of the underlying type which represents it, given the enabled features for the current target.
|
||
/// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
|
||
/// that size. In this case, multiple elements of the largest type should be used.
|
||
/// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
|
||
/// The result is valid to be used with OpTypeInt.
|
||
/// TODO: Should the result of this function be cached?
|
||
fn backingIntBits(self: *NavGen, bits: u16) ?u16 {
|
||
// The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function.
|
||
assert(bits != 0);
|
||
|
||
if (self.spv.hasFeature(.arbitrary_precision_integers) and bits <= 32) return bits;
|
||
|
||
// 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
|
||
// 32-bit integers are always supported (see spec, 2.16.1, Data rules).
|
||
const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
|
||
.{ .bits = 8, .feature = .int8 },
|
||
.{ .bits = 16, .feature = .int16 },
|
||
.{ .bits = 32, .feature = null },
|
||
.{ .bits = 64, .feature = .int64 },
|
||
};
|
||
|
||
for (ints) |int| {
|
||
const has_feature = if (int.feature) |feature| self.spv.hasFeature(feature) else true;
|
||
if (bits <= int.bits and has_feature) return int.bits;
|
||
}
|
||
|
||
return null;
|
||
}
|
||
|
||
/// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
|
||
/// the Int64 capability is enabled).
|
||
/// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
|
||
/// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
|
||
/// is no way of knowing whether those are actually supported.
|
||
/// TODO: Maybe this should be cached?
|
||
fn largestSupportedIntBits(self: *NavGen) u16 {
|
||
return if (self.spv.hasFeature(.int64)) 64 else 32;
|
||
}
|
||
|
||
/// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
|
||
/// arrays of largestSupportedIntBits().
|
||
/// Asserts `ty` is an integer.
|
||
fn isCompositeInt(self: *NavGen, ty: Type) bool {
|
||
return self.backingIntBits(ty) == null;
|
||
}
|
||
|
||
/// Checks whether the type can be directly translated to SPIR-V vectors
|
||
fn isSpvVector(self: *NavGen, ty: Type) bool {
|
||
const zcu = self.pt.zcu;
|
||
if (ty.zigTypeTag(zcu) != .vector) return false;
|
||
|
||
// TODO: This check must be expanded for types that can be represented
|
||
// as integers (enums / packed structs?) and types that are represented
|
||
// by multiple SPIR-V values.
|
||
const scalar_ty = ty.scalarType(zcu);
|
||
switch (scalar_ty.zigTypeTag(zcu)) {
|
||
.bool,
|
||
.int,
|
||
.float,
|
||
=> {},
|
||
else => return false,
|
||
}
|
||
|
||
const elem_ty = ty.childType(zcu);
|
||
const len = ty.vectorLen(zcu);
|
||
|
||
if (elem_ty.isNumeric(zcu) or elem_ty.toIntern() == .bool_type) {
|
||
if (len > 1 and len <= 4) return true;
|
||
if (self.spv.hasFeature(.vector16)) return (len == 8 or len == 16);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
fn arithmeticTypeInfo(self: *NavGen, ty: Type) ArithmeticTypeInfo {
|
||
const zcu = self.pt.zcu;
|
||
const target = self.spv.target;
|
||
var scalar_ty = ty.scalarType(zcu);
|
||
if (scalar_ty.zigTypeTag(zcu) == .@"enum") {
|
||
scalar_ty = scalar_ty.intTagType(zcu);
|
||
}
|
||
const vector_len = if (ty.isVector(zcu)) ty.vectorLen(zcu) else null;
|
||
return switch (scalar_ty.zigTypeTag(zcu)) {
|
||
.bool => ArithmeticTypeInfo{
|
||
.bits = 1, // Doesn't matter for this class.
|
||
.backing_bits = self.backingIntBits(1).?,
|
||
.vector_len = vector_len,
|
||
.signedness = .unsigned, // Technically, but doesn't matter for this class.
|
||
.class = .bool,
|
||
},
|
||
.float => ArithmeticTypeInfo{
|
||
.bits = scalar_ty.floatBits(target),
|
||
.backing_bits = scalar_ty.floatBits(target), // TODO: F80?
|
||
.vector_len = vector_len,
|
||
.signedness = .signed, // Technically, but doesn't matter for this class.
|
||
.class = .float,
|
||
},
|
||
.int => blk: {
|
||
const int_info = scalar_ty.intInfo(zcu);
|
||
// TODO: Maybe it's useful to also return this value.
|
||
const maybe_backing_bits = self.backingIntBits(int_info.bits);
|
||
break :blk ArithmeticTypeInfo{
|
||
.bits = int_info.bits,
|
||
.backing_bits = maybe_backing_bits orelse 0,
|
||
.vector_len = vector_len,
|
||
.signedness = int_info.signedness,
|
||
.class = if (maybe_backing_bits) |backing_bits|
|
||
if (backing_bits == int_info.bits)
|
||
ArithmeticTypeInfo.Class.integer
|
||
else
|
||
ArithmeticTypeInfo.Class.strange_integer
|
||
else
|
||
.composite_integer,
|
||
};
|
||
},
|
||
.@"enum" => unreachable,
|
||
.vector => unreachable,
|
||
else => unreachable, // Unhandled arithmetic type
|
||
};
|
||
}
|
||
|
||
/// Emits a bool constant in a particular representation.
|
||
fn constBool(self: *NavGen, value: bool, repr: Repr) !IdRef {
|
||
return switch (repr) {
|
||
.indirect => self.constInt(Type.u1, @intFromBool(value)),
|
||
.direct => self.spv.constBool(value),
|
||
};
|
||
}
|
||
|
||
/// Emits an integer constant.
|
||
/// This function, unlike SpvModule.constInt, takes care to bitcast
|
||
/// the value to an unsigned int first for Kernels.
|
||
fn constInt(self: *NavGen, ty: Type, value: anytype) !IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const scalar_ty = ty.scalarType(zcu);
|
||
const int_info = scalar_ty.intInfo(zcu);
|
||
// Use backing bits so that negatives are sign extended
|
||
const backing_bits = self.backingIntBits(int_info.bits).?; // Assertion failure means big int
|
||
|
||
const signedness: Signedness = switch (@typeInfo(@TypeOf(value))) {
|
||
.int => |int| int.signedness,
|
||
.comptime_int => if (value < 0) .signed else .unsigned,
|
||
else => unreachable,
|
||
};
|
||
|
||
const value64: u64 = switch (signedness) {
|
||
.signed => @bitCast(@as(i64, @intCast(value))),
|
||
.unsigned => @as(u64, @intCast(value)),
|
||
};
|
||
|
||
// Manually truncate the value to the right amount of bits.
|
||
const truncated_value = if (backing_bits == 64)
|
||
value64
|
||
else
|
||
value64 & (@as(u64, 1) << @intCast(backing_bits)) - 1;
|
||
|
||
const result_ty_id = try self.resolveType(scalar_ty, .indirect);
|
||
const result_id = self.spv.allocId();
|
||
|
||
const section = &self.spv.sections.types_globals_constants;
|
||
switch (backing_bits) {
|
||
0 => unreachable, // u0 is comptime
|
||
1...32 => try section.emit(self.spv.gpa, .OpConstant, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_id,
|
||
.value = .{ .uint32 = @truncate(truncated_value) },
|
||
}),
|
||
33...64 => try section.emit(self.spv.gpa, .OpConstant, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_id,
|
||
.value = .{ .uint64 = truncated_value },
|
||
}),
|
||
else => unreachable, // TODO: Large integer constants
|
||
}
|
||
|
||
if (!ty.isVector(zcu)) return result_id;
|
||
return self.constructCompositeSplat(ty, result_id);
|
||
}
|
||
|
||
pub fn constructComposite(self: *NavGen, result_ty_id: IdRef, constituents: []const IdRef) !IdRef {
|
||
const result_id = self.spv.allocId();
|
||
try self.func.body.emit(self.gpa, .OpCompositeConstruct, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_id,
|
||
.constituents = constituents,
|
||
});
|
||
return result_id;
|
||
}
|
||
|
||
/// Construct a composite at runtime with all lanes set to the same value.
|
||
/// ty must be an aggregate type.
|
||
fn constructCompositeSplat(self: *NavGen, ty: Type, constituent: IdRef) !IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const n: usize = @intCast(ty.arrayLen(zcu));
|
||
|
||
const constituents = try self.gpa.alloc(IdRef, n);
|
||
defer self.gpa.free(constituents);
|
||
@memset(constituents, constituent);
|
||
|
||
const result_ty_id = try self.resolveType(ty, .direct);
|
||
return self.constructComposite(result_ty_id, constituents);
|
||
}
|
||
|
||
/// This function generates a load for a constant in direct (ie, non-memory) representation.
|
||
/// When the constant is simple, it can be generated directly using OpConstant instructions.
|
||
/// When the constant is more complicated however, it needs to be constructed using multiple values. This
|
||
/// is done by emitting a sequence of instructions that initialize the value.
|
||
//
|
||
/// This function should only be called during function code generation.
|
||
fn constant(self: *NavGen, ty: Type, val: Value, repr: Repr) !IdRef {
|
||
// Note: Using intern_map can only be used with constants that DO NOT generate any runtime code!!
|
||
// Ideally that should be all constants in the future, or it should be cleaned up somehow. For
|
||
// now, only use the intern_map on case-by-case basis by breaking to :cache.
|
||
if (self.intern_map.get(.{ val.toIntern(), repr })) |id| {
|
||
return id;
|
||
}
|
||
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const target = self.spv.target;
|
||
const result_ty_id = try self.resolveType(ty, repr);
|
||
const ip = &zcu.intern_pool;
|
||
|
||
log.debug("lowering constant: ty = {}, val = {}, key = {s}", .{ ty.fmt(pt), val.fmtValue(pt), @tagName(ip.indexToKey(val.toIntern())) });
|
||
if (val.isUndefDeep(zcu)) {
|
||
return self.spv.constUndef(result_ty_id);
|
||
}
|
||
|
||
const section = &self.spv.sections.types_globals_constants;
|
||
|
||
const cacheable_id = cache: {
|
||
switch (ip.indexToKey(val.toIntern())) {
|
||
.int_type,
|
||
.ptr_type,
|
||
.array_type,
|
||
.vector_type,
|
||
.opt_type,
|
||
.anyframe_type,
|
||
.error_union_type,
|
||
.simple_type,
|
||
.struct_type,
|
||
.tuple_type,
|
||
.union_type,
|
||
.opaque_type,
|
||
.enum_type,
|
||
.func_type,
|
||
.error_set_type,
|
||
.inferred_error_set_type,
|
||
=> unreachable, // types, not values
|
||
|
||
.undef => unreachable, // handled above
|
||
|
||
.variable,
|
||
.@"extern",
|
||
.func,
|
||
.enum_literal,
|
||
.empty_enum_value,
|
||
=> unreachable, // non-runtime values
|
||
|
||
.simple_value => |simple_value| switch (simple_value) {
|
||
.undefined,
|
||
.void,
|
||
.null,
|
||
.empty_tuple,
|
||
.@"unreachable",
|
||
=> unreachable, // non-runtime values
|
||
|
||
.false, .true => break :cache try self.constBool(val.toBool(), repr),
|
||
},
|
||
.int => {
|
||
if (ty.isSignedInt(zcu)) {
|
||
break :cache try self.constInt(ty, val.toSignedInt(zcu));
|
||
} else {
|
||
break :cache try self.constInt(ty, val.toUnsignedInt(zcu));
|
||
}
|
||
},
|
||
.float => {
|
||
const lit: spec.LiteralContextDependentNumber = switch (ty.floatBits(target)) {
|
||
16 => .{ .uint32 = @as(u16, @bitCast(val.toFloat(f16, zcu))) },
|
||
32 => .{ .float32 = val.toFloat(f32, zcu) },
|
||
64 => .{ .float64 = val.toFloat(f64, zcu) },
|
||
80, 128 => unreachable, // TODO
|
||
else => unreachable,
|
||
};
|
||
const result_id = self.spv.allocId();
|
||
try section.emit(self.spv.gpa, .OpConstant, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_id,
|
||
.value = lit,
|
||
});
|
||
break :cache result_id;
|
||
},
|
||
.err => |err| {
|
||
const value = try pt.getErrorValue(err.name);
|
||
break :cache try self.constInt(ty, value);
|
||
},
|
||
.error_union => |error_union| {
|
||
// TODO: Error unions may be constructed with constant instructions if the payload type
|
||
// allows it. For now, just generate it here regardless.
|
||
const err_int_ty = try pt.errorIntType();
|
||
const err_ty = switch (error_union.val) {
|
||
.err_name => ty.errorUnionSet(zcu),
|
||
.payload => err_int_ty,
|
||
};
|
||
const err_val = switch (error_union.val) {
|
||
.err_name => |err_name| Value.fromInterned(try pt.intern(.{ .err = .{
|
||
.ty = ty.errorUnionSet(zcu).toIntern(),
|
||
.name = err_name,
|
||
} })),
|
||
.payload => try pt.intValue(err_int_ty, 0),
|
||
};
|
||
const payload_ty = ty.errorUnionPayload(zcu);
|
||
const eu_layout = self.errorUnionLayout(payload_ty);
|
||
if (!eu_layout.payload_has_bits) {
|
||
// We use the error type directly as the type.
|
||
break :cache try self.constant(err_ty, err_val, .indirect);
|
||
}
|
||
|
||
const payload_val = Value.fromInterned(switch (error_union.val) {
|
||
.err_name => try pt.intern(.{ .undef = payload_ty.toIntern() }),
|
||
.payload => |payload| payload,
|
||
});
|
||
|
||
var constituents: [2]IdRef = undefined;
|
||
var types: [2]Type = undefined;
|
||
if (eu_layout.error_first) {
|
||
constituents[0] = try self.constant(err_ty, err_val, .indirect);
|
||
constituents[1] = try self.constant(payload_ty, payload_val, .indirect);
|
||
types = .{ err_ty, payload_ty };
|
||
} else {
|
||
constituents[0] = try self.constant(payload_ty, payload_val, .indirect);
|
||
constituents[1] = try self.constant(err_ty, err_val, .indirect);
|
||
types = .{ payload_ty, err_ty };
|
||
}
|
||
|
||
const comp_ty_id = try self.resolveType(ty, .direct);
|
||
return try self.constructComposite(comp_ty_id, &constituents);
|
||
},
|
||
.enum_tag => {
|
||
const int_val = try val.intFromEnum(ty, pt);
|
||
const int_ty = ty.intTagType(zcu);
|
||
break :cache try self.constant(int_ty, int_val, repr);
|
||
},
|
||
.ptr => return self.constantPtr(val),
|
||
.slice => |slice| {
|
||
const ptr_id = try self.constantPtr(Value.fromInterned(slice.ptr));
|
||
const len_id = try self.constant(Type.usize, Value.fromInterned(slice.len), .indirect);
|
||
const comp_ty_id = try self.resolveType(ty, .direct);
|
||
return try self.constructComposite(comp_ty_id, &.{ ptr_id, len_id });
|
||
},
|
||
.opt => {
|
||
const payload_ty = ty.optionalChild(zcu);
|
||
const maybe_payload_val = val.optionalValue(zcu);
|
||
|
||
if (!payload_ty.hasRuntimeBits(zcu)) {
|
||
break :cache try self.constBool(maybe_payload_val != null, .indirect);
|
||
} else if (ty.optionalReprIsPayload(zcu)) {
|
||
// Optional representation is a nullable pointer or slice.
|
||
if (maybe_payload_val) |payload_val| {
|
||
return try self.constant(payload_ty, payload_val, .indirect);
|
||
} else {
|
||
break :cache try self.spv.constNull(result_ty_id);
|
||
}
|
||
}
|
||
|
||
// Optional representation is a structure.
|
||
// { Payload, Bool }
|
||
|
||
const has_pl_id = try self.constBool(maybe_payload_val != null, .indirect);
|
||
const payload_id = if (maybe_payload_val) |payload_val|
|
||
try self.constant(payload_ty, payload_val, .indirect)
|
||
else
|
||
try self.spv.constUndef(try self.resolveType(payload_ty, .indirect));
|
||
|
||
const comp_ty_id = try self.resolveType(ty, .direct);
|
||
return try self.constructComposite(comp_ty_id, &.{ payload_id, has_pl_id });
|
||
},
|
||
.aggregate => |aggregate| switch (ip.indexToKey(ty.ip_index)) {
|
||
inline .array_type, .vector_type => |array_type, tag| {
|
||
const elem_ty = Type.fromInterned(array_type.child);
|
||
|
||
const constituents = try self.gpa.alloc(IdRef, @intCast(ty.arrayLenIncludingSentinel(zcu)));
|
||
defer self.gpa.free(constituents);
|
||
|
||
const child_repr: Repr = switch (tag) {
|
||
.array_type => .indirect,
|
||
.vector_type => .direct,
|
||
else => unreachable,
|
||
};
|
||
|
||
switch (aggregate.storage) {
|
||
.bytes => |bytes| {
|
||
// TODO: This is really space inefficient, perhaps there is a better
|
||
// way to do it?
|
||
for (constituents, bytes.toSlice(constituents.len, ip)) |*constituent, byte| {
|
||
constituent.* = try self.constInt(elem_ty, byte);
|
||
}
|
||
},
|
||
.elems => |elems| {
|
||
for (constituents, elems) |*constituent, elem| {
|
||
constituent.* = try self.constant(elem_ty, Value.fromInterned(elem), child_repr);
|
||
}
|
||
},
|
||
.repeated_elem => |elem| {
|
||
@memset(constituents, try self.constant(elem_ty, Value.fromInterned(elem), child_repr));
|
||
},
|
||
}
|
||
|
||
const comp_ty_id = try self.resolveType(ty, .direct);
|
||
return self.constructComposite(comp_ty_id, constituents);
|
||
},
|
||
.struct_type => {
|
||
const struct_type = zcu.typeToStruct(ty).?;
|
||
if (struct_type.layout == .@"packed") {
|
||
return self.todo("packed struct constants", .{});
|
||
}
|
||
|
||
var types = std.ArrayList(Type).init(self.gpa);
|
||
defer types.deinit();
|
||
|
||
var constituents = std.ArrayList(IdRef).init(self.gpa);
|
||
defer constituents.deinit();
|
||
|
||
var it = struct_type.iterateRuntimeOrder(ip);
|
||
while (it.next()) |field_index| {
|
||
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
|
||
if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
|
||
// This is a zero-bit field - we only needed it for the alignment.
|
||
continue;
|
||
}
|
||
|
||
// TODO: Padding?
|
||
const field_val = try val.fieldValue(pt, field_index);
|
||
const field_id = try self.constant(field_ty, field_val, .indirect);
|
||
|
||
try types.append(field_ty);
|
||
try constituents.append(field_id);
|
||
}
|
||
|
||
const comp_ty_id = try self.resolveType(ty, .direct);
|
||
return try self.constructComposite(comp_ty_id, constituents.items);
|
||
},
|
||
.tuple_type => return self.todo("implement tuple types", .{}),
|
||
else => unreachable,
|
||
},
|
||
.un => |un| {
|
||
const active_field = ty.unionTagFieldIndex(Value.fromInterned(un.tag), zcu).?;
|
||
const union_obj = zcu.typeToUnion(ty).?;
|
||
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[active_field]);
|
||
const payload = if (field_ty.hasRuntimeBitsIgnoreComptime(zcu))
|
||
try self.constant(field_ty, Value.fromInterned(un.val), .direct)
|
||
else
|
||
null;
|
||
return try self.unionInit(ty, active_field, payload);
|
||
},
|
||
.memoized_call => unreachable,
|
||
}
|
||
};
|
||
|
||
try self.intern_map.putNoClobber(self.gpa, .{ val.toIntern(), repr }, cacheable_id);
|
||
|
||
return cacheable_id;
|
||
}
|
||
|
||
fn constantPtr(self: *NavGen, ptr_val: Value) Error!IdRef {
|
||
const pt = self.pt;
|
||
|
||
if (ptr_val.isUndef(pt.zcu)) {
|
||
const result_ty = ptr_val.typeOf(pt.zcu);
|
||
const result_ty_id = try self.resolveType(result_ty, .direct);
|
||
return self.spv.constUndef(result_ty_id);
|
||
}
|
||
|
||
var arena = std.heap.ArenaAllocator.init(self.gpa);
|
||
defer arena.deinit();
|
||
|
||
const derivation = try ptr_val.pointerDerivation(arena.allocator(), pt);
|
||
return self.derivePtr(derivation);
|
||
}
|
||
|
||
fn derivePtr(self: *NavGen, derivation: Value.PointerDeriveStep) Error!IdRef {
|
||
const pt = self.pt;
|
||
switch (derivation) {
|
||
.comptime_alloc_ptr, .comptime_field_ptr => unreachable,
|
||
.int => |int| {
|
||
const result_ty_id = try self.resolveType(int.ptr_ty, .direct);
|
||
// TODO: This can probably be an OpSpecConstantOp Bitcast, but
|
||
// that is not implemented by Mesa yet. Therefore, just generate it
|
||
// as a runtime operation.
|
||
const result_ptr_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_ptr_id,
|
||
.integer_value = try self.constant(Type.usize, try pt.intValue(Type.usize, int.addr), .direct),
|
||
});
|
||
return result_ptr_id;
|
||
},
|
||
.nav_ptr => |nav| {
|
||
const result_ptr_ty = try pt.navPtrType(nav);
|
||
return self.constantNavRef(result_ptr_ty, nav);
|
||
},
|
||
.uav_ptr => |uav| {
|
||
const result_ptr_ty = Type.fromInterned(uav.orig_ty);
|
||
return self.constantUavRef(result_ptr_ty, uav);
|
||
},
|
||
.eu_payload_ptr => @panic("TODO"),
|
||
.opt_payload_ptr => @panic("TODO"),
|
||
.field_ptr => |field| {
|
||
const parent_ptr_id = try self.derivePtr(field.parent.*);
|
||
const parent_ptr_ty = try field.parent.ptrType(pt);
|
||
return self.structFieldPtr(field.result_ptr_ty, parent_ptr_ty, parent_ptr_id, field.field_idx);
|
||
},
|
||
.elem_ptr => |elem| {
|
||
const parent_ptr_id = try self.derivePtr(elem.parent.*);
|
||
const parent_ptr_ty = try elem.parent.ptrType(pt);
|
||
const index_id = try self.constInt(Type.usize, elem.elem_idx);
|
||
return self.ptrElemPtr(parent_ptr_ty, parent_ptr_id, index_id);
|
||
},
|
||
.offset_and_cast => |oac| {
|
||
const parent_ptr_id = try self.derivePtr(oac.parent.*);
|
||
const parent_ptr_ty = try oac.parent.ptrType(pt);
|
||
disallow: {
|
||
if (oac.byte_offset != 0) break :disallow;
|
||
// Allow changing the pointer type child only to restructure arrays.
|
||
// e.g. [3][2]T to T is fine, as is [2]T -> [2][1]T.
|
||
const result_ty_id = try self.resolveType(oac.new_ptr_ty, .direct);
|
||
const result_ptr_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_ptr_id,
|
||
.operand = parent_ptr_id,
|
||
});
|
||
return result_ptr_id;
|
||
}
|
||
return self.fail("cannot perform pointer cast: '{}' to '{}'", .{
|
||
parent_ptr_ty.fmt(pt),
|
||
oac.new_ptr_ty.fmt(pt),
|
||
});
|
||
},
|
||
}
|
||
}
|
||
|
||
fn constantUavRef(
|
||
self: *NavGen,
|
||
ty: Type,
|
||
uav: InternPool.Key.Ptr.BaseAddr.Uav,
|
||
) !IdRef {
|
||
// TODO: Merge this function with constantDeclRef.
|
||
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ip = &zcu.intern_pool;
|
||
const ty_id = try self.resolveType(ty, .direct);
|
||
const uav_ty = Type.fromInterned(ip.typeOf(uav.val));
|
||
|
||
switch (ip.indexToKey(uav.val)) {
|
||
.func => unreachable, // TODO
|
||
.@"extern" => assert(!ip.isFunctionType(uav_ty.toIntern())),
|
||
else => {},
|
||
}
|
||
|
||
// const is_fn_body = decl_ty.zigTypeTag(zcu) == .@"fn";
|
||
if (!uav_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
|
||
// Pointer to nothing - return undefined
|
||
return self.spv.constUndef(ty_id);
|
||
}
|
||
|
||
// Uav refs are always generic.
|
||
assert(ty.ptrAddressSpace(zcu) == .generic);
|
||
const decl_ptr_ty_id = try self.ptrType(uav_ty, .Generic, .indirect);
|
||
const ptr_id = try self.resolveUav(uav.val);
|
||
|
||
if (decl_ptr_ty_id != ty_id) {
|
||
// Differing pointer types, insert a cast.
|
||
const casted_ptr_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
|
||
.id_result_type = ty_id,
|
||
.id_result = casted_ptr_id,
|
||
.operand = ptr_id,
|
||
});
|
||
return casted_ptr_id;
|
||
} else {
|
||
return ptr_id;
|
||
}
|
||
}
|
||
|
||
fn constantNavRef(self: *NavGen, ty: Type, nav_index: InternPool.Nav.Index) !IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ip = &zcu.intern_pool;
|
||
const ty_id = try self.resolveType(ty, .direct);
|
||
const nav = ip.getNav(nav_index);
|
||
const nav_ty: Type = .fromInterned(nav.typeOf(ip));
|
||
|
||
switch (nav.status) {
|
||
.unresolved => unreachable,
|
||
.type_resolved => {}, // this is not a function or extern
|
||
.fully_resolved => |r| switch (ip.indexToKey(r.val)) {
|
||
.func => {
|
||
// TODO: Properly lower function pointers. For now we are going to hack around it and
|
||
// just generate an empty pointer. Function pointers are represented by a pointer to usize.
|
||
return try self.spv.constUndef(ty_id);
|
||
},
|
||
.@"extern" => if (ip.isFunctionType(nav_ty.toIntern())) @panic("TODO"),
|
||
else => {},
|
||
},
|
||
}
|
||
|
||
if (!nav_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
|
||
// Pointer to nothing - return undefined.
|
||
return self.spv.constUndef(ty_id);
|
||
}
|
||
|
||
const spv_decl_index = try self.object.resolveNav(zcu, nav_index);
|
||
const spv_decl = self.spv.declPtr(spv_decl_index);
|
||
|
||
const decl_id = switch (spv_decl.kind) {
|
||
.func => unreachable, // TODO: Is this possible?
|
||
.global, .invocation_global => spv_decl.result_id,
|
||
};
|
||
|
||
const storage_class = self.spvStorageClass(nav.getAddrspace());
|
||
try self.addFunctionDep(spv_decl_index, storage_class);
|
||
|
||
const decl_ptr_ty_id = try self.ptrType(nav_ty, storage_class, .indirect);
|
||
|
||
const ptr_id = switch (storage_class) {
|
||
.Generic => try self.castToGeneric(decl_ptr_ty_id, decl_id),
|
||
else => decl_id,
|
||
};
|
||
|
||
if (decl_ptr_ty_id != ty_id) {
|
||
// Differing pointer types, insert a cast.
|
||
const casted_ptr_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
|
||
.id_result_type = ty_id,
|
||
.id_result = casted_ptr_id,
|
||
.operand = ptr_id,
|
||
});
|
||
return casted_ptr_id;
|
||
} else {
|
||
return ptr_id;
|
||
}
|
||
}
|
||
|
||
// Turn a Zig type's name into a cache reference.
|
||
fn resolveTypeName(self: *NavGen, ty: Type) ![]const u8 {
|
||
var name = std.ArrayList(u8).init(self.gpa);
|
||
defer name.deinit();
|
||
try ty.print(name.writer(), self.pt);
|
||
return try name.toOwnedSlice();
|
||
}
|
||
|
||
/// Create an integer type suitable for storing at least 'bits' bits.
|
||
/// The integer type that is returned by this function is the type that is used to perform
|
||
/// actual operations (as well as store) a Zig type of a particular number of bits. To create
|
||
/// a type with an exact size, use SpvModule.intType.
|
||
fn intType(self: *NavGen, signedness: std.builtin.Signedness, bits: u16) !IdRef {
|
||
const backing_bits = self.backingIntBits(bits) orelse {
|
||
// TODO: Integers too big for any native type are represented as "composite integers":
|
||
// An array of largestSupportedIntBits.
|
||
return self.todo("Implement {s} composite int type of {} bits", .{ @tagName(signedness), bits });
|
||
};
|
||
|
||
// Kernel only supports unsigned ints.
|
||
if (self.spv.hasFeature(.kernel)) {
|
||
return self.spv.intType(.unsigned, backing_bits);
|
||
}
|
||
|
||
return self.spv.intType(signedness, backing_bits);
|
||
}
|
||
|
||
fn arrayType(self: *NavGen, len: u32, child_ty: IdRef) !IdRef {
|
||
const len_id = try self.constInt(Type.u32, len);
|
||
return self.spv.arrayType(len_id, child_ty);
|
||
}
|
||
|
||
fn ptrType(self: *NavGen, child_ty: Type, storage_class: StorageClass, child_repr: Repr) !IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const ip = &zcu.intern_pool;
|
||
const key = .{ child_ty.toIntern(), storage_class, child_repr };
|
||
const entry = try self.ptr_types.getOrPut(self.gpa, key);
|
||
if (entry.found_existing) {
|
||
const fwd_id = entry.value_ptr.ty_id;
|
||
if (!entry.value_ptr.fwd_emitted) {
|
||
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypeForwardPointer, .{
|
||
.pointer_type = fwd_id,
|
||
.storage_class = storage_class,
|
||
});
|
||
entry.value_ptr.fwd_emitted = true;
|
||
}
|
||
return fwd_id;
|
||
}
|
||
|
||
const result_id = self.spv.allocId();
|
||
entry.value_ptr.* = .{
|
||
.ty_id = result_id,
|
||
.fwd_emitted = false,
|
||
};
|
||
|
||
const child_ty_id = try self.resolveType(child_ty, child_repr);
|
||
|
||
if (self.spv.hasFeature(.shader)) {
|
||
if (child_ty.zigTypeTag(zcu) == .@"struct") {
|
||
switch (storage_class) {
|
||
.Uniform, .PushConstant => try self.spv.decorate(child_ty_id, .Block),
|
||
else => {},
|
||
}
|
||
}
|
||
|
||
switch (ip.indexToKey(child_ty.toIntern())) {
|
||
.func_type, .opaque_type => {},
|
||
else => {
|
||
try self.spv.decorate(result_id, .{ .ArrayStride = .{ .array_stride = @intCast(child_ty.abiSize(zcu)) } });
|
||
},
|
||
}
|
||
}
|
||
|
||
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypePointer, .{
|
||
.id_result = result_id,
|
||
.storage_class = storage_class,
|
||
.type = child_ty_id,
|
||
});
|
||
|
||
self.ptr_types.getPtr(key).?.fwd_emitted = true;
|
||
|
||
return result_id;
|
||
}
|
||
|
||
fn functionType(self: *NavGen, return_ty: Type, param_types: []const Type) !IdRef {
|
||
const return_ty_id = try self.resolveFnReturnType(return_ty);
|
||
const param_ids = try self.gpa.alloc(IdRef, param_types.len);
|
||
defer self.gpa.free(param_ids);
|
||
|
||
for (param_types, param_ids) |param_ty, *param_id| {
|
||
param_id.* = try self.resolveType(param_ty, .direct);
|
||
}
|
||
|
||
return self.spv.functionType(return_ty_id, param_ids);
|
||
}
|
||
|
||
fn zigScalarOrVectorTypeLike(self: *NavGen, new_ty: Type, base_ty: Type) !Type {
|
||
const pt = self.pt;
|
||
const new_scalar_ty = new_ty.scalarType(pt.zcu);
|
||
if (!base_ty.isVector(pt.zcu)) {
|
||
return new_scalar_ty;
|
||
}
|
||
|
||
return try pt.vectorType(.{
|
||
.len = base_ty.vectorLen(pt.zcu),
|
||
.child = new_scalar_ty.toIntern(),
|
||
});
|
||
}
|
||
|
||
/// Generate a union type. Union types are always generated with the
|
||
/// most aligned field active. If the tag alignment is greater
|
||
/// than that of the payload, a regular union (non-packed, with both tag and
|
||
/// payload), will be generated as follows:
|
||
/// struct {
|
||
/// tag: TagType,
|
||
/// payload: MostAlignedFieldType,
|
||
/// payload_padding: [payload_size - @sizeOf(MostAlignedFieldType)]u8,
|
||
/// padding: [padding_size]u8,
|
||
/// }
|
||
/// If the payload alignment is greater than that of the tag:
|
||
/// struct {
|
||
/// payload: MostAlignedFieldType,
|
||
/// payload_padding: [payload_size - @sizeOf(MostAlignedFieldType)]u8,
|
||
/// tag: TagType,
|
||
/// padding: [padding_size]u8,
|
||
/// }
|
||
/// If any of the fields' size is 0, it will be omitted.
|
||
fn resolveUnionType(self: *NavGen, ty: Type) !IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const ip = &zcu.intern_pool;
|
||
const union_obj = zcu.typeToUnion(ty).?;
|
||
|
||
if (union_obj.flagsUnordered(ip).layout == .@"packed") {
|
||
return self.todo("packed union types", .{});
|
||
}
|
||
|
||
const layout = self.unionLayout(ty);
|
||
if (!layout.has_payload) {
|
||
// No payload, so represent this as just the tag type.
|
||
return try self.resolveType(Type.fromInterned(union_obj.enum_tag_ty), .indirect);
|
||
}
|
||
|
||
var member_types: [4]IdRef = undefined;
|
||
var member_names: [4][]const u8 = undefined;
|
||
|
||
const u8_ty_id = try self.resolveType(Type.u8, .direct); // TODO: What if Int8Type is not enabled?
|
||
|
||
if (layout.tag_size != 0) {
|
||
const tag_ty_id = try self.resolveType(Type.fromInterned(union_obj.enum_tag_ty), .indirect);
|
||
member_types[layout.tag_index] = tag_ty_id;
|
||
member_names[layout.tag_index] = "(tag)";
|
||
}
|
||
|
||
if (layout.payload_size != 0) {
|
||
const payload_ty_id = try self.resolveType(layout.payload_ty, .indirect);
|
||
member_types[layout.payload_index] = payload_ty_id;
|
||
member_names[layout.payload_index] = "(payload)";
|
||
}
|
||
|
||
if (layout.payload_padding_size != 0) {
|
||
const payload_padding_ty_id = try self.arrayType(@intCast(layout.payload_padding_size), u8_ty_id);
|
||
member_types[layout.payload_padding_index] = payload_padding_ty_id;
|
||
member_names[layout.payload_padding_index] = "(payload padding)";
|
||
}
|
||
|
||
if (layout.padding_size != 0) {
|
||
const padding_ty_id = try self.arrayType(@intCast(layout.padding_size), u8_ty_id);
|
||
member_types[layout.padding_index] = padding_ty_id;
|
||
member_names[layout.padding_index] = "(padding)";
|
||
}
|
||
|
||
const result_id = self.spv.allocId();
|
||
try self.spv.structType(result_id, member_types[0..layout.total_fields], member_names[0..layout.total_fields]);
|
||
|
||
const type_name = try self.resolveTypeName(ty);
|
||
defer self.gpa.free(type_name);
|
||
try self.spv.debugName(result_id, type_name);
|
||
|
||
return result_id;
|
||
}
|
||
|
||
fn resolveFnReturnType(self: *NavGen, ret_ty: Type) !IdRef {
|
||
const zcu = self.pt.zcu;
|
||
if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
|
||
// If the return type is an error set or an error union, then we make this
|
||
// anyerror return type instead, so that it can be coerced into a function
|
||
// pointer type which has anyerror as the return type.
|
||
if (ret_ty.isError(zcu)) {
|
||
return self.resolveType(Type.anyerror, .direct);
|
||
} else {
|
||
return self.resolveType(Type.void, .direct);
|
||
}
|
||
}
|
||
|
||
return try self.resolveType(ret_ty, .direct);
|
||
}
|
||
|
||
/// Turn a Zig type into a SPIR-V Type, and return a reference to it.
|
||
fn resolveType(self: *NavGen, ty: Type, repr: Repr) Error!IdRef {
|
||
if (self.intern_map.get(.{ ty.toIntern(), repr })) |id| {
|
||
return id;
|
||
}
|
||
|
||
const id = try self.resolveTypeInner(ty, repr);
|
||
try self.intern_map.put(self.gpa, .{ ty.toIntern(), repr }, id);
|
||
return id;
|
||
}
|
||
|
||
fn resolveTypeInner(self: *NavGen, ty: Type, repr: Repr) Error!IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ip = &zcu.intern_pool;
|
||
log.debug("resolveType: ty = {}", .{ty.fmt(pt)});
|
||
const target = self.spv.target;
|
||
|
||
const section = &self.spv.sections.types_globals_constants;
|
||
|
||
switch (ty.zigTypeTag(zcu)) {
|
||
.noreturn => {
|
||
assert(repr == .direct);
|
||
return try self.spv.voidType();
|
||
},
|
||
.void => switch (repr) {
|
||
.direct => {
|
||
return try self.spv.voidType();
|
||
},
|
||
// Pointers to void
|
||
.indirect => {
|
||
const result_id = self.spv.allocId();
|
||
try section.emit(self.spv.gpa, .OpTypeOpaque, .{
|
||
.id_result = result_id,
|
||
.literal_string = "void",
|
||
});
|
||
return result_id;
|
||
},
|
||
},
|
||
.bool => switch (repr) {
|
||
.direct => return try self.spv.boolType(),
|
||
.indirect => return try self.resolveType(Type.u1, .indirect),
|
||
},
|
||
.int => {
|
||
const int_info = ty.intInfo(zcu);
|
||
if (int_info.bits == 0) {
|
||
// Some times, the backend will be asked to generate a pointer to i0. OpTypeInt
|
||
// with 0 bits is invalid, so return an opaque type in this case.
|
||
assert(repr == .indirect);
|
||
const result_id = self.spv.allocId();
|
||
try section.emit(self.spv.gpa, .OpTypeOpaque, .{
|
||
.id_result = result_id,
|
||
.literal_string = "u0",
|
||
});
|
||
return result_id;
|
||
}
|
||
return try self.intType(int_info.signedness, int_info.bits);
|
||
},
|
||
.@"enum" => {
|
||
const tag_ty = ty.intTagType(zcu);
|
||
return try self.resolveType(tag_ty, repr);
|
||
},
|
||
.float => {
|
||
// We can (and want) not really emulate floating points with other floating point types like with the integer types,
|
||
// so if the float is not supported, just return an error.
|
||
const bits = ty.floatBits(target);
|
||
const supported = switch (bits) {
|
||
16 => self.spv.hasFeature(.float16),
|
||
// 32-bit floats are always supported (see spec, 2.16.1, Data rules).
|
||
32 => true,
|
||
64 => self.spv.hasFeature(.float64),
|
||
else => false,
|
||
};
|
||
|
||
if (!supported) {
|
||
return self.fail("Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
|
||
}
|
||
|
||
return try self.spv.floatType(bits);
|
||
},
|
||
.array => {
|
||
const elem_ty = ty.childType(zcu);
|
||
const elem_ty_id = try self.resolveType(elem_ty, .indirect);
|
||
const total_len = std.math.cast(u32, ty.arrayLenIncludingSentinel(zcu)) orelse {
|
||
return self.fail("array type of {} elements is too large", .{ty.arrayLenIncludingSentinel(zcu)});
|
||
};
|
||
|
||
if (!elem_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
|
||
// The size of the array would be 0, but that is not allowed in SPIR-V.
|
||
// This path can be reached when the backend is asked to generate a pointer to
|
||
// an array of some zero-bit type. This should always be an indirect path.
|
||
assert(repr == .indirect);
|
||
|
||
// We cannot use the child type here, so just use an opaque type.
|
||
const result_id = self.spv.allocId();
|
||
try section.emit(self.spv.gpa, .OpTypeOpaque, .{
|
||
.id_result = result_id,
|
||
.literal_string = "zero-sized array",
|
||
});
|
||
return result_id;
|
||
} else if (total_len == 0) {
|
||
// The size of the array would be 0, but that is not allowed in SPIR-V.
|
||
// This path can be reached for example when there is a slicing of a pointer
|
||
// that produces a zero-length array. In all cases where this type can be generated,
|
||
// this should be an indirect path.
|
||
assert(repr == .indirect);
|
||
|
||
// In this case, we have an array of a non-zero sized type. In this case,
|
||
// generate an array of 1 element instead, so that ptr_elem_ptr instructions
|
||
// can be lowered to ptrAccessChain instead of manually performing the math.
|
||
return try self.arrayType(1, elem_ty_id);
|
||
} else {
|
||
const result_id = try self.arrayType(total_len, elem_ty_id);
|
||
if (self.spv.hasFeature(.shader)) {
|
||
try self.spv.decorate(result_id, .{ .ArrayStride = .{
|
||
.array_stride = @intCast(elem_ty.abiSize(zcu)),
|
||
} });
|
||
}
|
||
return result_id;
|
||
}
|
||
},
|
||
.@"fn" => switch (repr) {
|
||
.direct => {
|
||
const fn_info = zcu.typeToFunc(ty).?;
|
||
|
||
comptime assert(zig_call_abi_ver == 3);
|
||
switch (fn_info.cc) {
|
||
.auto,
|
||
.spirv_kernel,
|
||
.spirv_fragment,
|
||
.spirv_vertex,
|
||
.spirv_device,
|
||
=> {},
|
||
else => unreachable,
|
||
}
|
||
|
||
// Guaranteed by callConvSupportsVarArgs, there are no SPIR-V CCs which support
|
||
// varargs.
|
||
assert(!fn_info.is_var_args);
|
||
|
||
// Note: Logic is different from functionType().
|
||
const param_ty_ids = try self.gpa.alloc(IdRef, fn_info.param_types.len);
|
||
defer self.gpa.free(param_ty_ids);
|
||
var param_index: usize = 0;
|
||
for (fn_info.param_types.get(ip)) |param_ty_index| {
|
||
const param_ty = Type.fromInterned(param_ty_index);
|
||
if (!param_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
|
||
|
||
param_ty_ids[param_index] = try self.resolveType(param_ty, .direct);
|
||
param_index += 1;
|
||
}
|
||
|
||
const return_ty_id = try self.resolveFnReturnType(Type.fromInterned(fn_info.return_type));
|
||
|
||
const result_id = self.spv.allocId();
|
||
try section.emit(self.spv.gpa, .OpTypeFunction, .{
|
||
.id_result = result_id,
|
||
.return_type = return_ty_id,
|
||
.id_ref_2 = param_ty_ids[0..param_index],
|
||
});
|
||
|
||
return result_id;
|
||
},
|
||
.indirect => {
|
||
// TODO: Represent function pointers properly.
|
||
// For now, just use an usize type.
|
||
return try self.resolveType(Type.usize, .indirect);
|
||
},
|
||
},
|
||
.pointer => {
|
||
const ptr_info = ty.ptrInfo(zcu);
|
||
|
||
const child_ty = Type.fromInterned(ptr_info.child);
|
||
const storage_class = self.spvStorageClass(ptr_info.flags.address_space);
|
||
const ptr_ty_id = try self.ptrType(child_ty, storage_class, .indirect);
|
||
|
||
if (ptr_info.flags.size != .slice) {
|
||
return ptr_ty_id;
|
||
}
|
||
|
||
const size_ty_id = try self.resolveType(Type.usize, .direct);
|
||
const result_id = self.spv.allocId();
|
||
try self.spv.structType(
|
||
result_id,
|
||
&.{ ptr_ty_id, size_ty_id },
|
||
&.{ "ptr", "len" },
|
||
);
|
||
return result_id;
|
||
},
|
||
.vector => {
|
||
const elem_ty = ty.childType(zcu);
|
||
const elem_ty_id = try self.resolveType(elem_ty, repr);
|
||
const len = ty.vectorLen(zcu);
|
||
|
||
if (self.isSpvVector(ty)) {
|
||
return try self.spv.vectorType(len, elem_ty_id);
|
||
} else {
|
||
return try self.arrayType(len, elem_ty_id);
|
||
}
|
||
},
|
||
.@"struct" => {
|
||
const struct_type = switch (ip.indexToKey(ty.toIntern())) {
|
||
.tuple_type => |tuple| {
|
||
const member_types = try self.gpa.alloc(IdRef, tuple.values.len);
|
||
defer self.gpa.free(member_types);
|
||
|
||
var member_index: usize = 0;
|
||
for (tuple.types.get(ip), tuple.values.get(ip)) |field_ty, field_val| {
|
||
if (field_val != .none or !Type.fromInterned(field_ty).hasRuntimeBits(zcu)) continue;
|
||
|
||
member_types[member_index] = try self.resolveType(Type.fromInterned(field_ty), .indirect);
|
||
member_index += 1;
|
||
}
|
||
|
||
const result_id = self.spv.allocId();
|
||
try self.spv.structType(result_id, member_types[0..member_index], null);
|
||
|
||
const type_name = try self.resolveTypeName(ty);
|
||
defer self.gpa.free(type_name);
|
||
try self.spv.debugName(result_id, type_name);
|
||
|
||
return result_id;
|
||
},
|
||
.struct_type => ip.loadStructType(ty.toIntern()),
|
||
else => unreachable,
|
||
};
|
||
|
||
if (struct_type.layout == .@"packed") {
|
||
return try self.resolveType(Type.fromInterned(struct_type.backingIntTypeUnordered(ip)), .direct);
|
||
}
|
||
|
||
var member_types = std.ArrayList(IdRef).init(self.gpa);
|
||
defer member_types.deinit();
|
||
|
||
var member_names = std.ArrayList([]const u8).init(self.gpa);
|
||
defer member_names.deinit();
|
||
|
||
var index: u32 = 0;
|
||
var it = struct_type.iterateRuntimeOrder(ip);
|
||
const result_id = self.spv.allocId();
|
||
while (it.next()) |field_index| {
|
||
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
|
||
if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
|
||
// This is a zero-bit field - we only needed it for the alignment.
|
||
continue;
|
||
}
|
||
|
||
if (self.spv.hasFeature(.shader)) {
|
||
try self.spv.decorateMember(result_id, index, .{ .Offset = .{
|
||
.byte_offset = @intCast(ty.structFieldOffset(field_index, zcu)),
|
||
} });
|
||
}
|
||
const field_name = struct_type.fieldName(ip, field_index).unwrap() orelse
|
||
try ip.getOrPutStringFmt(zcu.gpa, pt.tid, "{d}", .{field_index}, .no_embedded_nulls);
|
||
try member_types.append(try self.resolveType(field_ty, .indirect));
|
||
try member_names.append(field_name.toSlice(ip));
|
||
|
||
index += 1;
|
||
}
|
||
|
||
try self.spv.structType(result_id, member_types.items, member_names.items);
|
||
|
||
const type_name = try self.resolveTypeName(ty);
|
||
defer self.gpa.free(type_name);
|
||
try self.spv.debugName(result_id, type_name);
|
||
|
||
return result_id;
|
||
},
|
||
.optional => {
|
||
const payload_ty = ty.optionalChild(zcu);
|
||
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
|
||
// Just use a bool.
|
||
// Note: Always generate the bool with indirect format, to save on some sanity
|
||
// Perform the conversion to a direct bool when the field is extracted.
|
||
return try self.resolveType(Type.bool, .indirect);
|
||
}
|
||
|
||
const payload_ty_id = try self.resolveType(payload_ty, .indirect);
|
||
if (ty.optionalReprIsPayload(zcu)) {
|
||
// Optional is actually a pointer or a slice.
|
||
return payload_ty_id;
|
||
}
|
||
|
||
const bool_ty_id = try self.resolveType(Type.bool, .indirect);
|
||
|
||
const result_id = self.spv.allocId();
|
||
try self.spv.structType(
|
||
result_id,
|
||
&.{ payload_ty_id, bool_ty_id },
|
||
&.{ "payload", "valid" },
|
||
);
|
||
return result_id;
|
||
},
|
||
.@"union" => return try self.resolveUnionType(ty),
|
||
.error_set => {
|
||
const err_int_ty = try pt.errorIntType();
|
||
return try self.resolveType(err_int_ty, repr);
|
||
},
|
||
.error_union => {
|
||
const payload_ty = ty.errorUnionPayload(zcu);
|
||
const error_ty_id = try self.resolveType(Type.anyerror, .indirect);
|
||
|
||
const eu_layout = self.errorUnionLayout(payload_ty);
|
||
if (!eu_layout.payload_has_bits) {
|
||
return error_ty_id;
|
||
}
|
||
|
||
const payload_ty_id = try self.resolveType(payload_ty, .indirect);
|
||
|
||
var member_types: [2]IdRef = undefined;
|
||
var member_names: [2][]const u8 = undefined;
|
||
if (eu_layout.error_first) {
|
||
// Put the error first
|
||
member_types = .{ error_ty_id, payload_ty_id };
|
||
member_names = .{ "error", "payload" };
|
||
// TODO: ABI padding?
|
||
} else {
|
||
// Put the payload first.
|
||
member_types = .{ payload_ty_id, error_ty_id };
|
||
member_names = .{ "payload", "error" };
|
||
// TODO: ABI padding?
|
||
}
|
||
|
||
const result_id = self.spv.allocId();
|
||
try self.spv.structType(result_id, &member_types, &member_names);
|
||
return result_id;
|
||
},
|
||
.@"opaque" => {
|
||
const type_name = try self.resolveTypeName(ty);
|
||
defer self.gpa.free(type_name);
|
||
|
||
const result_id = self.spv.allocId();
|
||
try section.emit(self.spv.gpa, .OpTypeOpaque, .{
|
||
.id_result = result_id,
|
||
.literal_string = type_name,
|
||
});
|
||
return result_id;
|
||
},
|
||
|
||
.null,
|
||
.undefined,
|
||
.enum_literal,
|
||
.comptime_float,
|
||
.comptime_int,
|
||
.type,
|
||
=> unreachable, // Must be comptime.
|
||
|
||
.frame, .@"anyframe" => unreachable, // TODO
|
||
}
|
||
}
|
||
|
||
fn spvStorageClass(self: *NavGen, as: std.builtin.AddressSpace) StorageClass {
|
||
return switch (as) {
|
||
.generic => if (self.spv.hasFeature(.generic_pointer)) .Generic else .Function,
|
||
.shared => .Workgroup,
|
||
.local => .Function,
|
||
.global => if (self.spv.hasFeature(.shader)) .PhysicalStorageBuffer else .CrossWorkgroup,
|
||
.constant => .UniformConstant,
|
||
.push_constant => .PushConstant,
|
||
.input => .Input,
|
||
.output => .Output,
|
||
.uniform => .Uniform,
|
||
.storage_buffer => .StorageBuffer,
|
||
.gs,
|
||
.fs,
|
||
.ss,
|
||
.param,
|
||
.flash,
|
||
.flash1,
|
||
.flash2,
|
||
.flash3,
|
||
.flash4,
|
||
.flash5,
|
||
.cog,
|
||
.lut,
|
||
.hub,
|
||
=> unreachable,
|
||
};
|
||
}
|
||
|
||
const ErrorUnionLayout = struct {
|
||
payload_has_bits: bool,
|
||
error_first: bool,
|
||
|
||
fn errorFieldIndex(self: @This()) u32 {
|
||
assert(self.payload_has_bits);
|
||
return if (self.error_first) 0 else 1;
|
||
}
|
||
|
||
fn payloadFieldIndex(self: @This()) u32 {
|
||
assert(self.payload_has_bits);
|
||
return if (self.error_first) 1 else 0;
|
||
}
|
||
};
|
||
|
||
fn errorUnionLayout(self: *NavGen, payload_ty: Type) ErrorUnionLayout {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
|
||
const error_align = Type.anyerror.abiAlignment(zcu);
|
||
const payload_align = payload_ty.abiAlignment(zcu);
|
||
|
||
const error_first = error_align.compare(.gt, payload_align);
|
||
return .{
|
||
.payload_has_bits = payload_ty.hasRuntimeBitsIgnoreComptime(zcu),
|
||
.error_first = error_first,
|
||
};
|
||
}
|
||
|
||
const UnionLayout = struct {
|
||
/// If false, this union is represented
|
||
/// by only an integer of the tag type.
|
||
has_payload: bool,
|
||
tag_size: u32,
|
||
tag_index: u32,
|
||
/// Note: This is the size of the payload type itself, NOT the size of the ENTIRE payload.
|
||
/// Use `has_payload` instead!!
|
||
payload_ty: Type,
|
||
payload_size: u32,
|
||
payload_index: u32,
|
||
payload_padding_size: u32,
|
||
payload_padding_index: u32,
|
||
padding_size: u32,
|
||
padding_index: u32,
|
||
total_fields: u32,
|
||
};
|
||
|
||
fn unionLayout(self: *NavGen, ty: Type) UnionLayout {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ip = &zcu.intern_pool;
|
||
const layout = ty.unionGetLayout(zcu);
|
||
const union_obj = zcu.typeToUnion(ty).?;
|
||
|
||
var union_layout = UnionLayout{
|
||
.has_payload = layout.payload_size != 0,
|
||
.tag_size = @intCast(layout.tag_size),
|
||
.tag_index = undefined,
|
||
.payload_ty = undefined,
|
||
.payload_size = undefined,
|
||
.payload_index = undefined,
|
||
.payload_padding_size = undefined,
|
||
.payload_padding_index = undefined,
|
||
.padding_size = @intCast(layout.padding),
|
||
.padding_index = undefined,
|
||
.total_fields = undefined,
|
||
};
|
||
|
||
if (union_layout.has_payload) {
|
||
const most_aligned_field = layout.most_aligned_field;
|
||
const most_aligned_field_ty = Type.fromInterned(union_obj.field_types.get(ip)[most_aligned_field]);
|
||
union_layout.payload_ty = most_aligned_field_ty;
|
||
union_layout.payload_size = @intCast(most_aligned_field_ty.abiSize(zcu));
|
||
} else {
|
||
union_layout.payload_size = 0;
|
||
}
|
||
|
||
union_layout.payload_padding_size = @intCast(layout.payload_size - union_layout.payload_size);
|
||
|
||
const tag_first = layout.tag_align.compare(.gte, layout.payload_align);
|
||
var field_index: u32 = 0;
|
||
|
||
if (union_layout.tag_size != 0 and tag_first) {
|
||
union_layout.tag_index = field_index;
|
||
field_index += 1;
|
||
}
|
||
|
||
if (union_layout.payload_size != 0) {
|
||
union_layout.payload_index = field_index;
|
||
field_index += 1;
|
||
}
|
||
|
||
if (union_layout.payload_padding_size != 0) {
|
||
union_layout.payload_padding_index = field_index;
|
||
field_index += 1;
|
||
}
|
||
|
||
if (union_layout.tag_size != 0 and !tag_first) {
|
||
union_layout.tag_index = field_index;
|
||
field_index += 1;
|
||
}
|
||
|
||
if (union_layout.padding_size != 0) {
|
||
union_layout.padding_index = field_index;
|
||
field_index += 1;
|
||
}
|
||
|
||
union_layout.total_fields = field_index;
|
||
|
||
return union_layout;
|
||
}
|
||
|
||
/// This structure represents a "temporary" value: Something we are currently
|
||
/// operating on. It typically lives no longer than the function that
|
||
/// implements a particular AIR operation. These are used to easier
|
||
/// implement vectorizable operations (see Vectorization and the build*
|
||
/// functions), and typically are only used for vectors of primitive types.
|
||
const Temporary = struct {
|
||
/// The type of the temporary. This is here mainly
|
||
/// for easier bookkeeping. Because we will never really
|
||
/// store Temporaries, they only cause extra stack space,
|
||
/// therefore no real storage is wasted.
|
||
ty: Type,
|
||
/// The value that this temporary holds. This is not necessarily
|
||
/// a value that is actually usable, or a single value: It is virtual
|
||
/// until materialize() is called, at which point is turned into
|
||
/// the usual SPIR-V representation of `self.ty`.
|
||
value: Temporary.Value,
|
||
|
||
const Value = union(enum) {
|
||
singleton: IdResult,
|
||
exploded_vector: IdRange,
|
||
};
|
||
|
||
fn init(ty: Type, singleton: IdResult) Temporary {
|
||
return .{ .ty = ty, .value = .{ .singleton = singleton } };
|
||
}
|
||
|
||
fn materialize(self: Temporary, ng: *NavGen) !IdResult {
|
||
const zcu = ng.pt.zcu;
|
||
switch (self.value) {
|
||
.singleton => |id| return id,
|
||
.exploded_vector => |range| {
|
||
assert(self.ty.isVector(zcu));
|
||
assert(self.ty.vectorLen(zcu) == range.len);
|
||
const constituents = try ng.gpa.alloc(IdRef, range.len);
|
||
defer ng.gpa.free(constituents);
|
||
for (constituents, 0..range.len) |*id, i| {
|
||
id.* = range.at(i);
|
||
}
|
||
const result_ty_id = try ng.resolveType(self.ty, .direct);
|
||
return ng.constructComposite(result_ty_id, constituents);
|
||
},
|
||
}
|
||
}
|
||
|
||
fn vectorization(self: Temporary, ng: *NavGen) Vectorization {
|
||
return Vectorization.fromType(self.ty, ng);
|
||
}
|
||
|
||
fn pun(self: Temporary, new_ty: Type) Temporary {
|
||
return .{
|
||
.ty = new_ty,
|
||
.value = self.value,
|
||
};
|
||
}
|
||
|
||
/// 'Explode' a temporary into separate elements. This turns a vector
|
||
/// into a bag of elements.
|
||
fn explode(self: Temporary, ng: *NavGen) !IdRange {
|
||
const zcu = ng.pt.zcu;
|
||
|
||
// If the value is a scalar, then this is a no-op.
|
||
if (!self.ty.isVector(zcu)) {
|
||
return switch (self.value) {
|
||
.singleton => |id| .{ .base = @intFromEnum(id), .len = 1 },
|
||
.exploded_vector => |range| range,
|
||
};
|
||
}
|
||
|
||
const ty_id = try ng.resolveType(self.ty.scalarType(zcu), .direct);
|
||
const n = self.ty.vectorLen(zcu);
|
||
const results = ng.spv.allocIds(n);
|
||
|
||
const id = switch (self.value) {
|
||
.singleton => |id| id,
|
||
.exploded_vector => |range| return range,
|
||
};
|
||
|
||
for (0..n) |i| {
|
||
const indexes = [_]u32{@intCast(i)};
|
||
try ng.func.body.emit(ng.spv.gpa, .OpCompositeExtract, .{
|
||
.id_result_type = ty_id,
|
||
.id_result = results.at(i),
|
||
.composite = id,
|
||
.indexes = &indexes,
|
||
});
|
||
}
|
||
|
||
return results;
|
||
}
|
||
};
|
||
|
||
/// Initialize a `Temporary` from an AIR value.
|
||
fn temporary(self: *NavGen, inst: Air.Inst.Ref) !Temporary {
|
||
return .{
|
||
.ty = self.typeOf(inst),
|
||
.value = .{ .singleton = try self.resolve(inst) },
|
||
};
|
||
}
|
||
|
||
/// This union describes how a particular operation should be vectorized.
|
||
/// That depends on the operation and number of components of the inputs.
|
||
const Vectorization = union(enum) {
|
||
/// This is an operation between scalars.
|
||
scalar,
|
||
/// This is an operation between SPIR-V vectors.
|
||
/// Value is number of components.
|
||
spv_vectorized: u32,
|
||
/// This operation is unrolled into separate operations.
|
||
/// Inputs may still be SPIR-V vectors, for example,
|
||
/// when the operation can't be vectorized in SPIR-V.
|
||
/// Value is number of components.
|
||
unrolled: u32,
|
||
|
||
/// Derive a vectorization from a particular type. This usually
|
||
/// only checks the size, but the source-of-truth is implemented
|
||
/// by `isSpvVector()`.
|
||
fn fromType(ty: Type, ng: *NavGen) Vectorization {
|
||
const zcu = ng.pt.zcu;
|
||
if (!ty.isVector(zcu)) {
|
||
return .scalar;
|
||
} else if (ng.isSpvVector(ty)) {
|
||
return .{ .spv_vectorized = ty.vectorLen(zcu) };
|
||
} else {
|
||
return .{ .unrolled = ty.vectorLen(zcu) };
|
||
}
|
||
}
|
||
|
||
/// Given two vectorization methods, compute a "unification": a fallback
|
||
/// that works for both, according to the following rules:
|
||
/// - Scalars may broadcast
|
||
/// - SPIR-V vectorized operations may unroll
|
||
/// - Prefer scalar > SPIR-V vectorized > unrolled
|
||
fn unify(a: Vectorization, b: Vectorization) Vectorization {
|
||
if (a == .scalar and b == .scalar) {
|
||
return .scalar;
|
||
} else if (a == .spv_vectorized and b == .spv_vectorized) {
|
||
assert(a.components() == b.components());
|
||
return .{ .spv_vectorized = a.components() };
|
||
} else if (a == .unrolled or b == .unrolled) {
|
||
if (a == .unrolled and b == .unrolled) {
|
||
assert(a.components() == b.components());
|
||
return .{ .unrolled = a.components() };
|
||
} else if (a == .unrolled) {
|
||
return .{ .unrolled = a.components() };
|
||
} else if (b == .unrolled) {
|
||
return .{ .unrolled = b.components() };
|
||
} else {
|
||
unreachable;
|
||
}
|
||
} else {
|
||
if (a == .spv_vectorized) {
|
||
return .{ .spv_vectorized = a.components() };
|
||
} else if (b == .spv_vectorized) {
|
||
return .{ .spv_vectorized = b.components() };
|
||
} else {
|
||
unreachable;
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Force this vectorization to be unrolled, if its
|
||
/// an operation involving vectors.
|
||
fn unroll(self: Vectorization) Vectorization {
|
||
return switch (self) {
|
||
.scalar, .unrolled => self,
|
||
.spv_vectorized => |n| .{ .unrolled = n },
|
||
};
|
||
}
|
||
|
||
/// Query the number of components that inputs of this operation have.
|
||
/// Note: for broadcasting scalars, this returns the number of elements
|
||
/// that the broadcasted vector would have.
|
||
fn components(self: Vectorization) u32 {
|
||
return switch (self) {
|
||
.scalar => 1,
|
||
.spv_vectorized => |n| n,
|
||
.unrolled => |n| n,
|
||
};
|
||
}
|
||
|
||
/// Query the number of operations involving this vectorization.
|
||
/// This is basically the number of components, except that SPIR-V vectorized
|
||
/// operations only need a single SPIR-V instruction.
|
||
fn operations(self: Vectorization) u32 {
|
||
return switch (self) {
|
||
.scalar, .spv_vectorized => 1,
|
||
.unrolled => |n| n,
|
||
};
|
||
}
|
||
|
||
/// Turns `ty` into the result-type of an individual vector operation.
|
||
/// `ty` may be a scalar or vector, it doesn't matter.
|
||
fn operationType(self: Vectorization, ng: *NavGen, ty: Type) !Type {
|
||
const pt = ng.pt;
|
||
const scalar_ty = ty.scalarType(pt.zcu);
|
||
return switch (self) {
|
||
.scalar, .unrolled => scalar_ty,
|
||
.spv_vectorized => |n| try pt.vectorType(.{
|
||
.len = n,
|
||
.child = scalar_ty.toIntern(),
|
||
}),
|
||
};
|
||
}
|
||
|
||
/// Turns `ty` into the result-type of the entire operation.
|
||
/// `ty` may be a scalar or vector, it doesn't matter.
|
||
fn resultType(self: Vectorization, ng: *NavGen, ty: Type) !Type {
|
||
const pt = ng.pt;
|
||
const scalar_ty = ty.scalarType(pt.zcu);
|
||
return switch (self) {
|
||
.scalar => scalar_ty,
|
||
.unrolled, .spv_vectorized => |n| try pt.vectorType(.{
|
||
.len = n,
|
||
.child = scalar_ty.toIntern(),
|
||
}),
|
||
};
|
||
}
|
||
|
||
/// Before a temporary can be used, some setup may need to be one. This function implements
|
||
/// this setup, and returns a new type that holds the relevant information on how to access
|
||
/// elements of the input.
|
||
fn prepare(self: Vectorization, ng: *NavGen, tmp: Temporary) !PreparedOperand {
|
||
const pt = ng.pt;
|
||
const is_vector = tmp.ty.isVector(pt.zcu);
|
||
const is_spv_vector = ng.isSpvVector(tmp.ty);
|
||
const value: PreparedOperand.Value = switch (tmp.value) {
|
||
.singleton => |id| switch (self) {
|
||
.scalar => blk: {
|
||
assert(!is_vector);
|
||
break :blk .{ .scalar = id };
|
||
},
|
||
.spv_vectorized => blk: {
|
||
if (is_vector) {
|
||
assert(is_spv_vector);
|
||
break :blk .{ .spv_vectorwise = id };
|
||
}
|
||
|
||
// Broadcast scalar into vector.
|
||
const vector_ty = try pt.vectorType(.{
|
||
.len = self.components(),
|
||
.child = tmp.ty.toIntern(),
|
||
});
|
||
|
||
const vector = try ng.constructCompositeSplat(vector_ty, id);
|
||
return .{
|
||
.ty = vector_ty,
|
||
.value = .{ .spv_vectorwise = vector },
|
||
};
|
||
},
|
||
.unrolled => blk: {
|
||
if (is_vector) {
|
||
break :blk .{ .vector_exploded = try tmp.explode(ng) };
|
||
} else {
|
||
break :blk .{ .scalar_broadcast = id };
|
||
}
|
||
},
|
||
},
|
||
.exploded_vector => |range| switch (self) {
|
||
.scalar => unreachable,
|
||
.spv_vectorized => |n| blk: {
|
||
// We can vectorize this operation, but we have an exploded vector. This can happen
|
||
// when a vectorizable operation succeeds a non-vectorizable operation. In this case,
|
||
// pack up the IDs into a SPIR-V vector. This path should not be able to be hit with
|
||
// a type that cannot do that.
|
||
assert(is_spv_vector);
|
||
assert(range.len == n);
|
||
const vec = try tmp.materialize(ng);
|
||
break :blk .{ .spv_vectorwise = vec };
|
||
},
|
||
.unrolled => |n| blk: {
|
||
assert(range.len == n);
|
||
break :blk .{ .vector_exploded = range };
|
||
},
|
||
},
|
||
};
|
||
|
||
return .{
|
||
.ty = tmp.ty,
|
||
.value = value,
|
||
};
|
||
}
|
||
|
||
/// Finalize the results of an operation back into a temporary. `results` is
|
||
/// a list of result-ids of the operation.
|
||
fn finalize(self: Vectorization, ty: Type, results: IdRange) Temporary {
|
||
assert(self.operations() == results.len);
|
||
const value: Temporary.Value = switch (self) {
|
||
.scalar, .spv_vectorized => blk: {
|
||
break :blk .{ .singleton = results.at(0) };
|
||
},
|
||
.unrolled => blk: {
|
||
break :blk .{ .exploded_vector = results };
|
||
},
|
||
};
|
||
|
||
return .{ .ty = ty, .value = value };
|
||
}
|
||
|
||
/// This struct represents an operand that has gone through some setup, and is
|
||
/// ready to be used as part of an operation.
|
||
const PreparedOperand = struct {
|
||
ty: Type,
|
||
value: PreparedOperand.Value,
|
||
|
||
/// The types of value that a prepared operand can hold internally. Depends
|
||
/// on the operation and input value.
|
||
const Value = union(enum) {
|
||
/// A single scalar value that is used by a scalar operation.
|
||
scalar: IdResult,
|
||
/// A single scalar that is broadcasted in an unrolled operation.
|
||
scalar_broadcast: IdResult,
|
||
/// A SPIR-V vector that is used in SPIR-V vectorize operation.
|
||
spv_vectorwise: IdResult,
|
||
/// A vector represented by a consecutive list of IDs that is used in an unrolled operation.
|
||
vector_exploded: IdRange,
|
||
};
|
||
|
||
/// Query the value at a particular index of the operation. Note that
|
||
/// the index is *not* the component/lane, but the index of the *operation*. When
|
||
/// this operation is vectorized, the return value of this function is a SPIR-V vector.
|
||
/// See also `Vectorization.operations()`.
|
||
fn at(self: PreparedOperand, i: usize) IdResult {
|
||
switch (self.value) {
|
||
.scalar => |id| {
|
||
assert(i == 0);
|
||
return id;
|
||
},
|
||
.scalar_broadcast => |id| {
|
||
return id;
|
||
},
|
||
.spv_vectorwise => |id| {
|
||
assert(i == 0);
|
||
return id;
|
||
},
|
||
.vector_exploded => |range| {
|
||
return range.at(i);
|
||
},
|
||
}
|
||
}
|
||
};
|
||
};
|
||
|
||
/// A utility function to compute the vectorization style of
|
||
/// a list of values. These values may be any of the following:
|
||
/// - A `Vectorization` instance
|
||
/// - A Type, in which case the vectorization is computed via `Vectorization.fromType`.
|
||
/// - A Temporary, in which case the vectorization is computed via `Temporary.vectorization`.
|
||
fn vectorization(self: *NavGen, args: anytype) Vectorization {
|
||
var v: Vectorization = undefined;
|
||
assert(args.len >= 1);
|
||
inline for (args, 0..) |arg, i| {
|
||
const iv: Vectorization = switch (@TypeOf(arg)) {
|
||
Vectorization => arg,
|
||
Type => Vectorization.fromType(arg, self),
|
||
Temporary => arg.vectorization(self),
|
||
else => @compileError("invalid type"),
|
||
};
|
||
if (i == 0) {
|
||
v = iv;
|
||
} else {
|
||
v = v.unify(iv);
|
||
}
|
||
}
|
||
return v;
|
||
}
|
||
|
||
/// This function builds an OpSConvert of OpUConvert depending on the
|
||
/// signedness of the types.
|
||
fn buildIntConvert(self: *NavGen, dst_ty: Type, src: Temporary) !Temporary {
|
||
const zcu = self.pt.zcu;
|
||
|
||
const dst_ty_id = try self.resolveType(dst_ty.scalarType(zcu), .direct);
|
||
const src_ty_id = try self.resolveType(src.ty.scalarType(zcu), .direct);
|
||
|
||
const v = self.vectorization(.{ dst_ty, src });
|
||
const result_ty = try v.resultType(self, dst_ty);
|
||
|
||
// We can directly compare integers, because those type-IDs are cached.
|
||
if (dst_ty_id == src_ty_id) {
|
||
// Nothing to do, type-pun to the right value.
|
||
// Note, Caller guarantees that the types fit (or caller will normalize after),
|
||
// so we don't have to normalize here.
|
||
// Note, dst_ty may be a scalar type even if we expect a vector, so we have to
|
||
// convert to the right type here.
|
||
return src.pun(result_ty);
|
||
}
|
||
|
||
const ops = v.operations();
|
||
const results = self.spv.allocIds(ops);
|
||
|
||
const op_result_ty = try v.operationType(self, dst_ty);
|
||
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
|
||
|
||
const opcode: Opcode = if (dst_ty.isSignedInt(zcu)) .OpSConvert else .OpUConvert;
|
||
|
||
const op_src = try v.prepare(self, src);
|
||
|
||
for (0..ops) |i| {
|
||
try self.func.body.emitRaw(self.spv.gpa, opcode, 3);
|
||
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
|
||
self.func.body.writeOperand(IdResult, results.at(i));
|
||
self.func.body.writeOperand(IdResult, op_src.at(i));
|
||
}
|
||
|
||
return v.finalize(result_ty, results);
|
||
}
|
||
|
||
fn buildFma(self: *NavGen, a: Temporary, b: Temporary, c: Temporary) !Temporary {
|
||
const target = self.spv.target;
|
||
|
||
const v = self.vectorization(.{ a, b, c });
|
||
const ops = v.operations();
|
||
const results = self.spv.allocIds(ops);
|
||
|
||
const op_result_ty = try v.operationType(self, a.ty);
|
||
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
|
||
const result_ty = try v.resultType(self, a.ty);
|
||
|
||
const op_a = try v.prepare(self, a);
|
||
const op_b = try v.prepare(self, b);
|
||
const op_c = try v.prepare(self, c);
|
||
|
||
const set = try self.importExtendedSet();
|
||
|
||
// TODO: Put these numbers in some definition
|
||
const instruction: u32 = switch (target.os.tag) {
|
||
.opencl => 26, // fma
|
||
// NOTE: Vulkan's FMA instruction does *NOT* produce the right values!
|
||
// its precision guarantees do NOT match zigs and it does NOT match OpenCLs!
|
||
// it needs to be emulated!
|
||
.vulkan, .opengl => return self.todo("implement fma operation for {s} os", .{@tagName(target.os.tag)}),
|
||
else => unreachable,
|
||
};
|
||
|
||
for (0..ops) |i| {
|
||
try self.func.body.emit(self.spv.gpa, .OpExtInst, .{
|
||
.id_result_type = op_result_ty_id,
|
||
.id_result = results.at(i),
|
||
.set = set,
|
||
.instruction = .{ .inst = instruction },
|
||
.id_ref_4 = &.{ op_a.at(i), op_b.at(i), op_c.at(i) },
|
||
});
|
||
}
|
||
|
||
return v.finalize(result_ty, results);
|
||
}
|
||
|
||
fn buildSelect(self: *NavGen, condition: Temporary, lhs: Temporary, rhs: Temporary) !Temporary {
|
||
const zcu = self.pt.zcu;
|
||
|
||
const v = self.vectorization(.{ condition, lhs, rhs });
|
||
const ops = v.operations();
|
||
const results = self.spv.allocIds(ops);
|
||
|
||
const op_result_ty = try v.operationType(self, lhs.ty);
|
||
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
|
||
const result_ty = try v.resultType(self, lhs.ty);
|
||
|
||
assert(condition.ty.scalarType(zcu).zigTypeTag(zcu) == .bool);
|
||
|
||
const cond = try v.prepare(self, condition);
|
||
const object_1 = try v.prepare(self, lhs);
|
||
const object_2 = try v.prepare(self, rhs);
|
||
|
||
for (0..ops) |i| {
|
||
try self.func.body.emit(self.spv.gpa, .OpSelect, .{
|
||
.id_result_type = op_result_ty_id,
|
||
.id_result = results.at(i),
|
||
.condition = cond.at(i),
|
||
.object_1 = object_1.at(i),
|
||
.object_2 = object_2.at(i),
|
||
});
|
||
}
|
||
|
||
return v.finalize(result_ty, results);
|
||
}
|
||
|
||
const CmpPredicate = enum {
|
||
l_eq,
|
||
l_ne,
|
||
i_ne,
|
||
i_eq,
|
||
s_lt,
|
||
s_gt,
|
||
s_le,
|
||
s_ge,
|
||
u_lt,
|
||
u_gt,
|
||
u_le,
|
||
u_ge,
|
||
f_oeq,
|
||
f_une,
|
||
f_olt,
|
||
f_ole,
|
||
f_ogt,
|
||
f_oge,
|
||
};
|
||
|
||
fn buildCmp(self: *NavGen, pred: CmpPredicate, lhs: Temporary, rhs: Temporary) !Temporary {
|
||
const v = self.vectorization(.{ lhs, rhs });
|
||
const ops = v.operations();
|
||
const results = self.spv.allocIds(ops);
|
||
|
||
const op_result_ty = try v.operationType(self, Type.bool);
|
||
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
|
||
const result_ty = try v.resultType(self, Type.bool);
|
||
|
||
const op_lhs = try v.prepare(self, lhs);
|
||
const op_rhs = try v.prepare(self, rhs);
|
||
|
||
const opcode: Opcode = switch (pred) {
|
||
.l_eq => .OpLogicalEqual,
|
||
.l_ne => .OpLogicalNotEqual,
|
||
.i_eq => .OpIEqual,
|
||
.i_ne => .OpINotEqual,
|
||
.s_lt => .OpSLessThan,
|
||
.s_gt => .OpSGreaterThan,
|
||
.s_le => .OpSLessThanEqual,
|
||
.s_ge => .OpSGreaterThanEqual,
|
||
.u_lt => .OpULessThan,
|
||
.u_gt => .OpUGreaterThan,
|
||
.u_le => .OpULessThanEqual,
|
||
.u_ge => .OpUGreaterThanEqual,
|
||
.f_oeq => .OpFOrdEqual,
|
||
.f_une => .OpFUnordNotEqual,
|
||
.f_olt => .OpFOrdLessThan,
|
||
.f_ole => .OpFOrdLessThanEqual,
|
||
.f_ogt => .OpFOrdGreaterThan,
|
||
.f_oge => .OpFOrdGreaterThanEqual,
|
||
};
|
||
|
||
for (0..ops) |i| {
|
||
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
|
||
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
|
||
self.func.body.writeOperand(IdResult, results.at(i));
|
||
self.func.body.writeOperand(IdResult, op_lhs.at(i));
|
||
self.func.body.writeOperand(IdResult, op_rhs.at(i));
|
||
}
|
||
|
||
return v.finalize(result_ty, results);
|
||
}
|
||
|
||
const UnaryOp = enum {
|
||
l_not,
|
||
bit_not,
|
||
i_neg,
|
||
f_neg,
|
||
i_abs,
|
||
f_abs,
|
||
clz,
|
||
ctz,
|
||
floor,
|
||
ceil,
|
||
trunc,
|
||
round,
|
||
sqrt,
|
||
sin,
|
||
cos,
|
||
tan,
|
||
exp,
|
||
exp2,
|
||
log,
|
||
log2,
|
||
log10,
|
||
};
|
||
|
||
fn buildUnary(self: *NavGen, op: UnaryOp, operand: Temporary) !Temporary {
|
||
const target = self.spv.target;
|
||
const v = blk: {
|
||
const v = self.vectorization(.{operand});
|
||
break :blk switch (op) {
|
||
// TODO: These instructions don't seem to be working
|
||
// properly for LLVM-based backends on OpenCL for 8- and
|
||
// 16-component vectors.
|
||
.i_abs => if (self.spv.hasFeature(.vector16) and v.components() >= 8) v.unroll() else v,
|
||
else => v,
|
||
};
|
||
};
|
||
|
||
const ops = v.operations();
|
||
const results = self.spv.allocIds(ops);
|
||
|
||
const op_result_ty = try v.operationType(self, operand.ty);
|
||
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
|
||
const result_ty = try v.resultType(self, operand.ty);
|
||
|
||
const op_operand = try v.prepare(self, operand);
|
||
|
||
if (switch (op) {
|
||
.l_not => .OpLogicalNot,
|
||
.bit_not => .OpNot,
|
||
.i_neg => .OpSNegate,
|
||
.f_neg => .OpFNegate,
|
||
else => @as(?Opcode, null),
|
||
}) |opcode| {
|
||
for (0..ops) |i| {
|
||
try self.func.body.emitRaw(self.spv.gpa, opcode, 3);
|
||
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
|
||
self.func.body.writeOperand(IdResult, results.at(i));
|
||
self.func.body.writeOperand(IdResult, op_operand.at(i));
|
||
}
|
||
} else {
|
||
const set = try self.importExtendedSet();
|
||
const extinst: u32 = switch (target.os.tag) {
|
||
.opencl => switch (op) {
|
||
.i_abs => 141, // s_abs
|
||
.f_abs => 23, // fabs
|
||
.clz => 151, // clz
|
||
.ctz => 152, // ctz
|
||
.floor => 25, // floor
|
||
.ceil => 12, // ceil
|
||
.trunc => 66, // trunc
|
||
.round => 55, // round
|
||
.sqrt => 61, // sqrt
|
||
.sin => 57, // sin
|
||
.cos => 14, // cos
|
||
.tan => 62, // tan
|
||
.exp => 19, // exp
|
||
.exp2 => 20, // exp2
|
||
.log => 37, // log
|
||
.log2 => 38, // log2
|
||
.log10 => 39, // log10
|
||
else => unreachable,
|
||
},
|
||
// Note: We'll need to check these for floating point accuracy
|
||
// Vulkan does not put tight requirements on these, for correction
|
||
// we might want to emulate them at some point.
|
||
.vulkan, .opengl => switch (op) {
|
||
.i_abs => 5, // SAbs
|
||
.f_abs => 4, // FAbs
|
||
.floor => 8, // Floor
|
||
.ceil => 9, // Ceil
|
||
.trunc => 3, // Trunc
|
||
.round => 1, // Round
|
||
.clz,
|
||
.ctz,
|
||
.sqrt,
|
||
.sin,
|
||
.cos,
|
||
.tan,
|
||
.exp,
|
||
.exp2,
|
||
.log,
|
||
.log2,
|
||
.log10,
|
||
=> return self.todo("implement unary operation '{s}' for {s} os", .{ @tagName(op), @tagName(target.os.tag) }),
|
||
else => unreachable,
|
||
},
|
||
else => unreachable,
|
||
};
|
||
|
||
for (0..ops) |i| {
|
||
try self.func.body.emit(self.spv.gpa, .OpExtInst, .{
|
||
.id_result_type = op_result_ty_id,
|
||
.id_result = results.at(i),
|
||
.set = set,
|
||
.instruction = .{ .inst = extinst },
|
||
.id_ref_4 = &.{op_operand.at(i)},
|
||
});
|
||
}
|
||
}
|
||
|
||
return v.finalize(result_ty, results);
|
||
}
|
||
|
||
const BinaryOp = enum {
|
||
i_add,
|
||
f_add,
|
||
i_sub,
|
||
f_sub,
|
||
i_mul,
|
||
f_mul,
|
||
s_div,
|
||
u_div,
|
||
f_div,
|
||
s_rem,
|
||
f_rem,
|
||
s_mod,
|
||
u_mod,
|
||
f_mod,
|
||
srl,
|
||
sra,
|
||
sll,
|
||
bit_and,
|
||
bit_or,
|
||
bit_xor,
|
||
f_max,
|
||
s_max,
|
||
u_max,
|
||
f_min,
|
||
s_min,
|
||
u_min,
|
||
l_and,
|
||
l_or,
|
||
};
|
||
|
||
fn buildBinary(self: *NavGen, op: BinaryOp, lhs: Temporary, rhs: Temporary) !Temporary {
|
||
const target = self.spv.target;
|
||
|
||
const v = self.vectorization(.{ lhs, rhs });
|
||
const ops = v.operations();
|
||
const results = self.spv.allocIds(ops);
|
||
|
||
const op_result_ty = try v.operationType(self, lhs.ty);
|
||
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
|
||
const result_ty = try v.resultType(self, lhs.ty);
|
||
|
||
const op_lhs = try v.prepare(self, lhs);
|
||
const op_rhs = try v.prepare(self, rhs);
|
||
|
||
if (switch (op) {
|
||
.i_add => .OpIAdd,
|
||
.f_add => .OpFAdd,
|
||
.i_sub => .OpISub,
|
||
.f_sub => .OpFSub,
|
||
.i_mul => .OpIMul,
|
||
.f_mul => .OpFMul,
|
||
.s_div => .OpSDiv,
|
||
.u_div => .OpUDiv,
|
||
.f_div => .OpFDiv,
|
||
.s_rem => .OpSRem,
|
||
.f_rem => .OpFRem,
|
||
.s_mod => .OpSMod,
|
||
.u_mod => .OpUMod,
|
||
.f_mod => .OpFMod,
|
||
.srl => .OpShiftRightLogical,
|
||
.sra => .OpShiftRightArithmetic,
|
||
.sll => .OpShiftLeftLogical,
|
||
.bit_and => .OpBitwiseAnd,
|
||
.bit_or => .OpBitwiseOr,
|
||
.bit_xor => .OpBitwiseXor,
|
||
.l_and => .OpLogicalAnd,
|
||
.l_or => .OpLogicalOr,
|
||
else => @as(?Opcode, null),
|
||
}) |opcode| {
|
||
for (0..ops) |i| {
|
||
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
|
||
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
|
||
self.func.body.writeOperand(IdResult, results.at(i));
|
||
self.func.body.writeOperand(IdResult, op_lhs.at(i));
|
||
self.func.body.writeOperand(IdResult, op_rhs.at(i));
|
||
}
|
||
} else {
|
||
const set = try self.importExtendedSet();
|
||
|
||
// TODO: Put these numbers in some definition
|
||
const extinst: u32 = switch (target.os.tag) {
|
||
.opencl => switch (op) {
|
||
.f_max => 27, // fmax
|
||
.s_max => 156, // s_max
|
||
.u_max => 157, // u_max
|
||
.f_min => 28, // fmin
|
||
.s_min => 158, // s_min
|
||
.u_min => 159, // u_min
|
||
else => unreachable,
|
||
},
|
||
.vulkan, .opengl => switch (op) {
|
||
.f_max => 40, // FMax
|
||
.s_max => 42, // SMax
|
||
.u_max => 41, // UMax
|
||
.f_min => 37, // FMin
|
||
.s_min => 39, // SMin
|
||
.u_min => 38, // UMin
|
||
else => unreachable,
|
||
},
|
||
else => unreachable,
|
||
};
|
||
|
||
for (0..ops) |i| {
|
||
try self.func.body.emit(self.spv.gpa, .OpExtInst, .{
|
||
.id_result_type = op_result_ty_id,
|
||
.id_result = results.at(i),
|
||
.set = set,
|
||
.instruction = .{ .inst = extinst },
|
||
.id_ref_4 = &.{ op_lhs.at(i), op_rhs.at(i) },
|
||
});
|
||
}
|
||
}
|
||
|
||
return v.finalize(result_ty, results);
|
||
}
|
||
|
||
/// This function builds an extended multiplication, either OpSMulExtended or OpUMulExtended on Vulkan,
|
||
/// or OpIMul and s_mul_hi or u_mul_hi on OpenCL.
|
||
fn buildWideMul(
|
||
self: *NavGen,
|
||
op: enum {
|
||
s_mul_extended,
|
||
u_mul_extended,
|
||
},
|
||
lhs: Temporary,
|
||
rhs: Temporary,
|
||
) !struct { Temporary, Temporary } {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const target = self.spv.target;
|
||
const ip = &zcu.intern_pool;
|
||
|
||
const v = lhs.vectorization(self).unify(rhs.vectorization(self));
|
||
const ops = v.operations();
|
||
|
||
const arith_op_ty = try v.operationType(self, lhs.ty);
|
||
const arith_op_ty_id = try self.resolveType(arith_op_ty, .direct);
|
||
|
||
const lhs_op = try v.prepare(self, lhs);
|
||
const rhs_op = try v.prepare(self, rhs);
|
||
|
||
const value_results = self.spv.allocIds(ops);
|
||
const overflow_results = self.spv.allocIds(ops);
|
||
|
||
switch (target.os.tag) {
|
||
.opencl => {
|
||
// Currently, SPIRV-LLVM-Translator based backends cannot deal with OpSMulExtended and
|
||
// OpUMulExtended. For these we will use the OpenCL s_mul_hi to compute the high-order bits
|
||
// instead.
|
||
const set = try self.importExtendedSet();
|
||
const overflow_inst: u32 = switch (op) {
|
||
.s_mul_extended => 160, // s_mul_hi
|
||
.u_mul_extended => 203, // u_mul_hi
|
||
};
|
||
|
||
for (0..ops) |i| {
|
||
try self.func.body.emit(self.spv.gpa, .OpIMul, .{
|
||
.id_result_type = arith_op_ty_id,
|
||
.id_result = value_results.at(i),
|
||
.operand_1 = lhs_op.at(i),
|
||
.operand_2 = rhs_op.at(i),
|
||
});
|
||
|
||
try self.func.body.emit(self.spv.gpa, .OpExtInst, .{
|
||
.id_result_type = arith_op_ty_id,
|
||
.id_result = overflow_results.at(i),
|
||
.set = set,
|
||
.instruction = .{ .inst = overflow_inst },
|
||
.id_ref_4 = &.{ lhs_op.at(i), rhs_op.at(i) },
|
||
});
|
||
}
|
||
},
|
||
.vulkan, .opengl => {
|
||
// Operations return a struct{T, T}
|
||
// where T is maybe vectorized.
|
||
const op_result_ty: Type = .fromInterned(try ip.getTupleType(zcu.gpa, pt.tid, .{
|
||
.types = &.{ arith_op_ty.toIntern(), arith_op_ty.toIntern() },
|
||
.values = &.{ .none, .none },
|
||
}));
|
||
const op_result_ty_id = try self.resolveType(op_result_ty, .direct);
|
||
|
||
const opcode: Opcode = switch (op) {
|
||
.s_mul_extended => .OpSMulExtended,
|
||
.u_mul_extended => .OpUMulExtended,
|
||
};
|
||
|
||
for (0..ops) |i| {
|
||
const op_result = self.spv.allocId();
|
||
|
||
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
|
||
self.func.body.writeOperand(spec.IdResultType, op_result_ty_id);
|
||
self.func.body.writeOperand(IdResult, op_result);
|
||
self.func.body.writeOperand(IdResult, lhs_op.at(i));
|
||
self.func.body.writeOperand(IdResult, rhs_op.at(i));
|
||
|
||
// The above operation returns a struct. We might want to expand
|
||
// Temporary to deal with the fact that these are structs eventually,
|
||
// but for now, take the struct apart and return two separate vectors.
|
||
|
||
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
|
||
.id_result_type = arith_op_ty_id,
|
||
.id_result = value_results.at(i),
|
||
.composite = op_result,
|
||
.indexes = &.{0},
|
||
});
|
||
|
||
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
|
||
.id_result_type = arith_op_ty_id,
|
||
.id_result = overflow_results.at(i),
|
||
.composite = op_result,
|
||
.indexes = &.{1},
|
||
});
|
||
}
|
||
},
|
||
else => unreachable,
|
||
}
|
||
|
||
const result_ty = try v.resultType(self, lhs.ty);
|
||
return .{
|
||
v.finalize(result_ty, value_results),
|
||
v.finalize(result_ty, overflow_results),
|
||
};
|
||
}
|
||
|
||
/// The SPIR-V backend is not yet advanced enough to support the std testing infrastructure.
|
||
/// In order to be able to run tests, we "temporarily" lower test kernels into separate entry-
|
||
/// points. The test executor will then be able to invoke these to run the tests.
|
||
/// Note that tests are lowered according to std.builtin.TestFn, which is `fn () anyerror!void`.
|
||
/// (anyerror!void has the same layout as anyerror).
|
||
/// Each test declaration generates a function like.
|
||
/// %anyerror = OpTypeInt 0 16
|
||
/// %p_invocation_globals_struct_ty = ...
|
||
/// %p_anyerror = OpTypePointer CrossWorkgroup %anyerror
|
||
/// %K = OpTypeFunction %void %p_invocation_globals_struct_ty %p_anyerror
|
||
///
|
||
/// %test = OpFunction %void %K
|
||
/// %p_invocation_globals = OpFunctionParameter p_invocation_globals_struct_ty
|
||
/// %p_err = OpFunctionParameter %p_anyerror
|
||
/// %lbl = OpLabel
|
||
/// %result = OpFunctionCall %anyerror %func %p_invocation_globals
|
||
/// OpStore %p_err %result
|
||
/// OpFunctionEnd
|
||
/// TODO is to also write out the error as a function call parameter, and to somehow fetch
|
||
/// the name of an error in the text executor.
|
||
fn generateTestEntryPoint(self: *NavGen, name: []const u8, spv_test_decl_index: SpvModule.Decl.Index) !void {
|
||
const zcu = self.pt.zcu;
|
||
const target = self.spv.target;
|
||
|
||
const anyerror_ty_id = try self.resolveType(Type.anyerror, .direct);
|
||
const ptr_anyerror_ty = try self.pt.ptrType(.{
|
||
.child = Type.anyerror.toIntern(),
|
||
.flags = .{ .address_space = .global },
|
||
});
|
||
const ptr_anyerror_ty_id = try self.resolveType(ptr_anyerror_ty, .direct);
|
||
|
||
const spv_decl_index = try self.spv.allocDecl(.func);
|
||
const kernel_id = self.spv.declPtr(spv_decl_index).result_id;
|
||
|
||
var decl_deps = std.ArrayList(SpvModule.Decl.Index).init(self.gpa);
|
||
defer decl_deps.deinit();
|
||
try decl_deps.append(spv_test_decl_index);
|
||
|
||
const section = &self.spv.sections.functions;
|
||
|
||
const p_error_id = self.spv.allocId();
|
||
switch (target.os.tag) {
|
||
.opencl => {
|
||
const kernel_proto_ty_id = try self.functionType(Type.void, &.{ptr_anyerror_ty});
|
||
|
||
try section.emit(self.spv.gpa, .OpFunction, .{
|
||
.id_result_type = try self.resolveType(Type.void, .direct),
|
||
.id_result = kernel_id,
|
||
.function_control = .{},
|
||
.function_type = kernel_proto_ty_id,
|
||
});
|
||
|
||
try section.emit(self.spv.gpa, .OpFunctionParameter, .{
|
||
.id_result_type = ptr_anyerror_ty_id,
|
||
.id_result = p_error_id,
|
||
});
|
||
|
||
try section.emit(self.spv.gpa, .OpLabel, .{
|
||
.id_result = self.spv.allocId(),
|
||
});
|
||
},
|
||
.vulkan, .opengl => {
|
||
const ptr_ptr_anyerror_ty_id = self.spv.allocId();
|
||
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypePointer, .{
|
||
.id_result = ptr_ptr_anyerror_ty_id,
|
||
.storage_class = .PushConstant,
|
||
.type = ptr_anyerror_ty_id,
|
||
});
|
||
|
||
if (self.object.error_push_constant == null) {
|
||
const spv_err_decl_index = try self.spv.allocDecl(.global);
|
||
try self.spv.declareDeclDeps(spv_err_decl_index, &.{});
|
||
|
||
const push_constant_struct_ty_id = self.spv.allocId();
|
||
try self.spv.structType(push_constant_struct_ty_id, &.{ptr_anyerror_ty_id}, &.{"error_out_ptr"});
|
||
try self.spv.decorate(push_constant_struct_ty_id, .Block);
|
||
try self.spv.decorateMember(push_constant_struct_ty_id, 0, .{ .Offset = .{ .byte_offset = 0 } });
|
||
|
||
const ptr_push_constant_struct_ty_id = self.spv.allocId();
|
||
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpTypePointer, .{
|
||
.id_result = ptr_push_constant_struct_ty_id,
|
||
.storage_class = .PushConstant,
|
||
.type = push_constant_struct_ty_id,
|
||
});
|
||
|
||
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpVariable, .{
|
||
.id_result_type = ptr_push_constant_struct_ty_id,
|
||
.id_result = self.spv.declPtr(spv_err_decl_index).result_id,
|
||
.storage_class = .PushConstant,
|
||
});
|
||
|
||
self.object.error_push_constant = .{
|
||
.push_constant_ptr = spv_err_decl_index,
|
||
};
|
||
}
|
||
|
||
try self.spv.sections.execution_modes.emit(self.spv.gpa, .OpExecutionMode, .{
|
||
.entry_point = kernel_id,
|
||
.mode = .{ .LocalSize = .{
|
||
.x_size = 1,
|
||
.y_size = 1,
|
||
.z_size = 1,
|
||
} },
|
||
});
|
||
|
||
const kernel_proto_ty_id = try self.functionType(Type.void, &.{});
|
||
try section.emit(self.spv.gpa, .OpFunction, .{
|
||
.id_result_type = try self.resolveType(Type.void, .direct),
|
||
.id_result = kernel_id,
|
||
.function_control = .{},
|
||
.function_type = kernel_proto_ty_id,
|
||
});
|
||
try section.emit(self.spv.gpa, .OpLabel, .{
|
||
.id_result = self.spv.allocId(),
|
||
});
|
||
|
||
const spv_err_decl_index = self.object.error_push_constant.?.push_constant_ptr;
|
||
const push_constant_id = self.spv.declPtr(spv_err_decl_index).result_id;
|
||
try decl_deps.append(spv_err_decl_index);
|
||
|
||
const zero_id = try self.constInt(Type.u32, 0);
|
||
// We cannot use OpInBoundsAccessChain to dereference cross-storage class, so we have to use
|
||
// a load.
|
||
const tmp = self.spv.allocId();
|
||
try section.emit(self.spv.gpa, .OpInBoundsAccessChain, .{
|
||
.id_result_type = ptr_ptr_anyerror_ty_id,
|
||
.id_result = tmp,
|
||
.base = push_constant_id,
|
||
.indexes = &.{zero_id},
|
||
});
|
||
try section.emit(self.spv.gpa, .OpLoad, .{
|
||
.id_result_type = ptr_anyerror_ty_id,
|
||
.id_result = p_error_id,
|
||
.pointer = tmp,
|
||
});
|
||
},
|
||
else => unreachable,
|
||
}
|
||
|
||
const test_id = self.spv.declPtr(spv_test_decl_index).result_id;
|
||
const error_id = self.spv.allocId();
|
||
try section.emit(self.spv.gpa, .OpFunctionCall, .{
|
||
.id_result_type = anyerror_ty_id,
|
||
.id_result = error_id,
|
||
.function = test_id,
|
||
});
|
||
// Note: Convert to direct not required.
|
||
try section.emit(self.spv.gpa, .OpStore, .{
|
||
.pointer = p_error_id,
|
||
.object = error_id,
|
||
.memory_access = .{
|
||
.Aligned = .{ .literal_integer = @intCast(Type.abiAlignment(.anyerror, zcu).toByteUnits().?) },
|
||
},
|
||
});
|
||
try section.emit(self.spv.gpa, .OpReturn, {});
|
||
try section.emit(self.spv.gpa, .OpFunctionEnd, {});
|
||
|
||
// Just generate a quick other name because the intel runtime crashes when the entry-
|
||
// point name is the same as a different OpName.
|
||
const test_name = try std.fmt.allocPrint(self.gpa, "test {s}", .{name});
|
||
defer self.gpa.free(test_name);
|
||
|
||
const execution_mode: spec.ExecutionModel = switch (target.os.tag) {
|
||
.vulkan, .opengl => .GLCompute,
|
||
.opencl => .Kernel,
|
||
else => unreachable,
|
||
};
|
||
|
||
try self.spv.declareDeclDeps(spv_decl_index, decl_deps.items);
|
||
try self.spv.declareEntryPoint(spv_decl_index, test_name, execution_mode);
|
||
}
|
||
|
||
fn genNav(self: *NavGen, do_codegen: bool) !void {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ip = &zcu.intern_pool;
|
||
|
||
const nav = ip.getNav(self.owner_nav);
|
||
const val = zcu.navValue(self.owner_nav);
|
||
const ty = val.typeOf(zcu);
|
||
|
||
if (!do_codegen and !ty.hasRuntimeBits(zcu)) {
|
||
return;
|
||
}
|
||
|
||
const spv_decl_index = try self.object.resolveNav(zcu, self.owner_nav);
|
||
const result_id = self.spv.declPtr(spv_decl_index).result_id;
|
||
|
||
switch (self.spv.declPtr(spv_decl_index).kind) {
|
||
.func => {
|
||
const fn_info = zcu.typeToFunc(ty).?;
|
||
const return_ty_id = try self.resolveFnReturnType(Type.fromInterned(fn_info.return_type));
|
||
|
||
const prototype_ty_id = try self.resolveType(ty, .direct);
|
||
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
|
||
.id_result_type = return_ty_id,
|
||
.id_result = result_id,
|
||
.function_type = prototype_ty_id,
|
||
// Note: the backend will never be asked to generate an inline function
|
||
// (this is handled in sema), so we don't need to set function_control here.
|
||
.function_control = .{},
|
||
});
|
||
|
||
comptime assert(zig_call_abi_ver == 3);
|
||
try self.args.ensureUnusedCapacity(self.gpa, fn_info.param_types.len);
|
||
for (fn_info.param_types.get(ip)) |param_ty_index| {
|
||
const param_ty = Type.fromInterned(param_ty_index);
|
||
if (!param_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
|
||
|
||
const param_type_id = try self.resolveType(param_ty, .direct);
|
||
const arg_result_id = self.spv.allocId();
|
||
try self.func.prologue.emit(self.spv.gpa, .OpFunctionParameter, .{
|
||
.id_result_type = param_type_id,
|
||
.id_result = arg_result_id,
|
||
});
|
||
self.args.appendAssumeCapacity(arg_result_id);
|
||
}
|
||
|
||
// TODO: This could probably be done in a better way...
|
||
const root_block_id = self.spv.allocId();
|
||
|
||
// The root block of a function declaration should appear before OpVariable instructions,
|
||
// so it is generated into the function's prologue.
|
||
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
|
||
.id_result = root_block_id,
|
||
});
|
||
self.current_block_label = root_block_id;
|
||
|
||
const main_body = self.air.getMainBody();
|
||
switch (self.control_flow) {
|
||
.structured => {
|
||
_ = try self.genStructuredBody(.selection, main_body);
|
||
// We always expect paths to here to end, but we still need the block
|
||
// to act as a dummy merge block.
|
||
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
|
||
},
|
||
.unstructured => {
|
||
try self.genBody(main_body);
|
||
},
|
||
}
|
||
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
|
||
// Append the actual code into the functions section.
|
||
try self.spv.addFunction(spv_decl_index, self.func);
|
||
|
||
try self.spv.debugName(result_id, nav.fqn.toSlice(ip));
|
||
|
||
// Temporarily generate a test kernel declaration if this is a test function.
|
||
if (self.pt.zcu.test_functions.contains(self.owner_nav)) {
|
||
try self.generateTestEntryPoint(nav.fqn.toSlice(ip), spv_decl_index);
|
||
}
|
||
},
|
||
.global => {
|
||
const maybe_init_val: ?Value = switch (ip.indexToKey(val.toIntern())) {
|
||
.func => unreachable,
|
||
.variable => |variable| Value.fromInterned(variable.init),
|
||
.@"extern" => null,
|
||
else => val,
|
||
};
|
||
assert(maybe_init_val == null); // TODO
|
||
|
||
const storage_class = self.spvStorageClass(nav.getAddrspace());
|
||
assert(storage_class != .Generic); // These should be instance globals
|
||
|
||
const ptr_ty_id = try self.ptrType(ty, storage_class, .indirect);
|
||
|
||
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpVariable, .{
|
||
.id_result_type = ptr_ty_id,
|
||
.id_result = result_id,
|
||
.storage_class = storage_class,
|
||
});
|
||
|
||
try self.spv.debugName(result_id, nav.fqn.toSlice(ip));
|
||
try self.spv.declareDeclDeps(spv_decl_index, &.{});
|
||
},
|
||
.invocation_global => {
|
||
const maybe_init_val: ?Value = switch (ip.indexToKey(val.toIntern())) {
|
||
.func => unreachable,
|
||
.variable => |variable| Value.fromInterned(variable.init),
|
||
.@"extern" => null,
|
||
else => val,
|
||
};
|
||
|
||
try self.spv.declareDeclDeps(spv_decl_index, &.{});
|
||
|
||
const ptr_ty_id = try self.ptrType(ty, .Function, .indirect);
|
||
|
||
if (maybe_init_val) |init_val| {
|
||
// TODO: Combine with resolveAnonDecl?
|
||
const initializer_proto_ty_id = try self.functionType(Type.void, &.{});
|
||
|
||
const initializer_id = self.spv.allocId();
|
||
try self.func.prologue.emit(self.spv.gpa, .OpFunction, .{
|
||
.id_result_type = try self.resolveType(Type.void, .direct),
|
||
.id_result = initializer_id,
|
||
.function_control = .{},
|
||
.function_type = initializer_proto_ty_id,
|
||
});
|
||
|
||
const root_block_id = self.spv.allocId();
|
||
try self.func.prologue.emit(self.spv.gpa, .OpLabel, .{
|
||
.id_result = root_block_id,
|
||
});
|
||
self.current_block_label = root_block_id;
|
||
|
||
const val_id = try self.constant(ty, init_val, .indirect);
|
||
try self.func.body.emit(self.spv.gpa, .OpStore, .{
|
||
.pointer = result_id,
|
||
.object = val_id,
|
||
});
|
||
|
||
try self.func.body.emit(self.spv.gpa, .OpReturn, {});
|
||
try self.func.body.emit(self.spv.gpa, .OpFunctionEnd, {});
|
||
try self.spv.addFunction(spv_decl_index, self.func);
|
||
|
||
try self.spv.debugNameFmt(initializer_id, "initializer of {}", .{nav.fqn.fmt(ip)});
|
||
|
||
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpExtInst, .{
|
||
.id_result_type = ptr_ty_id,
|
||
.id_result = result_id,
|
||
.set = try self.spv.importInstructionSet(.zig),
|
||
.instruction = .{ .inst = 0 }, // TODO: Put this definition somewhere...
|
||
.id_ref_4 = &.{initializer_id},
|
||
});
|
||
} else {
|
||
try self.spv.sections.types_globals_constants.emit(self.spv.gpa, .OpExtInst, .{
|
||
.id_result_type = ptr_ty_id,
|
||
.id_result = result_id,
|
||
.set = try self.spv.importInstructionSet(.zig),
|
||
.instruction = .{ .inst = 0 }, // TODO: Put this definition somewhere...
|
||
.id_ref_4 = &.{},
|
||
});
|
||
}
|
||
},
|
||
}
|
||
}
|
||
|
||
fn intFromBool(self: *NavGen, value: Temporary) !Temporary {
|
||
return try self.intFromBool2(value, Type.u1);
|
||
}
|
||
|
||
fn intFromBool2(self: *NavGen, value: Temporary, result_ty: Type) !Temporary {
|
||
const zero_id = try self.constInt(result_ty, 0);
|
||
const one_id = try self.constInt(result_ty, 1);
|
||
|
||
return try self.buildSelect(
|
||
value,
|
||
Temporary.init(result_ty, one_id),
|
||
Temporary.init(result_ty, zero_id),
|
||
);
|
||
}
|
||
|
||
/// Convert representation from indirect (in memory) to direct (in 'register')
|
||
/// This converts the argument type from resolveType(ty, .indirect) to resolveType(ty, .direct).
|
||
fn convertToDirect(self: *NavGen, ty: Type, operand_id: IdRef) !IdRef {
|
||
const zcu = self.pt.zcu;
|
||
switch (ty.scalarType(zcu).zigTypeTag(zcu)) {
|
||
.bool => {
|
||
const false_id = try self.constBool(false, .indirect);
|
||
// The operation below requires inputs in direct representation, but the operand
|
||
// is actually in indirect representation.
|
||
// Cheekily swap out the type to the direct equivalent of the indirect type here, they have the
|
||
// same representation when converted to SPIR-V.
|
||
const operand_ty = try self.zigScalarOrVectorTypeLike(Type.u1, ty);
|
||
// Note: We can guarantee that these are the same ID due to the SPIR-V Module's `vector_types` cache!
|
||
assert(try self.resolveType(operand_ty, .direct) == try self.resolveType(ty, .indirect));
|
||
|
||
const result = try self.buildCmp(
|
||
.i_ne,
|
||
Temporary.init(operand_ty, operand_id),
|
||
Temporary.init(Type.u1, false_id),
|
||
);
|
||
return try result.materialize(self);
|
||
},
|
||
else => return operand_id,
|
||
}
|
||
}
|
||
|
||
/// Convert representation from direct (in 'register) to direct (in memory)
|
||
/// This converts the argument type from resolveType(ty, .direct) to resolveType(ty, .indirect).
|
||
fn convertToIndirect(self: *NavGen, ty: Type, operand_id: IdRef) !IdRef {
|
||
const zcu = self.pt.zcu;
|
||
switch (ty.scalarType(zcu).zigTypeTag(zcu)) {
|
||
.bool => {
|
||
const result = try self.intFromBool(Temporary.init(ty, operand_id));
|
||
return try result.materialize(self);
|
||
},
|
||
else => return operand_id,
|
||
}
|
||
}
|
||
|
||
fn extractField(self: *NavGen, result_ty: Type, object: IdRef, field: u32) !IdRef {
|
||
const result_ty_id = try self.resolveType(result_ty, .indirect);
|
||
const result_id = self.spv.allocId();
|
||
const indexes = [_]u32{field};
|
||
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_id,
|
||
.composite = object,
|
||
.indexes = &indexes,
|
||
});
|
||
// Convert bools; direct structs have their field types as indirect values.
|
||
return try self.convertToDirect(result_ty, result_id);
|
||
}
|
||
|
||
fn extractVectorComponent(self: *NavGen, result_ty: Type, vector_id: IdRef, field: u32) !IdRef {
|
||
// Whether this is an OpTypeVector or OpTypeArray, we need to emit the same instruction regardless.
|
||
const result_ty_id = try self.resolveType(result_ty, .direct);
|
||
const result_id = self.spv.allocId();
|
||
const indexes = [_]u32{field};
|
||
try self.func.body.emit(self.spv.gpa, .OpCompositeExtract, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_id,
|
||
.composite = vector_id,
|
||
.indexes = &indexes,
|
||
});
|
||
// Vector components are already stored in direct representation.
|
||
return result_id;
|
||
}
|
||
|
||
const MemoryOptions = struct {
|
||
is_volatile: bool = false,
|
||
};
|
||
|
||
fn load(self: *NavGen, value_ty: Type, ptr_id: IdRef, options: MemoryOptions) !IdRef {
|
||
const indirect_value_ty_id = try self.resolveType(value_ty, .indirect);
|
||
const result_id = self.spv.allocId();
|
||
const access = spec.MemoryAccess.Extended{
|
||
.Volatile = options.is_volatile,
|
||
};
|
||
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
|
||
.id_result_type = indirect_value_ty_id,
|
||
.id_result = result_id,
|
||
.pointer = ptr_id,
|
||
.memory_access = access,
|
||
});
|
||
return try self.convertToDirect(value_ty, result_id);
|
||
}
|
||
|
||
fn store(self: *NavGen, value_ty: Type, ptr_id: IdRef, value_id: IdRef, options: MemoryOptions) !void {
|
||
const indirect_value_id = try self.convertToIndirect(value_ty, value_id);
|
||
const access = spec.MemoryAccess.Extended{
|
||
.Volatile = options.is_volatile,
|
||
};
|
||
try self.func.body.emit(self.spv.gpa, .OpStore, .{
|
||
.pointer = ptr_id,
|
||
.object = indirect_value_id,
|
||
.memory_access = access,
|
||
});
|
||
}
|
||
|
||
fn genBody(self: *NavGen, body: []const Air.Inst.Index) Error!void {
|
||
for (body) |inst| {
|
||
try self.genInst(inst);
|
||
}
|
||
}
|
||
|
||
fn genInst(self: *NavGen, inst: Air.Inst.Index) !void {
|
||
const zcu = self.pt.zcu;
|
||
const ip = &zcu.intern_pool;
|
||
if (self.liveness.isUnused(inst) and !self.air.mustLower(inst, ip))
|
||
return;
|
||
|
||
const air_tags = self.air.instructions.items(.tag);
|
||
const maybe_result_id: ?IdRef = switch (air_tags[@intFromEnum(inst)]) {
|
||
// zig fmt: off
|
||
.add, .add_wrap, .add_optimized => try self.airArithOp(inst, .f_add, .i_add, .i_add),
|
||
.sub, .sub_wrap, .sub_optimized => try self.airArithOp(inst, .f_sub, .i_sub, .i_sub),
|
||
.mul, .mul_wrap, .mul_optimized => try self.airArithOp(inst, .f_mul, .i_mul, .i_mul),
|
||
|
||
.sqrt => try self.airUnOpSimple(inst, .sqrt),
|
||
.sin => try self.airUnOpSimple(inst, .sin),
|
||
.cos => try self.airUnOpSimple(inst, .cos),
|
||
.tan => try self.airUnOpSimple(inst, .tan),
|
||
.exp => try self.airUnOpSimple(inst, .exp),
|
||
.exp2 => try self.airUnOpSimple(inst, .exp2),
|
||
.log => try self.airUnOpSimple(inst, .log),
|
||
.log2 => try self.airUnOpSimple(inst, .log2),
|
||
.log10 => try self.airUnOpSimple(inst, .log10),
|
||
.abs => try self.airAbs(inst),
|
||
.floor => try self.airUnOpSimple(inst, .floor),
|
||
.ceil => try self.airUnOpSimple(inst, .ceil),
|
||
.round => try self.airUnOpSimple(inst, .round),
|
||
.trunc_float => try self.airUnOpSimple(inst, .trunc),
|
||
.neg, .neg_optimized => try self.airUnOpSimple(inst, .f_neg),
|
||
|
||
.div_float, .div_float_optimized => try self.airArithOp(inst, .f_div, .s_div, .u_div),
|
||
.div_floor, .div_floor_optimized => try self.airDivFloor(inst),
|
||
.div_trunc, .div_trunc_optimized => try self.airDivTrunc(inst),
|
||
|
||
.rem, .rem_optimized => try self.airArithOp(inst, .f_rem, .s_rem, .u_mod),
|
||
.mod, .mod_optimized => try self.airArithOp(inst, .f_mod, .s_mod, .u_mod),
|
||
|
||
.add_with_overflow => try self.airAddSubOverflow(inst, .i_add, .u_lt, .s_lt),
|
||
.sub_with_overflow => try self.airAddSubOverflow(inst, .i_sub, .u_gt, .s_gt),
|
||
.mul_with_overflow => try self.airMulOverflow(inst),
|
||
.shl_with_overflow => try self.airShlOverflow(inst),
|
||
|
||
.mul_add => try self.airMulAdd(inst),
|
||
|
||
.ctz => try self.airClzCtz(inst, .ctz),
|
||
.clz => try self.airClzCtz(inst, .clz),
|
||
|
||
.select => try self.airSelect(inst),
|
||
|
||
.splat => try self.airSplat(inst),
|
||
.reduce, .reduce_optimized => try self.airReduce(inst),
|
||
.shuffle => try self.airShuffle(inst),
|
||
|
||
.ptr_add => try self.airPtrAdd(inst),
|
||
.ptr_sub => try self.airPtrSub(inst),
|
||
|
||
.bit_and => try self.airBinOpSimple(inst, .bit_and),
|
||
.bit_or => try self.airBinOpSimple(inst, .bit_or),
|
||
.xor => try self.airBinOpSimple(inst, .bit_xor),
|
||
.bool_and => try self.airBinOpSimple(inst, .l_and),
|
||
.bool_or => try self.airBinOpSimple(inst, .l_or),
|
||
|
||
.shl, .shl_exact => try self.airShift(inst, .sll, .sll),
|
||
.shr, .shr_exact => try self.airShift(inst, .srl, .sra),
|
||
|
||
.min => try self.airMinMax(inst, .min),
|
||
.max => try self.airMinMax(inst, .max),
|
||
|
||
.bitcast => try self.airBitCast(inst),
|
||
.intcast, .trunc => try self.airIntCast(inst),
|
||
.float_from_int => try self.airFloatFromInt(inst),
|
||
.int_from_float => try self.airIntFromFloat(inst),
|
||
.fpext, .fptrunc => try self.airFloatCast(inst),
|
||
.not => try self.airNot(inst),
|
||
|
||
.array_to_slice => try self.airArrayToSlice(inst),
|
||
.slice => try self.airSlice(inst),
|
||
.aggregate_init => try self.airAggregateInit(inst),
|
||
.memcpy => return self.airMemcpy(inst),
|
||
|
||
.slice_ptr => try self.airSliceField(inst, 0),
|
||
.slice_len => try self.airSliceField(inst, 1),
|
||
.slice_elem_ptr => try self.airSliceElemPtr(inst),
|
||
.slice_elem_val => try self.airSliceElemVal(inst),
|
||
.ptr_elem_ptr => try self.airPtrElemPtr(inst),
|
||
.ptr_elem_val => try self.airPtrElemVal(inst),
|
||
.array_elem_val => try self.airArrayElemVal(inst),
|
||
|
||
.vector_store_elem => return self.airVectorStoreElem(inst),
|
||
|
||
.set_union_tag => return self.airSetUnionTag(inst),
|
||
.get_union_tag => try self.airGetUnionTag(inst),
|
||
.union_init => try self.airUnionInit(inst),
|
||
|
||
.struct_field_val => try self.airStructFieldVal(inst),
|
||
.field_parent_ptr => try self.airFieldParentPtr(inst),
|
||
|
||
.struct_field_ptr_index_0 => try self.airStructFieldPtrIndex(inst, 0),
|
||
.struct_field_ptr_index_1 => try self.airStructFieldPtrIndex(inst, 1),
|
||
.struct_field_ptr_index_2 => try self.airStructFieldPtrIndex(inst, 2),
|
||
.struct_field_ptr_index_3 => try self.airStructFieldPtrIndex(inst, 3),
|
||
|
||
.cmp_eq => try self.airCmp(inst, .eq),
|
||
.cmp_neq => try self.airCmp(inst, .neq),
|
||
.cmp_gt => try self.airCmp(inst, .gt),
|
||
.cmp_gte => try self.airCmp(inst, .gte),
|
||
.cmp_lt => try self.airCmp(inst, .lt),
|
||
.cmp_lte => try self.airCmp(inst, .lte),
|
||
.cmp_vector => try self.airVectorCmp(inst),
|
||
|
||
.arg => self.airArg(),
|
||
.alloc => try self.airAlloc(inst),
|
||
// TODO: We probably need to have a special implementation of this for the C abi.
|
||
.ret_ptr => try self.airAlloc(inst),
|
||
.block => try self.airBlock(inst),
|
||
|
||
.load => try self.airLoad(inst),
|
||
.store, .store_safe => return self.airStore(inst),
|
||
|
||
.br => return self.airBr(inst),
|
||
// For now just ignore this instruction. This effectively falls back on the old implementation,
|
||
// this doesn't change anything for us.
|
||
.repeat => return,
|
||
.breakpoint => return,
|
||
.cond_br => return self.airCondBr(inst),
|
||
.loop => return self.airLoop(inst),
|
||
.ret => return self.airRet(inst),
|
||
.ret_safe => return self.airRet(inst), // TODO
|
||
.ret_load => return self.airRetLoad(inst),
|
||
.@"try" => try self.airTry(inst),
|
||
.switch_br => return self.airSwitchBr(inst),
|
||
.unreach, .trap => return self.airUnreach(),
|
||
|
||
.dbg_empty_stmt => return,
|
||
.dbg_stmt => return self.airDbgStmt(inst),
|
||
.dbg_inline_block => try self.airDbgInlineBlock(inst),
|
||
.dbg_var_ptr, .dbg_var_val, .dbg_arg_inline => return self.airDbgVar(inst),
|
||
|
||
.unwrap_errunion_err => try self.airErrUnionErr(inst),
|
||
.unwrap_errunion_payload => try self.airErrUnionPayload(inst),
|
||
.wrap_errunion_err => try self.airWrapErrUnionErr(inst),
|
||
.wrap_errunion_payload => try self.airWrapErrUnionPayload(inst),
|
||
|
||
.is_null => try self.airIsNull(inst, false, .is_null),
|
||
.is_non_null => try self.airIsNull(inst, false, .is_non_null),
|
||
.is_null_ptr => try self.airIsNull(inst, true, .is_null),
|
||
.is_non_null_ptr => try self.airIsNull(inst, true, .is_non_null),
|
||
.is_err => try self.airIsErr(inst, .is_err),
|
||
.is_non_err => try self.airIsErr(inst, .is_non_err),
|
||
|
||
.optional_payload => try self.airUnwrapOptional(inst),
|
||
.optional_payload_ptr => try self.airUnwrapOptionalPtr(inst),
|
||
.wrap_optional => try self.airWrapOptional(inst),
|
||
|
||
.assembly => try self.airAssembly(inst),
|
||
|
||
.call => try self.airCall(inst, .auto),
|
||
.call_always_tail => try self.airCall(inst, .always_tail),
|
||
.call_never_tail => try self.airCall(inst, .never_tail),
|
||
.call_never_inline => try self.airCall(inst, .never_inline),
|
||
|
||
.work_item_id => try self.airWorkItemId(inst),
|
||
.work_group_size => try self.airWorkGroupSize(inst),
|
||
.work_group_id => try self.airWorkGroupId(inst),
|
||
|
||
// zig fmt: on
|
||
|
||
else => |tag| return self.todo("implement AIR tag {s}", .{@tagName(tag)}),
|
||
};
|
||
|
||
const result_id = maybe_result_id orelse return;
|
||
try self.inst_results.putNoClobber(self.gpa, inst, result_id);
|
||
}
|
||
|
||
fn airBinOpSimple(self: *NavGen, inst: Air.Inst.Index, op: BinaryOp) !?IdRef {
|
||
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
|
||
const lhs = try self.temporary(bin_op.lhs);
|
||
const rhs = try self.temporary(bin_op.rhs);
|
||
|
||
const result = try self.buildBinary(op, lhs, rhs);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
fn airShift(self: *NavGen, inst: Air.Inst.Index, unsigned: BinaryOp, signed: BinaryOp) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
|
||
|
||
const base = try self.temporary(bin_op.lhs);
|
||
const shift = try self.temporary(bin_op.rhs);
|
||
|
||
const result_ty = self.typeOfIndex(inst);
|
||
|
||
const info = self.arithmeticTypeInfo(result_ty);
|
||
switch (info.class) {
|
||
.composite_integer => return self.todo("shift ops for composite integers", .{}),
|
||
.integer, .strange_integer => {},
|
||
.float, .bool => unreachable,
|
||
}
|
||
|
||
// Sometimes Zig doesn't make both of the arguments the same types here. SPIR-V expects that,
|
||
// so just manually upcast it if required.
|
||
|
||
// Note: The sign may differ here between the shift and the base type, in case
|
||
// of an arithmetic right shift. SPIR-V still expects the same type,
|
||
// so in that case we have to cast convert to signed.
|
||
const casted_shift = try self.buildIntConvert(base.ty.scalarType(zcu), shift);
|
||
|
||
const shifted = switch (info.signedness) {
|
||
.unsigned => try self.buildBinary(unsigned, base, casted_shift),
|
||
.signed => try self.buildBinary(signed, base, casted_shift),
|
||
};
|
||
|
||
const result = try self.normalize(shifted, info);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
const MinMax = enum { min, max };
|
||
|
||
fn airMinMax(self: *NavGen, inst: Air.Inst.Index, op: MinMax) !?IdRef {
|
||
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
|
||
|
||
const lhs = try self.temporary(bin_op.lhs);
|
||
const rhs = try self.temporary(bin_op.rhs);
|
||
|
||
const result = try self.minMax(lhs, rhs, op);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
fn minMax(self: *NavGen, lhs: Temporary, rhs: Temporary, op: MinMax) !Temporary {
|
||
const info = self.arithmeticTypeInfo(lhs.ty);
|
||
|
||
const binop: BinaryOp = switch (info.class) {
|
||
.float => switch (op) {
|
||
.min => .f_min,
|
||
.max => .f_max,
|
||
},
|
||
.integer, .strange_integer => switch (info.signedness) {
|
||
.signed => switch (op) {
|
||
.min => .s_min,
|
||
.max => .s_max,
|
||
},
|
||
.unsigned => switch (op) {
|
||
.min => .u_min,
|
||
.max => .u_max,
|
||
},
|
||
},
|
||
.composite_integer => unreachable, // TODO
|
||
.bool => unreachable,
|
||
};
|
||
|
||
return try self.buildBinary(binop, lhs, rhs);
|
||
}
|
||
|
||
/// This function normalizes values to a canonical representation
|
||
/// after some arithmetic operation. This mostly consists of wrapping
|
||
/// behavior for strange integers:
|
||
/// - Unsigned integers are bitwise masked with a mask that only passes
|
||
/// the valid bits through.
|
||
/// - Signed integers are also sign extended if they are negative.
|
||
/// All other values are returned unmodified (this makes strange integer
|
||
/// wrapping easier to use in generic operations).
|
||
fn normalize(self: *NavGen, value: Temporary, info: ArithmeticTypeInfo) !Temporary {
|
||
const zcu = self.pt.zcu;
|
||
const ty = value.ty;
|
||
switch (info.class) {
|
||
.integer, .bool, .float => return value,
|
||
.composite_integer => unreachable, // TODO
|
||
.strange_integer => switch (info.signedness) {
|
||
.unsigned => {
|
||
const mask_value = if (info.bits == 64) 0xFFFF_FFFF_FFFF_FFFF else (@as(u64, 1) << @as(u6, @intCast(info.bits))) - 1;
|
||
const mask_id = try self.constInt(ty.scalarType(zcu), mask_value);
|
||
return try self.buildBinary(.bit_and, value, Temporary.init(ty.scalarType(zcu), mask_id));
|
||
},
|
||
.signed => {
|
||
// Shift left and right so that we can copy the sight bit that way.
|
||
const shift_amt_id = try self.constInt(ty.scalarType(zcu), info.backing_bits - info.bits);
|
||
const shift_amt = Temporary.init(ty.scalarType(zcu), shift_amt_id);
|
||
const left = try self.buildBinary(.sll, value, shift_amt);
|
||
return try self.buildBinary(.sra, left, shift_amt);
|
||
},
|
||
},
|
||
}
|
||
}
|
||
|
||
fn airDivFloor(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
|
||
|
||
const lhs = try self.temporary(bin_op.lhs);
|
||
const rhs = try self.temporary(bin_op.rhs);
|
||
|
||
const info = self.arithmeticTypeInfo(lhs.ty);
|
||
switch (info.class) {
|
||
.composite_integer => unreachable, // TODO
|
||
.integer, .strange_integer => {
|
||
switch (info.signedness) {
|
||
.unsigned => {
|
||
const result = try self.buildBinary(.u_div, lhs, rhs);
|
||
return try result.materialize(self);
|
||
},
|
||
.signed => {},
|
||
}
|
||
|
||
// For signed integers:
|
||
// (a / b) - (a % b != 0 && a < 0 != b < 0);
|
||
// There shouldn't be any overflow issues.
|
||
|
||
const div = try self.buildBinary(.s_div, lhs, rhs);
|
||
const rem = try self.buildBinary(.s_rem, lhs, rhs);
|
||
|
||
const zero = Temporary.init(lhs.ty, try self.constInt(lhs.ty, 0));
|
||
|
||
const rem_is_not_zero = try self.buildCmp(.i_ne, rem, zero);
|
||
|
||
const result_negative = try self.buildCmp(
|
||
.l_ne,
|
||
try self.buildCmp(.s_lt, lhs, zero),
|
||
try self.buildCmp(.s_lt, rhs, zero),
|
||
);
|
||
const rem_is_not_zero_and_result_is_negative = try self.buildBinary(
|
||
.l_and,
|
||
rem_is_not_zero,
|
||
result_negative,
|
||
);
|
||
|
||
const result = try self.buildBinary(
|
||
.i_sub,
|
||
div,
|
||
try self.intFromBool2(rem_is_not_zero_and_result_is_negative, div.ty),
|
||
);
|
||
|
||
return try result.materialize(self);
|
||
},
|
||
.float => {
|
||
const div = try self.buildBinary(.f_div, lhs, rhs);
|
||
const result = try self.buildUnary(.floor, div);
|
||
return try result.materialize(self);
|
||
},
|
||
.bool => unreachable,
|
||
}
|
||
}
|
||
|
||
fn airDivTrunc(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
|
||
|
||
const lhs = try self.temporary(bin_op.lhs);
|
||
const rhs = try self.temporary(bin_op.rhs);
|
||
|
||
const info = self.arithmeticTypeInfo(lhs.ty);
|
||
switch (info.class) {
|
||
.composite_integer => unreachable, // TODO
|
||
.integer, .strange_integer => switch (info.signedness) {
|
||
.unsigned => {
|
||
const result = try self.buildBinary(.u_div, lhs, rhs);
|
||
return try result.materialize(self);
|
||
},
|
||
.signed => {
|
||
const result = try self.buildBinary(.s_div, lhs, rhs);
|
||
return try result.materialize(self);
|
||
},
|
||
},
|
||
.float => {
|
||
const div = try self.buildBinary(.f_div, lhs, rhs);
|
||
const result = try self.buildUnary(.trunc, div);
|
||
return try result.materialize(self);
|
||
},
|
||
.bool => unreachable,
|
||
}
|
||
}
|
||
|
||
fn airUnOpSimple(self: *NavGen, inst: Air.Inst.Index, op: UnaryOp) !?IdRef {
|
||
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
|
||
const operand = try self.temporary(un_op);
|
||
const result = try self.buildUnary(op, operand);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
fn airArithOp(
|
||
self: *NavGen,
|
||
inst: Air.Inst.Index,
|
||
comptime fop: BinaryOp,
|
||
comptime sop: BinaryOp,
|
||
comptime uop: BinaryOp,
|
||
) !?IdRef {
|
||
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
|
||
|
||
const lhs = try self.temporary(bin_op.lhs);
|
||
const rhs = try self.temporary(bin_op.rhs);
|
||
|
||
const info = self.arithmeticTypeInfo(lhs.ty);
|
||
|
||
const result = switch (info.class) {
|
||
.composite_integer => unreachable, // TODO
|
||
.integer, .strange_integer => switch (info.signedness) {
|
||
.signed => try self.buildBinary(sop, lhs, rhs),
|
||
.unsigned => try self.buildBinary(uop, lhs, rhs),
|
||
},
|
||
.float => try self.buildBinary(fop, lhs, rhs),
|
||
.bool => unreachable,
|
||
};
|
||
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
fn airAbs(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const operand = try self.temporary(ty_op.operand);
|
||
// Note: operand_ty may be signed, while ty is always unsigned!
|
||
const result_ty = self.typeOfIndex(inst);
|
||
const result = try self.abs(result_ty, operand);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
fn abs(self: *NavGen, result_ty: Type, value: Temporary) !Temporary {
|
||
const zcu = self.pt.zcu;
|
||
const operand_info = self.arithmeticTypeInfo(value.ty);
|
||
|
||
switch (operand_info.class) {
|
||
.float => return try self.buildUnary(.f_abs, value),
|
||
.integer, .strange_integer => {
|
||
const abs_value = try self.buildUnary(.i_abs, value);
|
||
|
||
if (value.ty.intInfo(zcu).signedness == .signed and self.spv.hasFeature(.shader)) {
|
||
return self.todo("perform bitcast after @abs", .{});
|
||
}
|
||
|
||
return try self.normalize(abs_value, self.arithmeticTypeInfo(result_ty));
|
||
},
|
||
.composite_integer => unreachable, // TODO
|
||
.bool => unreachable,
|
||
}
|
||
}
|
||
|
||
fn airAddSubOverflow(
|
||
self: *NavGen,
|
||
inst: Air.Inst.Index,
|
||
comptime add: BinaryOp,
|
||
comptime ucmp: CmpPredicate,
|
||
comptime scmp: CmpPredicate,
|
||
) !?IdRef {
|
||
// Note: OpIAddCarry and OpISubBorrow are not really useful here: For unsigned numbers,
|
||
// there is in both cases only one extra operation required. For signed operations,
|
||
// the overflow bit is set then going from 0x80.. to 0x00.., but this doesn't actually
|
||
// normally set a carry bit. So the SPIR-V overflow operations are not particularly
|
||
// useful here.
|
||
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
||
|
||
const lhs = try self.temporary(extra.lhs);
|
||
const rhs = try self.temporary(extra.rhs);
|
||
|
||
const result_ty = self.typeOfIndex(inst);
|
||
|
||
const info = self.arithmeticTypeInfo(lhs.ty);
|
||
switch (info.class) {
|
||
.composite_integer => unreachable, // TODO
|
||
.strange_integer, .integer => {},
|
||
.float, .bool => unreachable,
|
||
}
|
||
|
||
const sum = try self.buildBinary(add, lhs, rhs);
|
||
const result = try self.normalize(sum, info);
|
||
|
||
const overflowed = switch (info.signedness) {
|
||
// Overflow happened if the result is smaller than either of the operands. It doesn't matter which.
|
||
// For subtraction the conditions need to be swapped.
|
||
.unsigned => try self.buildCmp(ucmp, result, lhs),
|
||
// For addition, overflow happened if:
|
||
// - rhs is negative and value > lhs
|
||
// - rhs is positive and value < lhs
|
||
// This can be shortened to:
|
||
// (rhs < 0 and value > lhs) or (rhs >= 0 and value <= lhs)
|
||
// = (rhs < 0) == (value > lhs)
|
||
// = (rhs < 0) == (lhs < value)
|
||
// Note that signed overflow is also wrapping in spir-v.
|
||
// For subtraction, overflow happened if:
|
||
// - rhs is negative and value < lhs
|
||
// - rhs is positive and value > lhs
|
||
// This can be shortened to:
|
||
// (rhs < 0 and value < lhs) or (rhs >= 0 and value >= lhs)
|
||
// = (rhs < 0) == (value < lhs)
|
||
// = (rhs < 0) == (lhs > value)
|
||
.signed => blk: {
|
||
const zero = Temporary.init(rhs.ty, try self.constInt(rhs.ty, 0));
|
||
const rhs_lt_zero = try self.buildCmp(.s_lt, rhs, zero);
|
||
const result_gt_lhs = try self.buildCmp(scmp, lhs, result);
|
||
break :blk try self.buildCmp(.l_eq, rhs_lt_zero, result_gt_lhs);
|
||
},
|
||
};
|
||
|
||
const ov = try self.intFromBool(overflowed);
|
||
|
||
const result_ty_id = try self.resolveType(result_ty, .direct);
|
||
return try self.constructComposite(result_ty_id, &.{ try result.materialize(self), try ov.materialize(self) });
|
||
}
|
||
|
||
fn airMulOverflow(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const pt = self.pt;
|
||
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
||
|
||
const lhs = try self.temporary(extra.lhs);
|
||
const rhs = try self.temporary(extra.rhs);
|
||
|
||
const result_ty = self.typeOfIndex(inst);
|
||
|
||
const info = self.arithmeticTypeInfo(lhs.ty);
|
||
switch (info.class) {
|
||
.composite_integer => unreachable, // TODO
|
||
.strange_integer, .integer => {},
|
||
.float, .bool => unreachable,
|
||
}
|
||
|
||
// There are 3 cases which we have to deal with:
|
||
// - If info.bits < 32 / 2, we will upcast to 32 and check the higher bits
|
||
// - If info.bits > 32 / 2, we have to use extended multiplication
|
||
// - Additionally, if info.bits != 32, we'll have to check the high bits
|
||
// of the result too.
|
||
|
||
const largest_int_bits = self.largestSupportedIntBits();
|
||
// If non-null, the number of bits that the multiplication should be performed in. If
|
||
// null, we have to use wide multiplication.
|
||
const maybe_op_ty_bits: ?u16 = switch (info.bits) {
|
||
0 => unreachable,
|
||
1...16 => 32,
|
||
17...32 => if (largest_int_bits > 32) 64 else null, // Upcast if we can.
|
||
33...64 => null, // Always use wide multiplication.
|
||
else => unreachable, // TODO: Composite integers
|
||
};
|
||
|
||
const result, const overflowed = switch (info.signedness) {
|
||
.unsigned => blk: {
|
||
if (maybe_op_ty_bits) |op_ty_bits| {
|
||
const op_ty = try pt.intType(.unsigned, op_ty_bits);
|
||
const casted_lhs = try self.buildIntConvert(op_ty, lhs);
|
||
const casted_rhs = try self.buildIntConvert(op_ty, rhs);
|
||
|
||
const full_result = try self.buildBinary(.i_mul, casted_lhs, casted_rhs);
|
||
|
||
const low_bits = try self.buildIntConvert(lhs.ty, full_result);
|
||
const result = try self.normalize(low_bits, info);
|
||
|
||
// Shift the result bits away to get the overflow bits.
|
||
const shift = Temporary.init(full_result.ty, try self.constInt(full_result.ty, info.bits));
|
||
const overflow = try self.buildBinary(.srl, full_result, shift);
|
||
|
||
// Directly check if its zero in the op_ty without converting first.
|
||
const zero = Temporary.init(full_result.ty, try self.constInt(full_result.ty, 0));
|
||
const overflowed = try self.buildCmp(.i_ne, zero, overflow);
|
||
|
||
break :blk .{ result, overflowed };
|
||
}
|
||
|
||
const low_bits, const high_bits = try self.buildWideMul(.u_mul_extended, lhs, rhs);
|
||
|
||
// Truncate the result, if required.
|
||
const result = try self.normalize(low_bits, info);
|
||
|
||
// Overflow happened if the high-bits of the result are non-zero OR if the
|
||
// high bits of the low word of the result (those outside the range of the
|
||
// int) are nonzero.
|
||
const zero = Temporary.init(lhs.ty, try self.constInt(lhs.ty, 0));
|
||
const high_overflowed = try self.buildCmp(.i_ne, zero, high_bits);
|
||
|
||
// If no overflow bits in low_bits, no extra work needs to be done.
|
||
if (info.backing_bits == info.bits) {
|
||
break :blk .{ result, high_overflowed };
|
||
}
|
||
|
||
// Shift the result bits away to get the overflow bits.
|
||
const shift = Temporary.init(lhs.ty, try self.constInt(lhs.ty, info.bits));
|
||
const low_overflow = try self.buildBinary(.srl, low_bits, shift);
|
||
const low_overflowed = try self.buildCmp(.i_ne, zero, low_overflow);
|
||
|
||
const overflowed = try self.buildBinary(.l_or, low_overflowed, high_overflowed);
|
||
|
||
break :blk .{ result, overflowed };
|
||
},
|
||
.signed => blk: {
|
||
// - lhs >= 0, rhxs >= 0: expect positive; overflow should be 0
|
||
// - lhs == 0 : expect positive; overflow should be 0
|
||
// - rhs == 0: expect positive; overflow should be 0
|
||
// - lhs > 0, rhs < 0: expect negative; overflow should be -1
|
||
// - lhs < 0, rhs > 0: expect negative; overflow should be -1
|
||
// - lhs <= 0, rhs <= 0: expect positive; overflow should be 0
|
||
// ------
|
||
// overflow should be -1 when
|
||
// (lhs > 0 && rhs < 0) || (lhs < 0 && rhs > 0)
|
||
|
||
const zero = Temporary.init(lhs.ty, try self.constInt(lhs.ty, 0));
|
||
const lhs_negative = try self.buildCmp(.s_lt, lhs, zero);
|
||
const rhs_negative = try self.buildCmp(.s_lt, rhs, zero);
|
||
const lhs_positive = try self.buildCmp(.s_gt, lhs, zero);
|
||
const rhs_positive = try self.buildCmp(.s_gt, rhs, zero);
|
||
|
||
// Set to `true` if we expect -1.
|
||
const expected_overflow_bit = try self.buildBinary(
|
||
.l_or,
|
||
try self.buildBinary(.l_and, lhs_positive, rhs_negative),
|
||
try self.buildBinary(.l_and, lhs_negative, rhs_positive),
|
||
);
|
||
|
||
if (maybe_op_ty_bits) |op_ty_bits| {
|
||
const op_ty = try pt.intType(.signed, op_ty_bits);
|
||
// Assume normalized; sign bit is set. We want a sign extend.
|
||
const casted_lhs = try self.buildIntConvert(op_ty, lhs);
|
||
const casted_rhs = try self.buildIntConvert(op_ty, rhs);
|
||
|
||
const full_result = try self.buildBinary(.i_mul, casted_lhs, casted_rhs);
|
||
|
||
// Truncate to the result type.
|
||
const low_bits = try self.buildIntConvert(lhs.ty, full_result);
|
||
const result = try self.normalize(low_bits, info);
|
||
|
||
// Now, we need to check the overflow bits AND the sign
|
||
// bit for the expected overflow bits.
|
||
// To do that, shift out everything bit the sign bit and
|
||
// then check what remains.
|
||
const shift = Temporary.init(full_result.ty, try self.constInt(full_result.ty, info.bits - 1));
|
||
// Use SRA so that any sign bits are duplicated. Now we can just check if ALL bits are set
|
||
// for negative cases.
|
||
const overflow = try self.buildBinary(.sra, full_result, shift);
|
||
|
||
const long_all_set = Temporary.init(full_result.ty, try self.constInt(full_result.ty, -1));
|
||
const long_zero = Temporary.init(full_result.ty, try self.constInt(full_result.ty, 0));
|
||
const mask = try self.buildSelect(expected_overflow_bit, long_all_set, long_zero);
|
||
|
||
const overflowed = try self.buildCmp(.i_ne, mask, overflow);
|
||
|
||
break :blk .{ result, overflowed };
|
||
}
|
||
|
||
const low_bits, const high_bits = try self.buildWideMul(.s_mul_extended, lhs, rhs);
|
||
|
||
// Truncate result if required.
|
||
const result = try self.normalize(low_bits, info);
|
||
|
||
const all_set = Temporary.init(lhs.ty, try self.constInt(lhs.ty, -1));
|
||
const mask = try self.buildSelect(expected_overflow_bit, all_set, zero);
|
||
|
||
// Like with unsigned, overflow happened if high_bits are not the ones we expect,
|
||
// and we also need to check some ones from the low bits.
|
||
|
||
const high_overflowed = try self.buildCmp(.i_ne, mask, high_bits);
|
||
|
||
// If no overflow bits in low_bits, no extra work needs to be done.
|
||
// Careful, we still have to check the sign bit, so this branch
|
||
// only goes for i33 and such.
|
||
if (info.backing_bits == info.bits + 1) {
|
||
break :blk .{ result, high_overflowed };
|
||
}
|
||
|
||
// Shift the result bits away to get the overflow bits.
|
||
const shift = Temporary.init(lhs.ty, try self.constInt(lhs.ty, info.bits - 1));
|
||
// Use SRA so that any sign bits are duplicated. Now we can just check if ALL bits are set
|
||
// for negative cases.
|
||
const low_overflow = try self.buildBinary(.sra, low_bits, shift);
|
||
const low_overflowed = try self.buildCmp(.i_ne, mask, low_overflow);
|
||
|
||
const overflowed = try self.buildBinary(.l_or, low_overflowed, high_overflowed);
|
||
|
||
break :blk .{ result, overflowed };
|
||
},
|
||
};
|
||
|
||
const ov = try self.intFromBool(overflowed);
|
||
|
||
const result_ty_id = try self.resolveType(result_ty, .direct);
|
||
return try self.constructComposite(result_ty_id, &.{ try result.materialize(self), try ov.materialize(self) });
|
||
}
|
||
|
||
fn airShlOverflow(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const extra = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
||
|
||
const base = try self.temporary(extra.lhs);
|
||
const shift = try self.temporary(extra.rhs);
|
||
|
||
const result_ty = self.typeOfIndex(inst);
|
||
|
||
const info = self.arithmeticTypeInfo(base.ty);
|
||
switch (info.class) {
|
||
.composite_integer => unreachable, // TODO
|
||
.integer, .strange_integer => {},
|
||
.float, .bool => unreachable,
|
||
}
|
||
|
||
// Sometimes Zig doesn't make both of the arguments the same types here. SPIR-V expects that,
|
||
// so just manually upcast it if required.
|
||
const casted_shift = try self.buildIntConvert(base.ty.scalarType(zcu), shift);
|
||
|
||
const left = try self.buildBinary(.sll, base, casted_shift);
|
||
const result = try self.normalize(left, info);
|
||
|
||
const right = switch (info.signedness) {
|
||
.unsigned => try self.buildBinary(.srl, result, casted_shift),
|
||
.signed => try self.buildBinary(.sra, result, casted_shift),
|
||
};
|
||
|
||
const overflowed = try self.buildCmp(.i_ne, base, right);
|
||
const ov = try self.intFromBool(overflowed);
|
||
|
||
const result_ty_id = try self.resolveType(result_ty, .direct);
|
||
return try self.constructComposite(result_ty_id, &.{ try result.materialize(self), try ov.materialize(self) });
|
||
}
|
||
|
||
fn airMulAdd(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
|
||
const extra = self.air.extraData(Air.Bin, pl_op.payload).data;
|
||
|
||
const a = try self.temporary(extra.lhs);
|
||
const b = try self.temporary(extra.rhs);
|
||
const c = try self.temporary(pl_op.operand);
|
||
|
||
const result_ty = self.typeOfIndex(inst);
|
||
const info = self.arithmeticTypeInfo(result_ty);
|
||
assert(info.class == .float); // .mul_add is only emitted for floats
|
||
|
||
const result = try self.buildFma(a, b, c);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
fn airClzCtz(self: *NavGen, inst: Air.Inst.Index, op: UnaryOp) !?IdRef {
|
||
if (self.liveness.isUnused(inst)) return null;
|
||
|
||
const zcu = self.pt.zcu;
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const operand = try self.temporary(ty_op.operand);
|
||
|
||
const scalar_result_ty = self.typeOfIndex(inst).scalarType(zcu);
|
||
|
||
const info = self.arithmeticTypeInfo(operand.ty);
|
||
switch (info.class) {
|
||
.composite_integer => unreachable, // TODO
|
||
.integer, .strange_integer => {},
|
||
.float, .bool => unreachable,
|
||
}
|
||
|
||
const count = try self.buildUnary(op, operand);
|
||
|
||
// Result of OpenCL ctz/clz returns operand.ty, and we want result_ty.
|
||
// result_ty is always large enough to hold the result, so we might have to down
|
||
// cast it.
|
||
const result = try self.buildIntConvert(scalar_result_ty, count);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
fn airSelect(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
|
||
const extra = self.air.extraData(Air.Bin, pl_op.payload).data;
|
||
const pred = try self.temporary(pl_op.operand);
|
||
const a = try self.temporary(extra.lhs);
|
||
const b = try self.temporary(extra.rhs);
|
||
|
||
const result = try self.buildSelect(pred, a, b);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
fn airSplat(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
|
||
const operand_id = try self.resolve(ty_op.operand);
|
||
const result_ty = self.typeOfIndex(inst);
|
||
|
||
return try self.constructCompositeSplat(result_ty, operand_id);
|
||
}
|
||
|
||
fn airReduce(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const reduce = self.air.instructions.items(.data)[@intFromEnum(inst)].reduce;
|
||
const operand = try self.resolve(reduce.operand);
|
||
const operand_ty = self.typeOf(reduce.operand);
|
||
const scalar_ty = operand_ty.scalarType(zcu);
|
||
const scalar_ty_id = try self.resolveType(scalar_ty, .direct);
|
||
|
||
const info = self.arithmeticTypeInfo(operand_ty);
|
||
|
||
const len = operand_ty.vectorLen(zcu);
|
||
|
||
const first = try self.extractVectorComponent(scalar_ty, operand, 0);
|
||
|
||
switch (reduce.operation) {
|
||
.Min, .Max => |op| {
|
||
var result = Temporary.init(scalar_ty, first);
|
||
const cmp_op: MinMax = switch (op) {
|
||
.Max => .max,
|
||
.Min => .min,
|
||
else => unreachable,
|
||
};
|
||
for (1..len) |i| {
|
||
const lhs = result;
|
||
const rhs_id = try self.extractVectorComponent(scalar_ty, operand, @intCast(i));
|
||
const rhs = Temporary.init(scalar_ty, rhs_id);
|
||
|
||
result = try self.minMax(lhs, rhs, cmp_op);
|
||
}
|
||
|
||
return try result.materialize(self);
|
||
},
|
||
else => {},
|
||
}
|
||
|
||
var result_id = first;
|
||
|
||
const opcode: Opcode = switch (info.class) {
|
||
.bool => switch (reduce.operation) {
|
||
.And => .OpLogicalAnd,
|
||
.Or => .OpLogicalOr,
|
||
.Xor => .OpLogicalNotEqual,
|
||
else => unreachable,
|
||
},
|
||
.strange_integer, .integer => switch (reduce.operation) {
|
||
.And => .OpBitwiseAnd,
|
||
.Or => .OpBitwiseOr,
|
||
.Xor => .OpBitwiseXor,
|
||
.Add => .OpIAdd,
|
||
.Mul => .OpIMul,
|
||
else => unreachable,
|
||
},
|
||
.float => switch (reduce.operation) {
|
||
.Add => .OpFAdd,
|
||
.Mul => .OpFMul,
|
||
else => unreachable,
|
||
},
|
||
.composite_integer => unreachable, // TODO
|
||
};
|
||
|
||
for (1..len) |i| {
|
||
const lhs = result_id;
|
||
const rhs = try self.extractVectorComponent(scalar_ty, operand, @intCast(i));
|
||
result_id = self.spv.allocId();
|
||
|
||
try self.func.body.emitRaw(self.spv.gpa, opcode, 4);
|
||
self.func.body.writeOperand(spec.IdResultType, scalar_ty_id);
|
||
self.func.body.writeOperand(spec.IdResult, result_id);
|
||
self.func.body.writeOperand(spec.IdResultType, lhs);
|
||
self.func.body.writeOperand(spec.IdResultType, rhs);
|
||
}
|
||
|
||
return result_id;
|
||
}
|
||
|
||
fn airShuffle(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const extra = self.air.extraData(Air.Shuffle, ty_pl.payload).data;
|
||
const a = try self.resolve(extra.a);
|
||
const b = try self.resolve(extra.b);
|
||
const mask = Value.fromInterned(extra.mask);
|
||
|
||
// Note: number of components in the result, a, and b may differ.
|
||
const result_ty = self.typeOfIndex(inst);
|
||
const a_ty = self.typeOf(extra.a);
|
||
const b_ty = self.typeOf(extra.b);
|
||
|
||
const scalar_ty = result_ty.scalarType(zcu);
|
||
const scalar_ty_id = try self.resolveType(scalar_ty, .direct);
|
||
|
||
// If all of the types are SPIR-V vectors, we can use OpVectorShuffle.
|
||
if (self.isSpvVector(result_ty) and self.isSpvVector(a_ty) and self.isSpvVector(b_ty)) {
|
||
// The SPIR-V shuffle instruction is similar to the Air instruction, except that the elements are
|
||
// numbered consecutively instead of using negatives.
|
||
|
||
const components = try self.gpa.alloc(Word, result_ty.vectorLen(zcu));
|
||
defer self.gpa.free(components);
|
||
|
||
const a_len = a_ty.vectorLen(zcu);
|
||
|
||
for (components, 0..) |*component, i| {
|
||
const elem = try mask.elemValue(pt, i);
|
||
if (elem.isUndef(zcu)) {
|
||
// This is explicitly valid for OpVectorShuffle, it indicates undefined.
|
||
component.* = 0xFFFF_FFFF;
|
||
continue;
|
||
}
|
||
|
||
const index = elem.toSignedInt(zcu);
|
||
if (index >= 0) {
|
||
component.* = @intCast(index);
|
||
} else {
|
||
component.* = @intCast(~index + a_len);
|
||
}
|
||
}
|
||
|
||
const result_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpVectorShuffle, .{
|
||
.id_result_type = try self.resolveType(result_ty, .direct),
|
||
.id_result = result_id,
|
||
.vector_1 = a,
|
||
.vector_2 = b,
|
||
.components = components,
|
||
});
|
||
return result_id;
|
||
}
|
||
|
||
// Fall back to manually extracting and inserting components.
|
||
|
||
const constituents = try self.gpa.alloc(IdRef, result_ty.vectorLen(zcu));
|
||
defer self.gpa.free(constituents);
|
||
|
||
for (constituents, 0..) |*id, i| {
|
||
const elem = try mask.elemValue(pt, i);
|
||
if (elem.isUndef(zcu)) {
|
||
id.* = try self.spv.constUndef(scalar_ty_id);
|
||
continue;
|
||
}
|
||
|
||
const index = elem.toSignedInt(zcu);
|
||
if (index >= 0) {
|
||
id.* = try self.extractVectorComponent(scalar_ty, a, @intCast(index));
|
||
} else {
|
||
id.* = try self.extractVectorComponent(scalar_ty, b, @intCast(~index));
|
||
}
|
||
}
|
||
|
||
const result_ty_id = try self.resolveType(result_ty, .direct);
|
||
return try self.constructComposite(result_ty_id, constituents);
|
||
}
|
||
|
||
fn indicesToIds(self: *NavGen, indices: []const u32) ![]IdRef {
|
||
const ids = try self.gpa.alloc(IdRef, indices.len);
|
||
errdefer self.gpa.free(ids);
|
||
for (indices, ids) |index, *id| {
|
||
id.* = try self.constInt(Type.u32, index);
|
||
}
|
||
|
||
return ids;
|
||
}
|
||
|
||
fn accessChainId(
|
||
self: *NavGen,
|
||
result_ty_id: IdRef,
|
||
base: IdRef,
|
||
indices: []const IdRef,
|
||
) !IdRef {
|
||
const result_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpInBoundsAccessChain, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_id,
|
||
.base = base,
|
||
.indexes = indices,
|
||
});
|
||
return result_id;
|
||
}
|
||
|
||
/// AccessChain is essentially PtrAccessChain with 0 as initial argument. The effective
|
||
/// difference lies in whether the resulting type of the first dereference will be the
|
||
/// same as that of the base pointer, or that of a dereferenced base pointer. AccessChain
|
||
/// is the latter and PtrAccessChain is the former.
|
||
fn accessChain(
|
||
self: *NavGen,
|
||
result_ty_id: IdRef,
|
||
base: IdRef,
|
||
indices: []const u32,
|
||
) !IdRef {
|
||
const ids = try self.indicesToIds(indices);
|
||
defer self.gpa.free(ids);
|
||
return try self.accessChainId(result_ty_id, base, ids);
|
||
}
|
||
|
||
fn ptrAccessChain(
|
||
self: *NavGen,
|
||
result_ty_id: IdRef,
|
||
base: IdRef,
|
||
element: IdRef,
|
||
indices: []const u32,
|
||
) !IdRef {
|
||
const ids = try self.indicesToIds(indices);
|
||
defer self.gpa.free(ids);
|
||
|
||
const result_id = self.spv.allocId();
|
||
if (self.spv.hasFeature(.addresses)) {
|
||
try self.func.body.emit(self.spv.gpa, .OpInBoundsPtrAccessChain, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_id,
|
||
.base = base,
|
||
.element = element,
|
||
.indexes = ids,
|
||
});
|
||
} else {
|
||
try self.func.body.emit(self.spv.gpa, .OpPtrAccessChain, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_id,
|
||
.base = base,
|
||
.element = element,
|
||
.indexes = ids,
|
||
});
|
||
}
|
||
return result_id;
|
||
}
|
||
|
||
fn ptrAdd(self: *NavGen, result_ty: Type, ptr_ty: Type, ptr_id: IdRef, offset_id: IdRef) !IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const result_ty_id = try self.resolveType(result_ty, .direct);
|
||
|
||
switch (ptr_ty.ptrSize(zcu)) {
|
||
.one => {
|
||
// Pointer to array
|
||
// TODO: Is this correct?
|
||
return try self.accessChainId(result_ty_id, ptr_id, &.{offset_id});
|
||
},
|
||
.c, .many => {
|
||
return try self.ptrAccessChain(result_ty_id, ptr_id, offset_id, &.{});
|
||
},
|
||
.slice => {
|
||
// TODO: This is probably incorrect. A slice should be returned here, though this is what llvm does.
|
||
const slice_ptr_id = try self.extractField(result_ty, ptr_id, 0);
|
||
return try self.ptrAccessChain(result_ty_id, slice_ptr_id, offset_id, &.{});
|
||
},
|
||
}
|
||
}
|
||
|
||
fn airPtrAdd(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
||
const ptr_id = try self.resolve(bin_op.lhs);
|
||
const offset_id = try self.resolve(bin_op.rhs);
|
||
const ptr_ty = self.typeOf(bin_op.lhs);
|
||
const result_ty = self.typeOfIndex(inst);
|
||
|
||
return try self.ptrAdd(result_ty, ptr_ty, ptr_id, offset_id);
|
||
}
|
||
|
||
fn airPtrSub(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
||
const ptr_id = try self.resolve(bin_op.lhs);
|
||
const ptr_ty = self.typeOf(bin_op.lhs);
|
||
const offset_id = try self.resolve(bin_op.rhs);
|
||
const offset_ty = self.typeOf(bin_op.rhs);
|
||
const offset_ty_id = try self.resolveType(offset_ty, .direct);
|
||
const result_ty = self.typeOfIndex(inst);
|
||
|
||
const negative_offset_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpSNegate, .{
|
||
.id_result_type = offset_ty_id,
|
||
.id_result = negative_offset_id,
|
||
.operand = offset_id,
|
||
});
|
||
return try self.ptrAdd(result_ty, ptr_ty, ptr_id, negative_offset_id);
|
||
}
|
||
|
||
fn cmp(
|
||
self: *NavGen,
|
||
op: std.math.CompareOperator,
|
||
lhs: Temporary,
|
||
rhs: Temporary,
|
||
) !Temporary {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const scalar_ty = lhs.ty.scalarType(zcu);
|
||
const is_vector = lhs.ty.isVector(zcu);
|
||
|
||
switch (scalar_ty.zigTypeTag(zcu)) {
|
||
.int, .bool, .float => {},
|
||
.@"enum" => {
|
||
assert(!is_vector);
|
||
const ty = lhs.ty.intTagType(zcu);
|
||
return try self.cmp(op, lhs.pun(ty), rhs.pun(ty));
|
||
},
|
||
.error_set => {
|
||
assert(!is_vector);
|
||
const err_int_ty = try pt.errorIntType();
|
||
return try self.cmp(op, lhs.pun(err_int_ty), rhs.pun(err_int_ty));
|
||
},
|
||
.pointer => {
|
||
assert(!is_vector);
|
||
// Note that while SPIR-V offers OpPtrEqual and OpPtrNotEqual, they are
|
||
// currently not implemented in the SPIR-V LLVM translator. Thus, we emit these using
|
||
// OpConvertPtrToU...
|
||
|
||
const usize_ty_id = try self.resolveType(Type.usize, .direct);
|
||
|
||
const lhs_int_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
|
||
.id_result_type = usize_ty_id,
|
||
.id_result = lhs_int_id,
|
||
.pointer = try lhs.materialize(self),
|
||
});
|
||
|
||
const rhs_int_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
|
||
.id_result_type = usize_ty_id,
|
||
.id_result = rhs_int_id,
|
||
.pointer = try rhs.materialize(self),
|
||
});
|
||
|
||
const lhs_int = Temporary.init(Type.usize, lhs_int_id);
|
||
const rhs_int = Temporary.init(Type.usize, rhs_int_id);
|
||
return try self.cmp(op, lhs_int, rhs_int);
|
||
},
|
||
.optional => {
|
||
assert(!is_vector);
|
||
|
||
const ty = lhs.ty;
|
||
|
||
const payload_ty = ty.optionalChild(zcu);
|
||
if (ty.optionalReprIsPayload(zcu)) {
|
||
assert(payload_ty.hasRuntimeBitsIgnoreComptime(zcu));
|
||
assert(!payload_ty.isSlice(zcu));
|
||
|
||
return try self.cmp(op, lhs.pun(payload_ty), rhs.pun(payload_ty));
|
||
}
|
||
|
||
const lhs_id = try lhs.materialize(self);
|
||
const rhs_id = try rhs.materialize(self);
|
||
|
||
const lhs_valid_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu))
|
||
try self.extractField(Type.bool, lhs_id, 1)
|
||
else
|
||
try self.convertToDirect(Type.bool, lhs_id);
|
||
|
||
const rhs_valid_id = if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu))
|
||
try self.extractField(Type.bool, rhs_id, 1)
|
||
else
|
||
try self.convertToDirect(Type.bool, rhs_id);
|
||
|
||
const lhs_valid = Temporary.init(Type.bool, lhs_valid_id);
|
||
const rhs_valid = Temporary.init(Type.bool, rhs_valid_id);
|
||
|
||
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
|
||
return try self.cmp(op, lhs_valid, rhs_valid);
|
||
}
|
||
|
||
// a = lhs_valid
|
||
// b = rhs_valid
|
||
// c = lhs_pl == rhs_pl
|
||
//
|
||
// For op == .eq we have:
|
||
// a == b && a -> c
|
||
// = a == b && (!a || c)
|
||
//
|
||
// For op == .neq we have
|
||
// a == b && a -> c
|
||
// = !(a == b && a -> c)
|
||
// = a != b || !(a -> c
|
||
// = a != b || !(!a || c)
|
||
// = a != b || a && !c
|
||
|
||
const lhs_pl_id = try self.extractField(payload_ty, lhs_id, 0);
|
||
const rhs_pl_id = try self.extractField(payload_ty, rhs_id, 0);
|
||
|
||
const lhs_pl = Temporary.init(payload_ty, lhs_pl_id);
|
||
const rhs_pl = Temporary.init(payload_ty, rhs_pl_id);
|
||
|
||
return switch (op) {
|
||
.eq => try self.buildBinary(
|
||
.l_and,
|
||
try self.cmp(.eq, lhs_valid, rhs_valid),
|
||
try self.buildBinary(
|
||
.l_or,
|
||
try self.buildUnary(.l_not, lhs_valid),
|
||
try self.cmp(.eq, lhs_pl, rhs_pl),
|
||
),
|
||
),
|
||
.neq => try self.buildBinary(
|
||
.l_or,
|
||
try self.cmp(.neq, lhs_valid, rhs_valid),
|
||
try self.buildBinary(
|
||
.l_and,
|
||
lhs_valid,
|
||
try self.cmp(.neq, lhs_pl, rhs_pl),
|
||
),
|
||
),
|
||
else => unreachable,
|
||
};
|
||
},
|
||
else => |ty| return self.todo("implement cmp operation for '{s}' type", .{@tagName(ty)}),
|
||
}
|
||
|
||
const info = self.arithmeticTypeInfo(scalar_ty);
|
||
const pred: CmpPredicate = switch (info.class) {
|
||
.composite_integer => unreachable, // TODO
|
||
.float => switch (op) {
|
||
.eq => .f_oeq,
|
||
.neq => .f_une,
|
||
.lt => .f_olt,
|
||
.lte => .f_ole,
|
||
.gt => .f_ogt,
|
||
.gte => .f_oge,
|
||
},
|
||
.bool => switch (op) {
|
||
.eq => .l_eq,
|
||
.neq => .l_ne,
|
||
else => unreachable,
|
||
},
|
||
.integer, .strange_integer => switch (info.signedness) {
|
||
.signed => switch (op) {
|
||
.eq => .i_eq,
|
||
.neq => .i_ne,
|
||
.lt => .s_lt,
|
||
.lte => .s_le,
|
||
.gt => .s_gt,
|
||
.gte => .s_ge,
|
||
},
|
||
.unsigned => switch (op) {
|
||
.eq => .i_eq,
|
||
.neq => .i_ne,
|
||
.lt => .u_lt,
|
||
.lte => .u_le,
|
||
.gt => .u_gt,
|
||
.gte => .u_ge,
|
||
},
|
||
},
|
||
};
|
||
|
||
return try self.buildCmp(pred, lhs, rhs);
|
||
}
|
||
|
||
fn airCmp(
|
||
self: *NavGen,
|
||
inst: Air.Inst.Index,
|
||
comptime op: std.math.CompareOperator,
|
||
) !?IdRef {
|
||
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
|
||
const lhs = try self.temporary(bin_op.lhs);
|
||
const rhs = try self.temporary(bin_op.rhs);
|
||
|
||
const result = try self.cmp(op, lhs, rhs);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
fn airVectorCmp(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const vec_cmp = self.air.extraData(Air.VectorCmp, ty_pl.payload).data;
|
||
const lhs = try self.temporary(vec_cmp.lhs);
|
||
const rhs = try self.temporary(vec_cmp.rhs);
|
||
const op = vec_cmp.compareOperator();
|
||
|
||
const result = try self.cmp(op, lhs, rhs);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
/// Bitcast one type to another. Note: both types, input, output are expected in **direct** representation.
|
||
fn bitCast(
|
||
self: *NavGen,
|
||
dst_ty: Type,
|
||
src_ty: Type,
|
||
src_id: IdRef,
|
||
) !IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const src_ty_id = try self.resolveType(src_ty, .direct);
|
||
const dst_ty_id = try self.resolveType(dst_ty, .direct);
|
||
|
||
const result_id = blk: {
|
||
if (src_ty_id == dst_ty_id) {
|
||
break :blk src_id;
|
||
}
|
||
|
||
// TODO: Some more cases are missing here
|
||
// See fn bitCast in llvm.zig
|
||
|
||
if (src_ty.zigTypeTag(zcu) == .int and dst_ty.isPtrAtRuntime(zcu)) {
|
||
const result_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
|
||
.id_result_type = dst_ty_id,
|
||
.id_result = result_id,
|
||
.integer_value = src_id,
|
||
});
|
||
break :blk result_id;
|
||
}
|
||
|
||
// We can only use OpBitcast for specific conversions: between numerical types, and
|
||
// between pointers. If the resolved spir-v types fall into this category then emit OpBitcast,
|
||
// otherwise use a temporary and perform a pointer cast.
|
||
const can_bitcast = (src_ty.isNumeric(zcu) and dst_ty.isNumeric(zcu)) or (src_ty.isPtrAtRuntime(zcu) and dst_ty.isPtrAtRuntime(zcu));
|
||
if (can_bitcast) {
|
||
const result_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
|
||
.id_result_type = dst_ty_id,
|
||
.id_result = result_id,
|
||
.operand = src_id,
|
||
});
|
||
|
||
break :blk result_id;
|
||
}
|
||
|
||
const dst_ptr_ty_id = try self.ptrType(dst_ty, .Function, .indirect);
|
||
|
||
const tmp_id = try self.alloc(src_ty, .{ .storage_class = .Function });
|
||
try self.store(src_ty, tmp_id, src_id, .{});
|
||
const casted_ptr_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
|
||
.id_result_type = dst_ptr_ty_id,
|
||
.id_result = casted_ptr_id,
|
||
.operand = tmp_id,
|
||
});
|
||
break :blk try self.load(dst_ty, casted_ptr_id, .{});
|
||
};
|
||
|
||
// Because strange integers use sign-extended representation, we may need to normalize
|
||
// the result here.
|
||
// TODO: This detail could cause stuff like @as(*const i1, @ptrCast(&@as(u1, 1))) to break
|
||
// should we change the representation of strange integers?
|
||
if (dst_ty.zigTypeTag(zcu) == .int) {
|
||
const info = self.arithmeticTypeInfo(dst_ty);
|
||
const result = try self.normalize(Temporary.init(dst_ty, result_id), info);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
return result_id;
|
||
}
|
||
|
||
fn airBitCast(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const operand_ty = self.typeOf(ty_op.operand);
|
||
const result_ty = self.typeOfIndex(inst);
|
||
if (operand_ty.toIntern() == .bool_type) {
|
||
const operand = try self.temporary(ty_op.operand);
|
||
const result = try self.intFromBool(operand);
|
||
return try result.materialize(self);
|
||
}
|
||
const operand_id = try self.resolve(ty_op.operand);
|
||
return try self.bitCast(result_ty, operand_ty, operand_id);
|
||
}
|
||
|
||
fn airIntCast(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const src = try self.temporary(ty_op.operand);
|
||
const dst_ty = self.typeOfIndex(inst);
|
||
|
||
const src_info = self.arithmeticTypeInfo(src.ty);
|
||
const dst_info = self.arithmeticTypeInfo(dst_ty);
|
||
|
||
if (src_info.backing_bits == dst_info.backing_bits) {
|
||
return try src.materialize(self);
|
||
}
|
||
|
||
const converted = try self.buildIntConvert(dst_ty, src);
|
||
|
||
// Make sure to normalize the result if shrinking.
|
||
// Because strange ints are sign extended in their backing
|
||
// type, we don't need to normalize when growing the type. The
|
||
// representation is already the same.
|
||
const result = if (dst_info.bits < src_info.bits)
|
||
try self.normalize(converted, dst_info)
|
||
else
|
||
converted;
|
||
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
fn intFromPtr(self: *NavGen, operand_id: IdRef) !IdRef {
|
||
const result_type_id = try self.resolveType(Type.usize, .direct);
|
||
const result_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpConvertPtrToU, .{
|
||
.id_result_type = result_type_id,
|
||
.id_result = result_id,
|
||
.pointer = operand_id,
|
||
});
|
||
return result_id;
|
||
}
|
||
|
||
fn airFloatFromInt(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const operand_ty = self.typeOf(ty_op.operand);
|
||
const operand_id = try self.resolve(ty_op.operand);
|
||
const result_ty = self.typeOfIndex(inst);
|
||
return try self.floatFromInt(result_ty, operand_ty, operand_id);
|
||
}
|
||
|
||
fn floatFromInt(self: *NavGen, result_ty: Type, operand_ty: Type, operand_id: IdRef) !IdRef {
|
||
const operand_info = self.arithmeticTypeInfo(operand_ty);
|
||
const result_id = self.spv.allocId();
|
||
const result_ty_id = try self.resolveType(result_ty, .direct);
|
||
switch (operand_info.signedness) {
|
||
.signed => try self.func.body.emit(self.spv.gpa, .OpConvertSToF, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_id,
|
||
.signed_value = operand_id,
|
||
}),
|
||
.unsigned => try self.func.body.emit(self.spv.gpa, .OpConvertUToF, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_id,
|
||
.unsigned_value = operand_id,
|
||
}),
|
||
}
|
||
return result_id;
|
||
}
|
||
|
||
fn airIntFromFloat(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const operand_id = try self.resolve(ty_op.operand);
|
||
const result_ty = self.typeOfIndex(inst);
|
||
return try self.intFromFloat(result_ty, operand_id);
|
||
}
|
||
|
||
fn intFromFloat(self: *NavGen, result_ty: Type, operand_id: IdRef) !IdRef {
|
||
const result_info = self.arithmeticTypeInfo(result_ty);
|
||
const result_ty_id = try self.resolveType(result_ty, .direct);
|
||
const result_id = self.spv.allocId();
|
||
switch (result_info.signedness) {
|
||
.signed => try self.func.body.emit(self.spv.gpa, .OpConvertFToS, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_id,
|
||
.float_value = operand_id,
|
||
}),
|
||
.unsigned => try self.func.body.emit(self.spv.gpa, .OpConvertFToU, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = result_id,
|
||
.float_value = operand_id,
|
||
}),
|
||
}
|
||
return result_id;
|
||
}
|
||
|
||
fn airFloatCast(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const operand_id = try self.resolve(ty_op.operand);
|
||
const dest_ty = self.typeOfIndex(inst);
|
||
const dest_ty_id = try self.resolveType(dest_ty, .direct);
|
||
|
||
const result_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpFConvert, .{
|
||
.id_result_type = dest_ty_id,
|
||
.id_result = result_id,
|
||
.float_value = operand_id,
|
||
});
|
||
return result_id;
|
||
}
|
||
|
||
fn airNot(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const operand = try self.temporary(ty_op.operand);
|
||
const result_ty = self.typeOfIndex(inst);
|
||
const info = self.arithmeticTypeInfo(result_ty);
|
||
|
||
const result = switch (info.class) {
|
||
.bool => try self.buildUnary(.l_not, operand),
|
||
.float => unreachable,
|
||
.composite_integer => unreachable, // TODO
|
||
.strange_integer, .integer => blk: {
|
||
const complement = try self.buildUnary(.bit_not, operand);
|
||
break :blk try self.normalize(complement, info);
|
||
},
|
||
};
|
||
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
fn airArrayToSlice(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const array_ptr_ty = self.typeOf(ty_op.operand);
|
||
const array_ty = array_ptr_ty.childType(zcu);
|
||
const slice_ty = self.typeOfIndex(inst);
|
||
const elem_ptr_ty = slice_ty.slicePtrFieldType(zcu);
|
||
|
||
const elem_ptr_ty_id = try self.resolveType(elem_ptr_ty, .direct);
|
||
|
||
const array_ptr_id = try self.resolve(ty_op.operand);
|
||
const len_id = try self.constInt(Type.usize, array_ty.arrayLen(zcu));
|
||
|
||
const elem_ptr_id = if (!array_ty.hasRuntimeBitsIgnoreComptime(zcu))
|
||
// Note: The pointer is something like *opaque{}, so we need to bitcast it to the element type.
|
||
try self.bitCast(elem_ptr_ty, array_ptr_ty, array_ptr_id)
|
||
else
|
||
// Convert the pointer-to-array to a pointer to the first element.
|
||
try self.accessChain(elem_ptr_ty_id, array_ptr_id, &.{0});
|
||
|
||
const slice_ty_id = try self.resolveType(slice_ty, .direct);
|
||
return try self.constructComposite(slice_ty_id, &.{ elem_ptr_id, len_id });
|
||
}
|
||
|
||
fn airSlice(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
||
const ptr_id = try self.resolve(bin_op.lhs);
|
||
const len_id = try self.resolve(bin_op.rhs);
|
||
const slice_ty = self.typeOfIndex(inst);
|
||
const slice_ty_id = try self.resolveType(slice_ty, .direct);
|
||
return try self.constructComposite(slice_ty_id, &.{ ptr_id, len_id });
|
||
}
|
||
|
||
fn airAggregateInit(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ip = &zcu.intern_pool;
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const result_ty = self.typeOfIndex(inst);
|
||
const len: usize = @intCast(result_ty.arrayLen(zcu));
|
||
const elements: []const Air.Inst.Ref = @ptrCast(self.air.extra[ty_pl.payload..][0..len]);
|
||
|
||
switch (result_ty.zigTypeTag(zcu)) {
|
||
.@"struct" => {
|
||
if (zcu.typeToPackedStruct(result_ty)) |struct_type| {
|
||
_ = struct_type;
|
||
unreachable; // TODO
|
||
}
|
||
|
||
const types = try self.gpa.alloc(Type, elements.len);
|
||
defer self.gpa.free(types);
|
||
const constituents = try self.gpa.alloc(IdRef, elements.len);
|
||
defer self.gpa.free(constituents);
|
||
var index: usize = 0;
|
||
|
||
switch (ip.indexToKey(result_ty.toIntern())) {
|
||
.tuple_type => |tuple| {
|
||
for (tuple.types.get(ip), elements, 0..) |field_ty, element, i| {
|
||
if ((try result_ty.structFieldValueComptime(pt, i)) != null) continue;
|
||
assert(Type.fromInterned(field_ty).hasRuntimeBits(zcu));
|
||
|
||
const id = try self.resolve(element);
|
||
types[index] = Type.fromInterned(field_ty);
|
||
constituents[index] = try self.convertToIndirect(Type.fromInterned(field_ty), id);
|
||
index += 1;
|
||
}
|
||
},
|
||
.struct_type => {
|
||
const struct_type = ip.loadStructType(result_ty.toIntern());
|
||
var it = struct_type.iterateRuntimeOrder(ip);
|
||
for (elements, 0..) |element, i| {
|
||
const field_index = it.next().?;
|
||
if ((try result_ty.structFieldValueComptime(pt, i)) != null) continue;
|
||
const field_ty = Type.fromInterned(struct_type.field_types.get(ip)[field_index]);
|
||
assert(field_ty.hasRuntimeBitsIgnoreComptime(zcu));
|
||
|
||
const id = try self.resolve(element);
|
||
types[index] = field_ty;
|
||
constituents[index] = try self.convertToIndirect(field_ty, id);
|
||
index += 1;
|
||
}
|
||
},
|
||
else => unreachable,
|
||
}
|
||
|
||
const result_ty_id = try self.resolveType(result_ty, .direct);
|
||
return try self.constructComposite(result_ty_id, constituents[0..index]);
|
||
},
|
||
.vector => {
|
||
const n_elems = result_ty.vectorLen(zcu);
|
||
const elem_ids = try self.gpa.alloc(IdRef, n_elems);
|
||
defer self.gpa.free(elem_ids);
|
||
|
||
for (elements, 0..) |element, i| {
|
||
elem_ids[i] = try self.resolve(element);
|
||
}
|
||
|
||
const result_ty_id = try self.resolveType(result_ty, .direct);
|
||
return try self.constructComposite(result_ty_id, elem_ids);
|
||
},
|
||
.array => {
|
||
const array_info = result_ty.arrayInfo(zcu);
|
||
const n_elems: usize = @intCast(result_ty.arrayLenIncludingSentinel(zcu));
|
||
const elem_ids = try self.gpa.alloc(IdRef, n_elems);
|
||
defer self.gpa.free(elem_ids);
|
||
|
||
for (elements, 0..) |element, i| {
|
||
const id = try self.resolve(element);
|
||
elem_ids[i] = try self.convertToIndirect(array_info.elem_type, id);
|
||
}
|
||
|
||
if (array_info.sentinel) |sentinel_val| {
|
||
elem_ids[n_elems - 1] = try self.constant(array_info.elem_type, sentinel_val, .indirect);
|
||
}
|
||
|
||
const result_ty_id = try self.resolveType(result_ty, .direct);
|
||
return try self.constructComposite(result_ty_id, elem_ids);
|
||
},
|
||
else => unreachable,
|
||
}
|
||
}
|
||
|
||
fn sliceOrArrayLen(self: *NavGen, operand_id: IdRef, ty: Type) !IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
switch (ty.ptrSize(zcu)) {
|
||
.slice => return self.extractField(Type.usize, operand_id, 1),
|
||
.one => {
|
||
const array_ty = ty.childType(zcu);
|
||
const elem_ty = array_ty.childType(zcu);
|
||
const abi_size = elem_ty.abiSize(zcu);
|
||
const size = array_ty.arrayLenIncludingSentinel(zcu) * abi_size;
|
||
return try self.constInt(Type.usize, size);
|
||
},
|
||
.many, .c => unreachable,
|
||
}
|
||
}
|
||
|
||
fn sliceOrArrayPtr(self: *NavGen, operand_id: IdRef, ty: Type) !IdRef {
|
||
const zcu = self.pt.zcu;
|
||
if (ty.isSlice(zcu)) {
|
||
const ptr_ty = ty.slicePtrFieldType(zcu);
|
||
return self.extractField(ptr_ty, operand_id, 0);
|
||
}
|
||
return operand_id;
|
||
}
|
||
|
||
fn airMemcpy(self: *NavGen, inst: Air.Inst.Index) !void {
|
||
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
|
||
const dest_slice = try self.resolve(bin_op.lhs);
|
||
const src_slice = try self.resolve(bin_op.rhs);
|
||
const dest_ty = self.typeOf(bin_op.lhs);
|
||
const src_ty = self.typeOf(bin_op.rhs);
|
||
const dest_ptr = try self.sliceOrArrayPtr(dest_slice, dest_ty);
|
||
const src_ptr = try self.sliceOrArrayPtr(src_slice, src_ty);
|
||
const len = try self.sliceOrArrayLen(dest_slice, dest_ty);
|
||
try self.func.body.emit(self.spv.gpa, .OpCopyMemorySized, .{
|
||
.target = dest_ptr,
|
||
.source = src_ptr,
|
||
.size = len,
|
||
});
|
||
}
|
||
|
||
fn airSliceField(self: *NavGen, inst: Air.Inst.Index, field: u32) !?IdRef {
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const field_ty = self.typeOfIndex(inst);
|
||
const operand_id = try self.resolve(ty_op.operand);
|
||
return try self.extractField(field_ty, operand_id, field);
|
||
}
|
||
|
||
fn airSliceElemPtr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
||
const slice_ty = self.typeOf(bin_op.lhs);
|
||
if (!slice_ty.isVolatilePtr(zcu) and self.liveness.isUnused(inst)) return null;
|
||
|
||
const slice_id = try self.resolve(bin_op.lhs);
|
||
const index_id = try self.resolve(bin_op.rhs);
|
||
|
||
const ptr_ty = self.typeOfIndex(inst);
|
||
const ptr_ty_id = try self.resolveType(ptr_ty, .direct);
|
||
|
||
const slice_ptr = try self.extractField(ptr_ty, slice_id, 0);
|
||
return try self.ptrAccessChain(ptr_ty_id, slice_ptr, index_id, &.{});
|
||
}
|
||
|
||
fn airSliceElemVal(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
|
||
const slice_ty = self.typeOf(bin_op.lhs);
|
||
if (!slice_ty.isVolatilePtr(zcu) and self.liveness.isUnused(inst)) return null;
|
||
|
||
const slice_id = try self.resolve(bin_op.lhs);
|
||
const index_id = try self.resolve(bin_op.rhs);
|
||
|
||
const ptr_ty = slice_ty.slicePtrFieldType(zcu);
|
||
const ptr_ty_id = try self.resolveType(ptr_ty, .direct);
|
||
|
||
const slice_ptr = try self.extractField(ptr_ty, slice_id, 0);
|
||
const elem_ptr = try self.ptrAccessChain(ptr_ty_id, slice_ptr, index_id, &.{});
|
||
return try self.load(slice_ty.childType(zcu), elem_ptr, .{ .is_volatile = slice_ty.isVolatilePtr(zcu) });
|
||
}
|
||
|
||
fn ptrElemPtr(self: *NavGen, ptr_ty: Type, ptr_id: IdRef, index_id: IdRef) !IdRef {
|
||
const zcu = self.pt.zcu;
|
||
// Construct new pointer type for the resulting pointer
|
||
const elem_ty = ptr_ty.elemType2(zcu); // use elemType() so that we get T for *[N]T.
|
||
const elem_ptr_ty_id = try self.ptrType(elem_ty, self.spvStorageClass(ptr_ty.ptrAddressSpace(zcu)), .indirect);
|
||
if (ptr_ty.isSinglePointer(zcu)) {
|
||
// Pointer-to-array. In this case, the resulting pointer is not of the same type
|
||
// as the ptr_ty (we want a *T, not a *[N]T), and hence we need to use accessChain.
|
||
return try self.accessChainId(elem_ptr_ty_id, ptr_id, &.{index_id});
|
||
} else {
|
||
// Resulting pointer type is the same as the ptr_ty, so use ptrAccessChain
|
||
return try self.ptrAccessChain(elem_ptr_ty_id, ptr_id, index_id, &.{});
|
||
}
|
||
}
|
||
|
||
fn airPtrElemPtr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const bin_op = self.air.extraData(Air.Bin, ty_pl.payload).data;
|
||
const src_ptr_ty = self.typeOf(bin_op.lhs);
|
||
const elem_ty = src_ptr_ty.childType(zcu);
|
||
const ptr_id = try self.resolve(bin_op.lhs);
|
||
|
||
if (!elem_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
|
||
const dst_ptr_ty = self.typeOfIndex(inst);
|
||
return try self.bitCast(dst_ptr_ty, src_ptr_ty, ptr_id);
|
||
}
|
||
|
||
const index_id = try self.resolve(bin_op.rhs);
|
||
return try self.ptrElemPtr(src_ptr_ty, ptr_id, index_id);
|
||
}
|
||
|
||
fn airArrayElemVal(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
|
||
const array_ty = self.typeOf(bin_op.lhs);
|
||
const elem_ty = array_ty.childType(zcu);
|
||
const array_id = try self.resolve(bin_op.lhs);
|
||
const index_id = try self.resolve(bin_op.rhs);
|
||
|
||
if (self.isSpvVector(array_ty)) {
|
||
const result_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpVectorExtractDynamic, .{
|
||
.id_result_type = try self.resolveType(elem_ty, .direct),
|
||
.id_result = result_id,
|
||
.vector = array_id,
|
||
.index = index_id,
|
||
});
|
||
return result_id;
|
||
}
|
||
|
||
// SPIR-V doesn't have an array indexing function for some damn reason.
|
||
// For now, just generate a temporary and use that.
|
||
// TODO: This backend probably also should use isByRef from llvm...
|
||
|
||
const is_vector = array_ty.isVector(zcu);
|
||
|
||
const elem_repr: Repr = if (is_vector) .direct else .indirect;
|
||
const ptr_array_ty_id = try self.ptrType(array_ty, .Function, .direct);
|
||
const ptr_elem_ty_id = try self.ptrType(elem_ty, .Function, elem_repr);
|
||
|
||
const tmp_id = self.spv.allocId();
|
||
try self.func.prologue.emit(self.spv.gpa, .OpVariable, .{
|
||
.id_result_type = ptr_array_ty_id,
|
||
.id_result = tmp_id,
|
||
.storage_class = .Function,
|
||
});
|
||
|
||
try self.func.body.emit(self.spv.gpa, .OpStore, .{
|
||
.pointer = tmp_id,
|
||
.object = array_id,
|
||
});
|
||
|
||
const elem_ptr_id = try self.accessChainId(ptr_elem_ty_id, tmp_id, &.{index_id});
|
||
|
||
const result_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpLoad, .{
|
||
.id_result_type = try self.resolveType(elem_ty, elem_repr),
|
||
.id_result = result_id,
|
||
.pointer = elem_ptr_id,
|
||
});
|
||
|
||
if (is_vector) {
|
||
// Result is already in direct representation
|
||
return result_id;
|
||
}
|
||
|
||
// This is an array type; the elements are stored in indirect representation.
|
||
// We have to convert the type to direct.
|
||
|
||
return try self.convertToDirect(elem_ty, result_id);
|
||
}
|
||
|
||
fn airPtrElemVal(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
|
||
const ptr_ty = self.typeOf(bin_op.lhs);
|
||
const elem_ty = self.typeOfIndex(inst);
|
||
const ptr_id = try self.resolve(bin_op.lhs);
|
||
const index_id = try self.resolve(bin_op.rhs);
|
||
const elem_ptr_id = try self.ptrElemPtr(ptr_ty, ptr_id, index_id);
|
||
return try self.load(elem_ty, elem_ptr_id, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
|
||
}
|
||
|
||
fn airVectorStoreElem(self: *NavGen, inst: Air.Inst.Index) !void {
|
||
const zcu = self.pt.zcu;
|
||
const data = self.air.instructions.items(.data)[@intFromEnum(inst)].vector_store_elem;
|
||
const extra = self.air.extraData(Air.Bin, data.payload).data;
|
||
|
||
const vector_ptr_ty = self.typeOf(data.vector_ptr);
|
||
const vector_ty = vector_ptr_ty.childType(zcu);
|
||
const scalar_ty = vector_ty.scalarType(zcu);
|
||
|
||
const storage_class = self.spvStorageClass(vector_ptr_ty.ptrAddressSpace(zcu));
|
||
const scalar_ptr_ty_id = try self.ptrType(scalar_ty, storage_class, .indirect);
|
||
|
||
const vector_ptr = try self.resolve(data.vector_ptr);
|
||
const index = try self.resolve(extra.lhs);
|
||
const operand = try self.resolve(extra.rhs);
|
||
|
||
const elem_ptr_id = try self.accessChainId(scalar_ptr_ty_id, vector_ptr, &.{index});
|
||
try self.store(scalar_ty, elem_ptr_id, operand, .{
|
||
.is_volatile = vector_ptr_ty.isVolatilePtr(zcu),
|
||
});
|
||
}
|
||
|
||
fn airSetUnionTag(self: *NavGen, inst: Air.Inst.Index) !void {
|
||
const zcu = self.pt.zcu;
|
||
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
|
||
const un_ptr_ty = self.typeOf(bin_op.lhs);
|
||
const un_ty = un_ptr_ty.childType(zcu);
|
||
const layout = self.unionLayout(un_ty);
|
||
|
||
if (layout.tag_size == 0) return;
|
||
|
||
const tag_ty = un_ty.unionTagTypeSafety(zcu).?;
|
||
const tag_ptr_ty_id = try self.ptrType(tag_ty, self.spvStorageClass(un_ptr_ty.ptrAddressSpace(zcu)), .indirect);
|
||
|
||
const union_ptr_id = try self.resolve(bin_op.lhs);
|
||
const new_tag_id = try self.resolve(bin_op.rhs);
|
||
|
||
if (!layout.has_payload) {
|
||
try self.store(tag_ty, union_ptr_id, new_tag_id, .{ .is_volatile = un_ptr_ty.isVolatilePtr(zcu) });
|
||
} else {
|
||
const ptr_id = try self.accessChain(tag_ptr_ty_id, union_ptr_id, &.{layout.tag_index});
|
||
try self.store(tag_ty, ptr_id, new_tag_id, .{ .is_volatile = un_ptr_ty.isVolatilePtr(zcu) });
|
||
}
|
||
}
|
||
|
||
fn airGetUnionTag(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const un_ty = self.typeOf(ty_op.operand);
|
||
|
||
const zcu = self.pt.zcu;
|
||
const layout = self.unionLayout(un_ty);
|
||
if (layout.tag_size == 0) return null;
|
||
|
||
const union_handle = try self.resolve(ty_op.operand);
|
||
if (!layout.has_payload) return union_handle;
|
||
|
||
const tag_ty = un_ty.unionTagTypeSafety(zcu).?;
|
||
return try self.extractField(tag_ty, union_handle, layout.tag_index);
|
||
}
|
||
|
||
fn unionInit(
|
||
self: *NavGen,
|
||
ty: Type,
|
||
active_field: u32,
|
||
payload: ?IdRef,
|
||
) !IdRef {
|
||
// To initialize a union, generate a temporary variable with the
|
||
// union type, then get the field pointer and pointer-cast it to the
|
||
// right type to store it. Finally load the entire union.
|
||
|
||
// Note: The result here is not cached, because it generates runtime code.
|
||
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ip = &zcu.intern_pool;
|
||
const union_ty = zcu.typeToUnion(ty).?;
|
||
const tag_ty = Type.fromInterned(union_ty.enum_tag_ty);
|
||
|
||
if (union_ty.flagsUnordered(ip).layout == .@"packed") {
|
||
unreachable; // TODO
|
||
}
|
||
|
||
const layout = self.unionLayout(ty);
|
||
|
||
const tag_int = if (layout.tag_size != 0) blk: {
|
||
const tag_val = try pt.enumValueFieldIndex(tag_ty, active_field);
|
||
const tag_int_val = try tag_val.intFromEnum(tag_ty, pt);
|
||
break :blk tag_int_val.toUnsignedInt(zcu);
|
||
} else 0;
|
||
|
||
if (!layout.has_payload) {
|
||
return try self.constInt(tag_ty, tag_int);
|
||
}
|
||
|
||
const tmp_id = try self.alloc(ty, .{ .storage_class = .Function });
|
||
|
||
if (layout.tag_size != 0) {
|
||
const tag_ptr_ty_id = try self.ptrType(tag_ty, .Function, .indirect);
|
||
const ptr_id = try self.accessChain(tag_ptr_ty_id, tmp_id, &.{@as(u32, @intCast(layout.tag_index))});
|
||
const tag_id = try self.constInt(tag_ty, tag_int);
|
||
try self.store(tag_ty, ptr_id, tag_id, .{});
|
||
}
|
||
|
||
const payload_ty = Type.fromInterned(union_ty.field_types.get(ip)[active_field]);
|
||
if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
|
||
const pl_ptr_ty_id = try self.ptrType(layout.payload_ty, .Function, .indirect);
|
||
const pl_ptr_id = try self.accessChain(pl_ptr_ty_id, tmp_id, &.{layout.payload_index});
|
||
const active_pl_ptr_ty_id = try self.ptrType(payload_ty, .Function, .indirect);
|
||
const active_pl_ptr_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
|
||
.id_result_type = active_pl_ptr_ty_id,
|
||
.id_result = active_pl_ptr_id,
|
||
.operand = pl_ptr_id,
|
||
});
|
||
|
||
try self.store(payload_ty, active_pl_ptr_id, payload.?, .{});
|
||
} else {
|
||
assert(payload == null);
|
||
}
|
||
|
||
// Just leave the padding fields uninitialized...
|
||
// TODO: Or should we initialize them with undef explicitly?
|
||
|
||
return try self.load(ty, tmp_id, .{});
|
||
}
|
||
|
||
fn airUnionInit(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ip = &zcu.intern_pool;
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const extra = self.air.extraData(Air.UnionInit, ty_pl.payload).data;
|
||
const ty = self.typeOfIndex(inst);
|
||
|
||
const union_obj = zcu.typeToUnion(ty).?;
|
||
const field_ty = Type.fromInterned(union_obj.field_types.get(ip)[extra.field_index]);
|
||
const payload = if (field_ty.hasRuntimeBitsIgnoreComptime(zcu))
|
||
try self.resolve(extra.init)
|
||
else
|
||
null;
|
||
return try self.unionInit(ty, extra.field_index, payload);
|
||
}
|
||
|
||
fn airStructFieldVal(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const struct_field = self.air.extraData(Air.StructField, ty_pl.payload).data;
|
||
|
||
const object_ty = self.typeOf(struct_field.struct_operand);
|
||
const object_id = try self.resolve(struct_field.struct_operand);
|
||
const field_index = struct_field.field_index;
|
||
const field_ty = object_ty.fieldType(field_index, zcu);
|
||
|
||
if (!field_ty.hasRuntimeBitsIgnoreComptime(zcu)) return null;
|
||
|
||
switch (object_ty.zigTypeTag(zcu)) {
|
||
.@"struct" => switch (object_ty.containerLayout(zcu)) {
|
||
.@"packed" => unreachable, // TODO
|
||
else => return try self.extractField(field_ty, object_id, field_index),
|
||
},
|
||
.@"union" => switch (object_ty.containerLayout(zcu)) {
|
||
.@"packed" => unreachable, // TODO
|
||
else => {
|
||
// Store, ptr-elem-ptr, pointer-cast, load
|
||
const layout = self.unionLayout(object_ty);
|
||
assert(layout.has_payload);
|
||
|
||
const tmp_id = try self.alloc(object_ty, .{ .storage_class = .Function });
|
||
try self.store(object_ty, tmp_id, object_id, .{});
|
||
|
||
const pl_ptr_ty_id = try self.ptrType(layout.payload_ty, .Function, .indirect);
|
||
const pl_ptr_id = try self.accessChain(pl_ptr_ty_id, tmp_id, &.{layout.payload_index});
|
||
|
||
const active_pl_ptr_ty_id = try self.ptrType(field_ty, .Function, .indirect);
|
||
const active_pl_ptr_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
|
||
.id_result_type = active_pl_ptr_ty_id,
|
||
.id_result = active_pl_ptr_id,
|
||
.operand = pl_ptr_id,
|
||
});
|
||
return try self.load(field_ty, active_pl_ptr_id, .{});
|
||
},
|
||
},
|
||
else => unreachable,
|
||
}
|
||
}
|
||
|
||
fn airFieldParentPtr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const extra = self.air.extraData(Air.FieldParentPtr, ty_pl.payload).data;
|
||
|
||
const parent_ty = ty_pl.ty.toType().childType(zcu);
|
||
const result_ty_id = try self.resolveType(ty_pl.ty.toType(), .indirect);
|
||
|
||
const field_ptr = try self.resolve(extra.field_ptr);
|
||
const field_ptr_int = try self.intFromPtr(field_ptr);
|
||
const field_offset = parent_ty.structFieldOffset(extra.field_index, zcu);
|
||
|
||
const base_ptr_int = base_ptr_int: {
|
||
if (field_offset == 0) break :base_ptr_int field_ptr_int;
|
||
|
||
const field_offset_id = try self.constInt(Type.usize, field_offset);
|
||
const field_ptr_tmp = Temporary.init(Type.usize, field_ptr_int);
|
||
const field_offset_tmp = Temporary.init(Type.usize, field_offset_id);
|
||
const result = try self.buildBinary(.i_sub, field_ptr_tmp, field_offset_tmp);
|
||
break :base_ptr_int try result.materialize(self);
|
||
};
|
||
|
||
const base_ptr = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpConvertUToPtr, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = base_ptr,
|
||
.integer_value = base_ptr_int,
|
||
});
|
||
|
||
return base_ptr;
|
||
}
|
||
|
||
fn structFieldPtr(
|
||
self: *NavGen,
|
||
result_ptr_ty: Type,
|
||
object_ptr_ty: Type,
|
||
object_ptr: IdRef,
|
||
field_index: u32,
|
||
) !IdRef {
|
||
const result_ty_id = try self.resolveType(result_ptr_ty, .direct);
|
||
|
||
const zcu = self.pt.zcu;
|
||
const object_ty = object_ptr_ty.childType(zcu);
|
||
switch (object_ty.zigTypeTag(zcu)) {
|
||
.pointer => {
|
||
assert(object_ty.isSlice(zcu));
|
||
return self.accessChain(result_ty_id, object_ptr, &.{field_index});
|
||
},
|
||
.@"struct" => switch (object_ty.containerLayout(zcu)) {
|
||
.@"packed" => return self.todo("implement field access for packed structs", .{}),
|
||
else => {
|
||
return try self.accessChain(result_ty_id, object_ptr, &.{field_index});
|
||
},
|
||
},
|
||
.@"union" => switch (object_ty.containerLayout(zcu)) {
|
||
.@"packed" => return self.todo("implement field access for packed unions", .{}),
|
||
else => {
|
||
const layout = self.unionLayout(object_ty);
|
||
if (!layout.has_payload) {
|
||
// Asked to get a pointer to a zero-sized field. Just lower this
|
||
// to undefined, there is no reason to make it be a valid pointer.
|
||
return try self.spv.constUndef(result_ty_id);
|
||
}
|
||
|
||
const storage_class = self.spvStorageClass(object_ptr_ty.ptrAddressSpace(zcu));
|
||
const pl_ptr_ty_id = try self.ptrType(layout.payload_ty, storage_class, .indirect);
|
||
const pl_ptr_id = try self.accessChain(pl_ptr_ty_id, object_ptr, &.{layout.payload_index});
|
||
|
||
const active_pl_ptr_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpBitcast, .{
|
||
.id_result_type = result_ty_id,
|
||
.id_result = active_pl_ptr_id,
|
||
.operand = pl_ptr_id,
|
||
});
|
||
return active_pl_ptr_id;
|
||
},
|
||
},
|
||
else => unreachable,
|
||
}
|
||
}
|
||
|
||
fn airStructFieldPtrIndex(self: *NavGen, inst: Air.Inst.Index, field_index: u32) !?IdRef {
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const struct_ptr = try self.resolve(ty_op.operand);
|
||
const struct_ptr_ty = self.typeOf(ty_op.operand);
|
||
const result_ptr_ty = self.typeOfIndex(inst);
|
||
return try self.structFieldPtr(result_ptr_ty, struct_ptr_ty, struct_ptr, field_index);
|
||
}
|
||
|
||
const AllocOptions = struct {
|
||
initializer: ?IdRef = null,
|
||
/// The final storage class of the pointer. This may be either `.Generic` or `.Function`.
|
||
/// In either case, the local is allocated in the `.Function` storage class, and optionally
|
||
/// cast back to `.Generic`.
|
||
storage_class: StorageClass,
|
||
};
|
||
|
||
// Allocate a function-local variable, with possible initializer.
|
||
// This function returns a pointer to a variable of type `ty`,
|
||
// which is in the Generic address space. The variable is actually
|
||
// placed in the Function address space.
|
||
fn alloc(
|
||
self: *NavGen,
|
||
ty: Type,
|
||
options: AllocOptions,
|
||
) !IdRef {
|
||
const ptr_fn_ty_id = try self.ptrType(ty, .Function, .indirect);
|
||
|
||
// SPIR-V requires that OpVariable declarations for locals go into the first block, so we are just going to
|
||
// directly generate them into func.prologue instead of the body.
|
||
const var_id = self.spv.allocId();
|
||
try self.func.prologue.emit(self.spv.gpa, .OpVariable, .{
|
||
.id_result_type = ptr_fn_ty_id,
|
||
.id_result = var_id,
|
||
.storage_class = .Function,
|
||
.initializer = options.initializer,
|
||
});
|
||
|
||
if (self.spv.hasFeature(.shader)) return var_id;
|
||
|
||
switch (options.storage_class) {
|
||
.Generic => {
|
||
const ptr_gn_ty_id = try self.ptrType(ty, .Generic, .indirect);
|
||
// Convert to a generic pointer
|
||
return self.castToGeneric(ptr_gn_ty_id, var_id);
|
||
},
|
||
.Function => return var_id,
|
||
else => unreachable,
|
||
}
|
||
}
|
||
|
||
fn airAlloc(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const ptr_ty = self.typeOfIndex(inst);
|
||
const child_ty = ptr_ty.childType(zcu);
|
||
return try self.alloc(child_ty, .{
|
||
.storage_class = self.spvStorageClass(ptr_ty.ptrAddressSpace(zcu)),
|
||
});
|
||
}
|
||
|
||
fn airArg(self: *NavGen) IdRef {
|
||
defer self.next_arg_index += 1;
|
||
return self.args.items[self.next_arg_index];
|
||
}
|
||
|
||
/// Given a slice of incoming block connections, returns the block-id of the next
|
||
/// block to jump to. This function emits instructions, so it should be emitted
|
||
/// inside the merge block of the block.
|
||
/// This function should only be called with structured control flow generation.
|
||
fn structuredNextBlock(self: *NavGen, incoming: []const ControlFlow.Structured.Block.Incoming) !IdRef {
|
||
assert(self.control_flow == .structured);
|
||
|
||
const result_id = self.spv.allocId();
|
||
const block_id_ty_id = try self.resolveType(Type.u32, .direct);
|
||
try self.func.body.emitRaw(self.spv.gpa, .OpPhi, @intCast(2 + incoming.len * 2)); // result type + result + variable/parent...
|
||
self.func.body.writeOperand(spec.IdResultType, block_id_ty_id);
|
||
self.func.body.writeOperand(spec.IdRef, result_id);
|
||
|
||
for (incoming) |incoming_block| {
|
||
self.func.body.writeOperand(spec.PairIdRefIdRef, .{ incoming_block.next_block, incoming_block.src_label });
|
||
}
|
||
|
||
return result_id;
|
||
}
|
||
|
||
/// Jumps to the block with the target block-id. This function must only be called when
|
||
/// terminating a body, there should be no instructions after it.
|
||
/// This function should only be called with structured control flow generation.
|
||
fn structuredBreak(self: *NavGen, target_block: IdRef) !void {
|
||
assert(self.control_flow == .structured);
|
||
|
||
const sblock = self.control_flow.structured.block_stack.getLast();
|
||
const merge_block = switch (sblock.*) {
|
||
.selection => |*merge| blk: {
|
||
const merge_label = self.spv.allocId();
|
||
try merge.merge_stack.append(self.gpa, .{
|
||
.incoming = .{
|
||
.src_label = self.current_block_label,
|
||
.next_block = target_block,
|
||
},
|
||
.merge_block = merge_label,
|
||
});
|
||
break :blk merge_label;
|
||
},
|
||
// Loop blocks do not end in a break. Not through a direct break,
|
||
// and also not through another instruction like cond_br or unreachable (these
|
||
// situations are replaced by `cond_br` in sema, or there is a `block` instruction
|
||
// placed around them).
|
||
.loop => unreachable,
|
||
};
|
||
|
||
try self.func.body.emitBranch(self.spv.gpa, merge_block);
|
||
}
|
||
|
||
/// Generate a body in a way that exits the body using only structured constructs.
|
||
/// Returns the block-id of the next block to jump to. After this function, a jump
|
||
/// should still be emitted to the block that should follow this structured body.
|
||
/// This function should only be called with structured control flow generation.
|
||
fn genStructuredBody(
|
||
self: *NavGen,
|
||
/// This parameter defines the method that this structured body is exited with.
|
||
block_merge_type: union(enum) {
|
||
/// Using selection; early exits from this body are surrounded with
|
||
/// if() statements.
|
||
selection,
|
||
/// Using loops; loops can be early exited by jumping to the merge block at
|
||
/// any time.
|
||
loop: struct {
|
||
merge_label: IdRef,
|
||
continue_label: IdRef,
|
||
},
|
||
},
|
||
body: []const Air.Inst.Index,
|
||
) !IdRef {
|
||
assert(self.control_flow == .structured);
|
||
|
||
var sblock: ControlFlow.Structured.Block = switch (block_merge_type) {
|
||
.loop => |merge| .{ .loop = .{
|
||
.merge_block = merge.merge_label,
|
||
} },
|
||
.selection => .{ .selection = .{} },
|
||
};
|
||
defer sblock.deinit(self.gpa);
|
||
|
||
{
|
||
try self.control_flow.structured.block_stack.append(self.gpa, &sblock);
|
||
defer _ = self.control_flow.structured.block_stack.pop();
|
||
|
||
try self.genBody(body);
|
||
}
|
||
|
||
switch (sblock) {
|
||
.selection => |merge| {
|
||
// Now generate the merge block for all merges that
|
||
// still need to be performed.
|
||
const merge_stack = merge.merge_stack.items;
|
||
|
||
// If no merges on the stack, this block didn't generate any jumps (all paths
|
||
// ended with a return or an unreachable). In that case, we don't need to do
|
||
// any merging.
|
||
if (merge_stack.len == 0) {
|
||
// We still need to return a value of a next block to jump to.
|
||
// For example, if we have code like
|
||
// if (x) {
|
||
// if (y) return else return;
|
||
// } else {}
|
||
// then we still need the outer to have an OpSelectionMerge and consequently
|
||
// a phi node. In that case we can just return bogus, since we know that its
|
||
// path will never be taken.
|
||
|
||
// Make sure that we are still in a block when exiting the function.
|
||
// TODO: Can we get rid of that?
|
||
try self.beginSpvBlock(self.spv.allocId());
|
||
const block_id_ty_id = try self.resolveType(Type.u32, .direct);
|
||
return try self.spv.constUndef(block_id_ty_id);
|
||
}
|
||
|
||
// The top-most merge actually only has a single source, the
|
||
// final jump of the block, or the merge block of a sub-block, cond_br,
|
||
// or loop. Therefore we just need to generate a block with a jump to the
|
||
// next merge block.
|
||
try self.beginSpvBlock(merge_stack[merge_stack.len - 1].merge_block);
|
||
|
||
// Now generate a merge ladder for the remaining merges in the stack.
|
||
var incoming = ControlFlow.Structured.Block.Incoming{
|
||
.src_label = self.current_block_label,
|
||
.next_block = merge_stack[merge_stack.len - 1].incoming.next_block,
|
||
};
|
||
var i = merge_stack.len - 1;
|
||
while (i > 0) {
|
||
i -= 1;
|
||
const step = merge_stack[i];
|
||
try self.func.body.emitBranch(self.spv.gpa, step.merge_block);
|
||
try self.beginSpvBlock(step.merge_block);
|
||
const next_block = try self.structuredNextBlock(&.{ incoming, step.incoming });
|
||
incoming = .{
|
||
.src_label = step.merge_block,
|
||
.next_block = next_block,
|
||
};
|
||
}
|
||
|
||
return incoming.next_block;
|
||
},
|
||
.loop => |merge| {
|
||
// Close the loop by jumping to the continue label
|
||
try self.func.body.emitBranch(self.spv.gpa, block_merge_type.loop.continue_label);
|
||
// For blocks we must simple merge all the incoming blocks to get the next block.
|
||
try self.beginSpvBlock(merge.merge_block);
|
||
return try self.structuredNextBlock(merge.merges.items);
|
||
},
|
||
}
|
||
}
|
||
|
||
fn airBlock(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const inst_datas = self.air.instructions.items(.data);
|
||
const extra = self.air.extraData(Air.Block, inst_datas[@intFromEnum(inst)].ty_pl.payload);
|
||
return self.lowerBlock(inst, @ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]));
|
||
}
|
||
|
||
fn lowerBlock(self: *NavGen, inst: Air.Inst.Index, body: []const Air.Inst.Index) !?IdRef {
|
||
// In AIR, a block doesn't really define an entry point like a block, but
|
||
// more like a scope that breaks can jump out of and "return" a value from.
|
||
// This cannot be directly modelled in SPIR-V, so in a block instruction,
|
||
// we're going to split up the current block by first generating the code
|
||
// of the block, then a label, and then generate the rest of the current
|
||
// ir.Block in a different SPIR-V block.
|
||
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ty = self.typeOfIndex(inst);
|
||
const have_block_result = ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu);
|
||
|
||
const cf = switch (self.control_flow) {
|
||
.structured => |*cf| cf,
|
||
.unstructured => |*cf| {
|
||
var block = ControlFlow.Unstructured.Block{};
|
||
defer block.incoming_blocks.deinit(self.gpa);
|
||
|
||
// 4 chosen as arbitrary initial capacity.
|
||
try block.incoming_blocks.ensureUnusedCapacity(self.gpa, 4);
|
||
|
||
try cf.blocks.putNoClobber(self.gpa, inst, &block);
|
||
defer assert(cf.blocks.remove(inst));
|
||
|
||
try self.genBody(body);
|
||
|
||
// Only begin a new block if there were actually any breaks towards it.
|
||
if (block.label) |label| {
|
||
try self.beginSpvBlock(label);
|
||
}
|
||
|
||
if (!have_block_result)
|
||
return null;
|
||
|
||
assert(block.label != null);
|
||
const result_id = self.spv.allocId();
|
||
const result_type_id = try self.resolveType(ty, .direct);
|
||
|
||
try self.func.body.emitRaw(
|
||
self.spv.gpa,
|
||
.OpPhi,
|
||
// result type + result + variable/parent...
|
||
2 + @as(u16, @intCast(block.incoming_blocks.items.len * 2)),
|
||
);
|
||
self.func.body.writeOperand(spec.IdResultType, result_type_id);
|
||
self.func.body.writeOperand(spec.IdRef, result_id);
|
||
|
||
for (block.incoming_blocks.items) |incoming| {
|
||
self.func.body.writeOperand(
|
||
spec.PairIdRefIdRef,
|
||
.{ incoming.break_value_id, incoming.src_label },
|
||
);
|
||
}
|
||
|
||
return result_id;
|
||
},
|
||
};
|
||
|
||
const maybe_block_result_var_id = if (have_block_result) blk: {
|
||
const block_result_var_id = try self.alloc(ty, .{ .storage_class = .Function });
|
||
try cf.block_results.putNoClobber(self.gpa, inst, block_result_var_id);
|
||
break :blk block_result_var_id;
|
||
} else null;
|
||
defer if (have_block_result) assert(cf.block_results.remove(inst));
|
||
|
||
const next_block = try self.genStructuredBody(.selection, body);
|
||
|
||
// When encountering a block instruction, we are always at least in the function's scope,
|
||
// so there always has to be another entry.
|
||
assert(cf.block_stack.items.len > 0);
|
||
|
||
// Check if the target of the branch was this current block.
|
||
const this_block = try self.constInt(Type.u32, @intFromEnum(inst));
|
||
const jump_to_this_block_id = self.spv.allocId();
|
||
const bool_ty_id = try self.resolveType(Type.bool, .direct);
|
||
try self.func.body.emit(self.spv.gpa, .OpIEqual, .{
|
||
.id_result_type = bool_ty_id,
|
||
.id_result = jump_to_this_block_id,
|
||
.operand_1 = next_block,
|
||
.operand_2 = this_block,
|
||
});
|
||
|
||
const sblock = cf.block_stack.getLast();
|
||
|
||
if (ty.isNoReturn(zcu)) {
|
||
// If this block is noreturn, this instruction is the last of a block,
|
||
// and we must simply jump to the block's merge unconditionally.
|
||
try self.structuredBreak(next_block);
|
||
} else {
|
||
switch (sblock.*) {
|
||
.selection => |*merge| {
|
||
// To jump out of a selection block, push a new entry onto its merge stack and
|
||
// generate a conditional branch to there and to the instructions following this block.
|
||
const merge_label = self.spv.allocId();
|
||
const then_label = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
|
||
.merge_block = merge_label,
|
||
.selection_control = .{},
|
||
});
|
||
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
|
||
.condition = jump_to_this_block_id,
|
||
.true_label = then_label,
|
||
.false_label = merge_label,
|
||
});
|
||
try merge.merge_stack.append(self.gpa, .{
|
||
.incoming = .{
|
||
.src_label = self.current_block_label,
|
||
.next_block = next_block,
|
||
},
|
||
.merge_block = merge_label,
|
||
});
|
||
|
||
try self.beginSpvBlock(then_label);
|
||
},
|
||
.loop => |*merge| {
|
||
// To jump out of a loop block, generate a conditional that exits the block
|
||
// to the loop merge if the target ID is not the one of this block.
|
||
const continue_label = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
|
||
.condition = jump_to_this_block_id,
|
||
.true_label = continue_label,
|
||
.false_label = merge.merge_block,
|
||
});
|
||
try merge.merges.append(self.gpa, .{
|
||
.src_label = self.current_block_label,
|
||
.next_block = next_block,
|
||
});
|
||
try self.beginSpvBlock(continue_label);
|
||
},
|
||
}
|
||
}
|
||
|
||
if (maybe_block_result_var_id) |block_result_var_id| {
|
||
return try self.load(ty, block_result_var_id, .{});
|
||
}
|
||
|
||
return null;
|
||
}
|
||
|
||
fn airBr(self: *NavGen, inst: Air.Inst.Index) !void {
|
||
const zcu = self.pt.zcu;
|
||
const br = self.air.instructions.items(.data)[@intFromEnum(inst)].br;
|
||
const operand_ty = self.typeOf(br.operand);
|
||
|
||
switch (self.control_flow) {
|
||
.structured => |*cf| {
|
||
if (operand_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
|
||
const operand_id = try self.resolve(br.operand);
|
||
const block_result_var_id = cf.block_results.get(br.block_inst).?;
|
||
try self.store(operand_ty, block_result_var_id, operand_id, .{});
|
||
}
|
||
|
||
const next_block = try self.constInt(Type.u32, @intFromEnum(br.block_inst));
|
||
try self.structuredBreak(next_block);
|
||
},
|
||
.unstructured => |cf| {
|
||
const block = cf.blocks.get(br.block_inst).?;
|
||
if (operand_ty.isFnOrHasRuntimeBitsIgnoreComptime(zcu)) {
|
||
const operand_id = try self.resolve(br.operand);
|
||
// current_block_label should not be undefined here, lest there
|
||
// is a br or br_void in the function's body.
|
||
try block.incoming_blocks.append(self.gpa, .{
|
||
.src_label = self.current_block_label,
|
||
.break_value_id = operand_id,
|
||
});
|
||
}
|
||
|
||
if (block.label == null) {
|
||
block.label = self.spv.allocId();
|
||
}
|
||
|
||
try self.func.body.emitBranch(self.spv.gpa, block.label.?);
|
||
},
|
||
}
|
||
}
|
||
|
||
fn airCondBr(self: *NavGen, inst: Air.Inst.Index) !void {
|
||
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
|
||
const cond_br = self.air.extraData(Air.CondBr, pl_op.payload);
|
||
const then_body: []const Air.Inst.Index = @ptrCast(self.air.extra[cond_br.end..][0..cond_br.data.then_body_len]);
|
||
const else_body: []const Air.Inst.Index = @ptrCast(self.air.extra[cond_br.end + then_body.len ..][0..cond_br.data.else_body_len]);
|
||
const condition_id = try self.resolve(pl_op.operand);
|
||
|
||
const then_label = self.spv.allocId();
|
||
const else_label = self.spv.allocId();
|
||
|
||
switch (self.control_flow) {
|
||
.structured => {
|
||
const merge_label = self.spv.allocId();
|
||
|
||
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
|
||
.merge_block = merge_label,
|
||
.selection_control = .{},
|
||
});
|
||
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
|
||
.condition = condition_id,
|
||
.true_label = then_label,
|
||
.false_label = else_label,
|
||
});
|
||
|
||
try self.beginSpvBlock(then_label);
|
||
const then_next = try self.genStructuredBody(.selection, then_body);
|
||
const then_incoming = ControlFlow.Structured.Block.Incoming{
|
||
.src_label = self.current_block_label,
|
||
.next_block = then_next,
|
||
};
|
||
try self.func.body.emitBranch(self.spv.gpa, merge_label);
|
||
|
||
try self.beginSpvBlock(else_label);
|
||
const else_next = try self.genStructuredBody(.selection, else_body);
|
||
const else_incoming = ControlFlow.Structured.Block.Incoming{
|
||
.src_label = self.current_block_label,
|
||
.next_block = else_next,
|
||
};
|
||
try self.func.body.emitBranch(self.spv.gpa, merge_label);
|
||
|
||
try self.beginSpvBlock(merge_label);
|
||
const next_block = try self.structuredNextBlock(&.{ then_incoming, else_incoming });
|
||
|
||
try self.structuredBreak(next_block);
|
||
},
|
||
.unstructured => {
|
||
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
|
||
.condition = condition_id,
|
||
.true_label = then_label,
|
||
.false_label = else_label,
|
||
});
|
||
|
||
try self.beginSpvBlock(then_label);
|
||
try self.genBody(then_body);
|
||
try self.beginSpvBlock(else_label);
|
||
try self.genBody(else_body);
|
||
},
|
||
}
|
||
}
|
||
|
||
fn airLoop(self: *NavGen, inst: Air.Inst.Index) !void {
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const loop = self.air.extraData(Air.Block, ty_pl.payload);
|
||
const body: []const Air.Inst.Index = @ptrCast(self.air.extra[loop.end..][0..loop.data.body_len]);
|
||
|
||
const body_label = self.spv.allocId();
|
||
|
||
switch (self.control_flow) {
|
||
.structured => {
|
||
const header_label = self.spv.allocId();
|
||
const merge_label = self.spv.allocId();
|
||
const continue_label = self.spv.allocId();
|
||
|
||
// The back-edge must point to the loop header, so generate a separate block for the
|
||
// loop header so that we don't accidentally include some instructions from there
|
||
// in the loop.
|
||
try self.func.body.emitBranch(self.spv.gpa, header_label);
|
||
try self.beginSpvBlock(header_label);
|
||
|
||
// Emit loop header and jump to loop body
|
||
try self.func.body.emit(self.spv.gpa, .OpLoopMerge, .{
|
||
.merge_block = merge_label,
|
||
.continue_target = continue_label,
|
||
.loop_control = .{},
|
||
});
|
||
try self.func.body.emitBranch(self.spv.gpa, body_label);
|
||
|
||
try self.beginSpvBlock(body_label);
|
||
|
||
const next_block = try self.genStructuredBody(.{ .loop = .{
|
||
.merge_label = merge_label,
|
||
.continue_label = continue_label,
|
||
} }, body);
|
||
try self.structuredBreak(next_block);
|
||
|
||
try self.beginSpvBlock(continue_label);
|
||
try self.func.body.emitBranch(self.spv.gpa, header_label);
|
||
},
|
||
.unstructured => {
|
||
try self.func.body.emitBranch(self.spv.gpa, body_label);
|
||
try self.beginSpvBlock(body_label);
|
||
try self.genBody(body);
|
||
try self.func.body.emitBranch(self.spv.gpa, body_label);
|
||
},
|
||
}
|
||
}
|
||
|
||
fn airLoad(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const ptr_ty = self.typeOf(ty_op.operand);
|
||
const elem_ty = self.typeOfIndex(inst);
|
||
const operand = try self.resolve(ty_op.operand);
|
||
if (!ptr_ty.isVolatilePtr(zcu) and self.liveness.isUnused(inst)) return null;
|
||
|
||
return try self.load(elem_ty, operand, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
|
||
}
|
||
|
||
fn airStore(self: *NavGen, inst: Air.Inst.Index) !void {
|
||
const zcu = self.pt.zcu;
|
||
const bin_op = self.air.instructions.items(.data)[@intFromEnum(inst)].bin_op;
|
||
const ptr_ty = self.typeOf(bin_op.lhs);
|
||
const elem_ty = ptr_ty.childType(zcu);
|
||
const ptr = try self.resolve(bin_op.lhs);
|
||
const value = try self.resolve(bin_op.rhs);
|
||
|
||
try self.store(elem_ty, ptr, value, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
|
||
}
|
||
|
||
fn airRet(self: *NavGen, inst: Air.Inst.Index) !void {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const operand = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
|
||
const ret_ty = self.typeOf(operand);
|
||
if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
|
||
const fn_info = zcu.typeToFunc(zcu.navValue(self.owner_nav).typeOf(zcu)).?;
|
||
if (Type.fromInterned(fn_info.return_type).isError(zcu)) {
|
||
// Functions with an empty error set are emitted with an error code
|
||
// return type and return zero so they can be function pointers coerced
|
||
// to functions that return anyerror.
|
||
const no_err_id = try self.constInt(Type.anyerror, 0);
|
||
return try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = no_err_id });
|
||
} else {
|
||
return try self.func.body.emit(self.spv.gpa, .OpReturn, {});
|
||
}
|
||
}
|
||
|
||
const operand_id = try self.resolve(operand);
|
||
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = operand_id });
|
||
}
|
||
|
||
fn airRetLoad(self: *NavGen, inst: Air.Inst.Index) !void {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
|
||
const ptr_ty = self.typeOf(un_op);
|
||
const ret_ty = ptr_ty.childType(zcu);
|
||
|
||
if (!ret_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
|
||
const fn_info = zcu.typeToFunc(zcu.navValue(self.owner_nav).typeOf(zcu)).?;
|
||
if (Type.fromInterned(fn_info.return_type).isError(zcu)) {
|
||
// Functions with an empty error set are emitted with an error code
|
||
// return type and return zero so they can be function pointers coerced
|
||
// to functions that return anyerror.
|
||
const no_err_id = try self.constInt(Type.anyerror, 0);
|
||
return try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{ .value = no_err_id });
|
||
} else {
|
||
return try self.func.body.emit(self.spv.gpa, .OpReturn, {});
|
||
}
|
||
}
|
||
|
||
const ptr = try self.resolve(un_op);
|
||
const value = try self.load(ret_ty, ptr, .{ .is_volatile = ptr_ty.isVolatilePtr(zcu) });
|
||
try self.func.body.emit(self.spv.gpa, .OpReturnValue, .{
|
||
.value = value,
|
||
});
|
||
}
|
||
|
||
fn airTry(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
|
||
const err_union_id = try self.resolve(pl_op.operand);
|
||
const extra = self.air.extraData(Air.Try, pl_op.payload);
|
||
const body: []const Air.Inst.Index = @ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]);
|
||
|
||
const err_union_ty = self.typeOf(pl_op.operand);
|
||
const payload_ty = self.typeOfIndex(inst);
|
||
|
||
const bool_ty_id = try self.resolveType(Type.bool, .direct);
|
||
|
||
const eu_layout = self.errorUnionLayout(payload_ty);
|
||
|
||
if (!err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
|
||
const err_id = if (eu_layout.payload_has_bits)
|
||
try self.extractField(Type.anyerror, err_union_id, eu_layout.errorFieldIndex())
|
||
else
|
||
err_union_id;
|
||
|
||
const zero_id = try self.constInt(Type.anyerror, 0);
|
||
const is_err_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpINotEqual, .{
|
||
.id_result_type = bool_ty_id,
|
||
.id_result = is_err_id,
|
||
.operand_1 = err_id,
|
||
.operand_2 = zero_id,
|
||
});
|
||
|
||
// When there is an error, we must evaluate `body`. Otherwise we must continue
|
||
// with the current body.
|
||
// Just generate a new block here, then generate a new block inline for the remainder of the body.
|
||
|
||
const err_block = self.spv.allocId();
|
||
const ok_block = self.spv.allocId();
|
||
|
||
switch (self.control_flow) {
|
||
.structured => {
|
||
// According to AIR documentation, this block is guaranteed
|
||
// to not break and end in a return instruction. Thus,
|
||
// for structured control flow, we can just naively use
|
||
// the ok block as the merge block here.
|
||
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
|
||
.merge_block = ok_block,
|
||
.selection_control = .{},
|
||
});
|
||
},
|
||
.unstructured => {},
|
||
}
|
||
|
||
try self.func.body.emit(self.spv.gpa, .OpBranchConditional, .{
|
||
.condition = is_err_id,
|
||
.true_label = err_block,
|
||
.false_label = ok_block,
|
||
});
|
||
|
||
try self.beginSpvBlock(err_block);
|
||
try self.genBody(body);
|
||
|
||
try self.beginSpvBlock(ok_block);
|
||
}
|
||
|
||
if (!eu_layout.payload_has_bits) {
|
||
return null;
|
||
}
|
||
|
||
// Now just extract the payload, if required.
|
||
return try self.extractField(payload_ty, err_union_id, eu_layout.payloadFieldIndex());
|
||
}
|
||
|
||
fn airErrUnionErr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const operand_id = try self.resolve(ty_op.operand);
|
||
const err_union_ty = self.typeOf(ty_op.operand);
|
||
const err_ty_id = try self.resolveType(Type.anyerror, .direct);
|
||
|
||
if (err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
|
||
// No error possible, so just return undefined.
|
||
return try self.spv.constUndef(err_ty_id);
|
||
}
|
||
|
||
const payload_ty = err_union_ty.errorUnionPayload(zcu);
|
||
const eu_layout = self.errorUnionLayout(payload_ty);
|
||
|
||
if (!eu_layout.payload_has_bits) {
|
||
// If no payload, error union is represented by error set.
|
||
return operand_id;
|
||
}
|
||
|
||
return try self.extractField(Type.anyerror, operand_id, eu_layout.errorFieldIndex());
|
||
}
|
||
|
||
fn airErrUnionPayload(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const operand_id = try self.resolve(ty_op.operand);
|
||
const payload_ty = self.typeOfIndex(inst);
|
||
const eu_layout = self.errorUnionLayout(payload_ty);
|
||
|
||
if (!eu_layout.payload_has_bits) {
|
||
return null; // No error possible.
|
||
}
|
||
|
||
return try self.extractField(payload_ty, operand_id, eu_layout.payloadFieldIndex());
|
||
}
|
||
|
||
fn airWrapErrUnionErr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const err_union_ty = self.typeOfIndex(inst);
|
||
const payload_ty = err_union_ty.errorUnionPayload(zcu);
|
||
const operand_id = try self.resolve(ty_op.operand);
|
||
const eu_layout = self.errorUnionLayout(payload_ty);
|
||
|
||
if (!eu_layout.payload_has_bits) {
|
||
return operand_id;
|
||
}
|
||
|
||
const payload_ty_id = try self.resolveType(payload_ty, .indirect);
|
||
|
||
var members: [2]IdRef = undefined;
|
||
members[eu_layout.errorFieldIndex()] = operand_id;
|
||
members[eu_layout.payloadFieldIndex()] = try self.spv.constUndef(payload_ty_id);
|
||
|
||
var types: [2]Type = undefined;
|
||
types[eu_layout.errorFieldIndex()] = Type.anyerror;
|
||
types[eu_layout.payloadFieldIndex()] = payload_ty;
|
||
|
||
const err_union_ty_id = try self.resolveType(err_union_ty, .direct);
|
||
return try self.constructComposite(err_union_ty_id, &members);
|
||
}
|
||
|
||
fn airWrapErrUnionPayload(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const err_union_ty = self.typeOfIndex(inst);
|
||
const operand_id = try self.resolve(ty_op.operand);
|
||
const payload_ty = self.typeOf(ty_op.operand);
|
||
const eu_layout = self.errorUnionLayout(payload_ty);
|
||
|
||
if (!eu_layout.payload_has_bits) {
|
||
return try self.constInt(Type.anyerror, 0);
|
||
}
|
||
|
||
var members: [2]IdRef = undefined;
|
||
members[eu_layout.errorFieldIndex()] = try self.constInt(Type.anyerror, 0);
|
||
members[eu_layout.payloadFieldIndex()] = try self.convertToIndirect(payload_ty, operand_id);
|
||
|
||
var types: [2]Type = undefined;
|
||
types[eu_layout.errorFieldIndex()] = Type.anyerror;
|
||
types[eu_layout.payloadFieldIndex()] = payload_ty;
|
||
|
||
const err_union_ty_id = try self.resolveType(err_union_ty, .direct);
|
||
return try self.constructComposite(err_union_ty_id, &members);
|
||
}
|
||
|
||
fn airIsNull(self: *NavGen, inst: Air.Inst.Index, is_pointer: bool, pred: enum { is_null, is_non_null }) !?IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
|
||
const operand_id = try self.resolve(un_op);
|
||
const operand_ty = self.typeOf(un_op);
|
||
const optional_ty = if (is_pointer) operand_ty.childType(zcu) else operand_ty;
|
||
const payload_ty = optional_ty.optionalChild(zcu);
|
||
|
||
const bool_ty_id = try self.resolveType(Type.bool, .direct);
|
||
|
||
if (optional_ty.optionalReprIsPayload(zcu)) {
|
||
// Pointer payload represents nullability: pointer or slice.
|
||
const loaded_id = if (is_pointer)
|
||
try self.load(optional_ty, operand_id, .{})
|
||
else
|
||
operand_id;
|
||
|
||
const ptr_ty = if (payload_ty.isSlice(zcu))
|
||
payload_ty.slicePtrFieldType(zcu)
|
||
else
|
||
payload_ty;
|
||
|
||
const ptr_id = if (payload_ty.isSlice(zcu))
|
||
try self.extractField(ptr_ty, loaded_id, 0)
|
||
else
|
||
loaded_id;
|
||
|
||
const ptr_ty_id = try self.resolveType(ptr_ty, .direct);
|
||
const null_id = try self.spv.constNull(ptr_ty_id);
|
||
const null_tmp = Temporary.init(ptr_ty, null_id);
|
||
const ptr = Temporary.init(ptr_ty, ptr_id);
|
||
|
||
const op: std.math.CompareOperator = switch (pred) {
|
||
.is_null => .eq,
|
||
.is_non_null => .neq,
|
||
};
|
||
const result = try self.cmp(op, ptr, null_tmp);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
const is_non_null_id = blk: {
|
||
if (is_pointer) {
|
||
if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
|
||
const storage_class = self.spvStorageClass(operand_ty.ptrAddressSpace(zcu));
|
||
const bool_ptr_ty_id = try self.ptrType(Type.bool, storage_class, .indirect);
|
||
const tag_ptr_id = try self.accessChain(bool_ptr_ty_id, operand_id, &.{1});
|
||
break :blk try self.load(Type.bool, tag_ptr_id, .{});
|
||
}
|
||
|
||
break :blk try self.load(Type.bool, operand_id, .{});
|
||
}
|
||
|
||
break :blk if (payload_ty.hasRuntimeBitsIgnoreComptime(zcu))
|
||
try self.extractField(Type.bool, operand_id, 1)
|
||
else
|
||
// Optional representation is bool indicating whether the optional is set
|
||
// Optionals with no payload are represented as an (indirect) bool, so convert
|
||
// it back to the direct bool here.
|
||
try self.convertToDirect(Type.bool, operand_id);
|
||
};
|
||
|
||
return switch (pred) {
|
||
.is_null => blk: {
|
||
// Invert condition
|
||
const result_id = self.spv.allocId();
|
||
try self.func.body.emit(self.spv.gpa, .OpLogicalNot, .{
|
||
.id_result_type = bool_ty_id,
|
||
.id_result = result_id,
|
||
.operand = is_non_null_id,
|
||
});
|
||
break :blk result_id;
|
||
},
|
||
.is_non_null => is_non_null_id,
|
||
};
|
||
}
|
||
|
||
fn airIsErr(self: *NavGen, inst: Air.Inst.Index, pred: enum { is_err, is_non_err }) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const un_op = self.air.instructions.items(.data)[@intFromEnum(inst)].un_op;
|
||
const operand_id = try self.resolve(un_op);
|
||
const err_union_ty = self.typeOf(un_op);
|
||
|
||
if (err_union_ty.errorUnionSet(zcu).errorSetIsEmpty(zcu)) {
|
||
return try self.constBool(pred == .is_non_err, .direct);
|
||
}
|
||
|
||
const payload_ty = err_union_ty.errorUnionPayload(zcu);
|
||
const eu_layout = self.errorUnionLayout(payload_ty);
|
||
const bool_ty_id = try self.resolveType(Type.bool, .direct);
|
||
|
||
const error_id = if (!eu_layout.payload_has_bits)
|
||
operand_id
|
||
else
|
||
try self.extractField(Type.anyerror, operand_id, eu_layout.errorFieldIndex());
|
||
|
||
const result_id = self.spv.allocId();
|
||
switch (pred) {
|
||
inline else => |pred_ct| try self.func.body.emit(
|
||
self.spv.gpa,
|
||
switch (pred_ct) {
|
||
.is_err => .OpINotEqual,
|
||
.is_non_err => .OpIEqual,
|
||
},
|
||
.{
|
||
.id_result_type = bool_ty_id,
|
||
.id_result = result_id,
|
||
.operand_1 = error_id,
|
||
.operand_2 = try self.constInt(Type.anyerror, 0),
|
||
},
|
||
),
|
||
}
|
||
return result_id;
|
||
}
|
||
|
||
fn airUnwrapOptional(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const operand_id = try self.resolve(ty_op.operand);
|
||
const optional_ty = self.typeOf(ty_op.operand);
|
||
const payload_ty = self.typeOfIndex(inst);
|
||
|
||
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) return null;
|
||
|
||
if (optional_ty.optionalReprIsPayload(zcu)) {
|
||
return operand_id;
|
||
}
|
||
|
||
return try self.extractField(payload_ty, operand_id, 0);
|
||
}
|
||
|
||
fn airUnwrapOptionalPtr(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const operand_id = try self.resolve(ty_op.operand);
|
||
const operand_ty = self.typeOf(ty_op.operand);
|
||
const optional_ty = operand_ty.childType(zcu);
|
||
const payload_ty = optional_ty.optionalChild(zcu);
|
||
const result_ty = self.typeOfIndex(inst);
|
||
const result_ty_id = try self.resolveType(result_ty, .direct);
|
||
|
||
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
|
||
// There is no payload, but we still need to return a valid pointer.
|
||
// We can just return anything here, so just return a pointer to the operand.
|
||
return try self.bitCast(result_ty, operand_ty, operand_id);
|
||
}
|
||
|
||
if (optional_ty.optionalReprIsPayload(zcu)) {
|
||
// They are the same value.
|
||
return try self.bitCast(result_ty, operand_ty, operand_id);
|
||
}
|
||
|
||
return try self.accessChain(result_ty_id, operand_id, &.{0});
|
||
}
|
||
|
||
fn airWrapOptional(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const ty_op = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_op;
|
||
const payload_ty = self.typeOf(ty_op.operand);
|
||
|
||
if (!payload_ty.hasRuntimeBitsIgnoreComptime(zcu)) {
|
||
return try self.constBool(true, .indirect);
|
||
}
|
||
|
||
const operand_id = try self.resolve(ty_op.operand);
|
||
|
||
const optional_ty = self.typeOfIndex(inst);
|
||
if (optional_ty.optionalReprIsPayload(zcu)) {
|
||
return operand_id;
|
||
}
|
||
|
||
const payload_id = try self.convertToIndirect(payload_ty, operand_id);
|
||
const members = [_]IdRef{ payload_id, try self.constBool(true, .indirect) };
|
||
const optional_ty_id = try self.resolveType(optional_ty, .direct);
|
||
return try self.constructComposite(optional_ty_id, &members);
|
||
}
|
||
|
||
fn airSwitchBr(self: *NavGen, inst: Air.Inst.Index) !void {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const target = self.spv.target;
|
||
const switch_br = self.air.unwrapSwitch(inst);
|
||
const cond_ty = self.typeOf(switch_br.operand);
|
||
const cond = try self.resolve(switch_br.operand);
|
||
var cond_indirect = try self.convertToIndirect(cond_ty, cond);
|
||
|
||
const cond_words: u32 = switch (cond_ty.zigTypeTag(zcu)) {
|
||
.bool, .error_set => 1,
|
||
.int => blk: {
|
||
const bits = cond_ty.intInfo(zcu).bits;
|
||
const backing_bits = self.backingIntBits(bits) orelse {
|
||
return self.todo("implement composite int switch", .{});
|
||
};
|
||
break :blk if (backing_bits <= 32) 1 else 2;
|
||
},
|
||
.@"enum" => blk: {
|
||
const int_ty = cond_ty.intTagType(zcu);
|
||
const int_info = int_ty.intInfo(zcu);
|
||
const backing_bits = self.backingIntBits(int_info.bits) orelse {
|
||
return self.todo("implement composite int switch", .{});
|
||
};
|
||
break :blk if (backing_bits <= 32) 1 else 2;
|
||
},
|
||
.pointer => blk: {
|
||
cond_indirect = try self.intFromPtr(cond_indirect);
|
||
break :blk target.ptrBitWidth() / 32;
|
||
},
|
||
// TODO: Figure out which types apply here, and work around them as we can only do integers.
|
||
else => return self.todo("implement switch for type {s}", .{@tagName(cond_ty.zigTypeTag(zcu))}),
|
||
};
|
||
|
||
const num_cases = switch_br.cases_len;
|
||
|
||
// Compute the total number of arms that we need.
|
||
// Zig switches are grouped by condition, so we need to loop through all of them
|
||
const num_conditions = blk: {
|
||
var num_conditions: u32 = 0;
|
||
var it = switch_br.iterateCases();
|
||
while (it.next()) |case| {
|
||
if (case.ranges.len > 0) return self.todo("switch with ranges", .{});
|
||
num_conditions += @intCast(case.items.len);
|
||
}
|
||
break :blk num_conditions;
|
||
};
|
||
|
||
// First, pre-allocate the labels for the cases.
|
||
const case_labels = self.spv.allocIds(num_cases);
|
||
// We always need the default case - if zig has none, we will generate unreachable there.
|
||
const default = self.spv.allocId();
|
||
|
||
const merge_label = switch (self.control_flow) {
|
||
.structured => self.spv.allocId(),
|
||
.unstructured => null,
|
||
};
|
||
|
||
if (self.control_flow == .structured) {
|
||
try self.func.body.emit(self.spv.gpa, .OpSelectionMerge, .{
|
||
.merge_block = merge_label.?,
|
||
.selection_control = .{},
|
||
});
|
||
}
|
||
|
||
// Emit the instruction before generating the blocks.
|
||
try self.func.body.emitRaw(self.spv.gpa, .OpSwitch, 2 + (cond_words + 1) * num_conditions);
|
||
self.func.body.writeOperand(IdRef, cond_indirect);
|
||
self.func.body.writeOperand(IdRef, default);
|
||
|
||
// Emit each of the cases
|
||
{
|
||
var it = switch_br.iterateCases();
|
||
while (it.next()) |case| {
|
||
// SPIR-V needs a literal here, which' width depends on the case condition.
|
||
const label = case_labels.at(case.idx);
|
||
|
||
for (case.items) |item| {
|
||
const value = (try self.air.value(item, pt)) orelse unreachable;
|
||
const int_val: u64 = switch (cond_ty.zigTypeTag(zcu)) {
|
||
.bool, .int => if (cond_ty.isSignedInt(zcu)) @bitCast(value.toSignedInt(zcu)) else value.toUnsignedInt(zcu),
|
||
.@"enum" => blk: {
|
||
// TODO: figure out of cond_ty is correct (something with enum literals)
|
||
break :blk (try value.intFromEnum(cond_ty, pt)).toUnsignedInt(zcu); // TODO: composite integer constants
|
||
},
|
||
.error_set => value.getErrorInt(zcu),
|
||
.pointer => value.toUnsignedInt(zcu),
|
||
else => unreachable,
|
||
};
|
||
const int_lit: spec.LiteralContextDependentNumber = switch (cond_words) {
|
||
1 => .{ .uint32 = @intCast(int_val) },
|
||
2 => .{ .uint64 = int_val },
|
||
else => unreachable,
|
||
};
|
||
self.func.body.writeOperand(spec.LiteralContextDependentNumber, int_lit);
|
||
self.func.body.writeOperand(IdRef, label);
|
||
}
|
||
}
|
||
}
|
||
|
||
var incoming_structured_blocks: std.ArrayListUnmanaged(ControlFlow.Structured.Block.Incoming) = .empty;
|
||
defer incoming_structured_blocks.deinit(self.gpa);
|
||
|
||
if (self.control_flow == .structured) {
|
||
try incoming_structured_blocks.ensureUnusedCapacity(self.gpa, num_cases + 1);
|
||
}
|
||
|
||
// Now, finally, we can start emitting each of the cases.
|
||
var it = switch_br.iterateCases();
|
||
while (it.next()) |case| {
|
||
const label = case_labels.at(case.idx);
|
||
|
||
try self.beginSpvBlock(label);
|
||
|
||
switch (self.control_flow) {
|
||
.structured => {
|
||
const next_block = try self.genStructuredBody(.selection, case.body);
|
||
incoming_structured_blocks.appendAssumeCapacity(.{
|
||
.src_label = self.current_block_label,
|
||
.next_block = next_block,
|
||
});
|
||
try self.func.body.emitBranch(self.spv.gpa, merge_label.?);
|
||
},
|
||
.unstructured => {
|
||
try self.genBody(case.body);
|
||
},
|
||
}
|
||
}
|
||
|
||
const else_body = it.elseBody();
|
||
try self.beginSpvBlock(default);
|
||
if (else_body.len != 0) {
|
||
switch (self.control_flow) {
|
||
.structured => {
|
||
const next_block = try self.genStructuredBody(.selection, else_body);
|
||
incoming_structured_blocks.appendAssumeCapacity(.{
|
||
.src_label = self.current_block_label,
|
||
.next_block = next_block,
|
||
});
|
||
try self.func.body.emitBranch(self.spv.gpa, merge_label.?);
|
||
},
|
||
.unstructured => {
|
||
try self.genBody(else_body);
|
||
},
|
||
}
|
||
} else {
|
||
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
|
||
}
|
||
|
||
if (self.control_flow == .structured) {
|
||
try self.beginSpvBlock(merge_label.?);
|
||
const next_block = try self.structuredNextBlock(incoming_structured_blocks.items);
|
||
try self.structuredBreak(next_block);
|
||
}
|
||
}
|
||
|
||
fn airUnreach(self: *NavGen) !void {
|
||
try self.func.body.emit(self.spv.gpa, .OpUnreachable, {});
|
||
}
|
||
|
||
fn airDbgStmt(self: *NavGen, inst: Air.Inst.Index) !void {
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const dbg_stmt = self.air.instructions.items(.data)[@intFromEnum(inst)].dbg_stmt;
|
||
const path = zcu.navFileScope(self.owner_nav).sub_file_path;
|
||
try self.func.body.emit(self.spv.gpa, .OpLine, .{
|
||
.file = try self.spv.resolveString(path),
|
||
.line = self.base_line + dbg_stmt.line + 1,
|
||
.column = dbg_stmt.column + 1,
|
||
});
|
||
}
|
||
|
||
fn airDbgInlineBlock(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const inst_datas = self.air.instructions.items(.data);
|
||
const extra = self.air.extraData(Air.DbgInlineBlock, inst_datas[@intFromEnum(inst)].ty_pl.payload);
|
||
const old_base_line = self.base_line;
|
||
defer self.base_line = old_base_line;
|
||
self.base_line = zcu.navSrcLine(zcu.funcInfo(extra.data.func).owner_nav);
|
||
return self.lowerBlock(inst, @ptrCast(self.air.extra[extra.end..][0..extra.data.body_len]));
|
||
}
|
||
|
||
fn airDbgVar(self: *NavGen, inst: Air.Inst.Index) !void {
|
||
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
|
||
const target_id = try self.resolve(pl_op.operand);
|
||
const name: Air.NullTerminatedString = @enumFromInt(pl_op.payload);
|
||
try self.spv.debugName(target_id, name.toSlice(self.air));
|
||
}
|
||
|
||
fn airAssembly(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
const zcu = self.pt.zcu;
|
||
const ty_pl = self.air.instructions.items(.data)[@intFromEnum(inst)].ty_pl;
|
||
const extra = self.air.extraData(Air.Asm, ty_pl.payload);
|
||
|
||
const is_volatile = @as(u1, @truncate(extra.data.flags >> 31)) != 0;
|
||
const clobbers_len: u31 = @truncate(extra.data.flags);
|
||
|
||
if (!is_volatile and self.liveness.isUnused(inst)) return null;
|
||
|
||
var extra_i: usize = extra.end;
|
||
const outputs: []const Air.Inst.Ref = @ptrCast(self.air.extra[extra_i..][0..extra.data.outputs_len]);
|
||
extra_i += outputs.len;
|
||
const inputs: []const Air.Inst.Ref = @ptrCast(self.air.extra[extra_i..][0..extra.data.inputs_len]);
|
||
extra_i += inputs.len;
|
||
|
||
if (outputs.len > 1) {
|
||
return self.todo("implement inline asm with more than 1 output", .{});
|
||
}
|
||
|
||
var as = SpvAssembler{
|
||
.gpa = self.gpa,
|
||
.spv = self.spv,
|
||
.func = &self.func,
|
||
};
|
||
defer as.deinit();
|
||
|
||
var output_extra_i = extra_i;
|
||
for (outputs) |output| {
|
||
if (output != .none) {
|
||
return self.todo("implement inline asm with non-returned output", .{});
|
||
}
|
||
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
|
||
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
|
||
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
|
||
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
|
||
// TODO: Record output and use it somewhere.
|
||
}
|
||
|
||
for (inputs) |input| {
|
||
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[extra_i..]);
|
||
const constraint = std.mem.sliceTo(extra_bytes, 0);
|
||
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
|
||
// This equation accounts for the fact that even if we have exactly 4 bytes
|
||
// for the string, we still use the next u32 for the null terminator.
|
||
extra_i += (constraint.len + name.len + (2 + 3)) / 4;
|
||
|
||
const input_ty = self.typeOf(input);
|
||
|
||
if (std.mem.eql(u8, constraint, "c")) {
|
||
// constant
|
||
const val = (try self.air.value(input, self.pt)) orelse {
|
||
return self.fail("assembly inputs with 'c' constraint have to be compile-time known", .{});
|
||
};
|
||
|
||
// TODO: This entire function should be handled a bit better...
|
||
const ip = &zcu.intern_pool;
|
||
switch (ip.indexToKey(val.toIntern())) {
|
||
.int_type,
|
||
.ptr_type,
|
||
.array_type,
|
||
.vector_type,
|
||
.opt_type,
|
||
.anyframe_type,
|
||
.error_union_type,
|
||
.simple_type,
|
||
.struct_type,
|
||
.union_type,
|
||
.opaque_type,
|
||
.enum_type,
|
||
.func_type,
|
||
.error_set_type,
|
||
.inferred_error_set_type,
|
||
=> unreachable, // types, not values
|
||
|
||
.undef => return self.fail("assembly input with 'c' constraint cannot be undefined", .{}),
|
||
|
||
.int => try as.value_map.put(as.gpa, name, .{ .constant = @intCast(val.toUnsignedInt(zcu)) }),
|
||
.enum_literal => |str| try as.value_map.put(as.gpa, name, .{ .string = str.toSlice(ip) }),
|
||
|
||
else => unreachable, // TODO
|
||
}
|
||
} else if (std.mem.eql(u8, constraint, "t")) {
|
||
// type
|
||
if (input_ty.zigTypeTag(zcu) == .type) {
|
||
// This assembly input is a type instead of a value.
|
||
// That's fine for now, just make sure to resolve it as such.
|
||
const val = (try self.air.value(input, self.pt)).?;
|
||
const ty_id = try self.resolveType(val.toType(), .direct);
|
||
try as.value_map.put(as.gpa, name, .{ .ty = ty_id });
|
||
} else {
|
||
const ty_id = try self.resolveType(input_ty, .direct);
|
||
try as.value_map.put(as.gpa, name, .{ .ty = ty_id });
|
||
}
|
||
} else {
|
||
if (input_ty.zigTypeTag(zcu) == .type) {
|
||
return self.fail("use the 't' constraint to supply types to SPIR-V inline assembly", .{});
|
||
}
|
||
|
||
const val_id = try self.resolve(input);
|
||
try as.value_map.put(as.gpa, name, .{ .value = val_id });
|
||
}
|
||
}
|
||
|
||
{
|
||
var clobber_i: u32 = 0;
|
||
while (clobber_i < clobbers_len) : (clobber_i += 1) {
|
||
const clobber = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[extra_i..]), 0);
|
||
extra_i += clobber.len / 4 + 1;
|
||
// TODO: Record clobber and use it somewhere.
|
||
}
|
||
}
|
||
|
||
const asm_source = std.mem.sliceAsBytes(self.air.extra[extra_i..])[0..extra.data.source_len];
|
||
|
||
as.assemble(asm_source) catch |err| switch (err) {
|
||
error.AssembleFail => {
|
||
// TODO: For now the compiler only supports a single error message per decl,
|
||
// so to translate the possible multiple errors from the assembler, emit
|
||
// them as notes here.
|
||
// TODO: Translate proper error locations.
|
||
assert(as.errors.items.len != 0);
|
||
assert(self.error_msg == null);
|
||
const src_loc = zcu.navSrcLoc(self.owner_nav);
|
||
self.error_msg = try Zcu.ErrorMsg.create(zcu.gpa, src_loc, "failed to assemble SPIR-V inline assembly", .{});
|
||
const notes = try zcu.gpa.alloc(Zcu.ErrorMsg, as.errors.items.len);
|
||
|
||
// Sub-scope to prevent `return error.CodegenFail` from running the errdefers.
|
||
{
|
||
errdefer zcu.gpa.free(notes);
|
||
var i: usize = 0;
|
||
errdefer for (notes[0..i]) |*note| {
|
||
note.deinit(zcu.gpa);
|
||
};
|
||
|
||
while (i < as.errors.items.len) : (i += 1) {
|
||
notes[i] = try Zcu.ErrorMsg.init(zcu.gpa, src_loc, "{s}", .{as.errors.items[i].msg});
|
||
}
|
||
}
|
||
self.error_msg.?.notes = notes;
|
||
return error.CodegenFail;
|
||
},
|
||
else => |others| return others,
|
||
};
|
||
|
||
for (outputs) |output| {
|
||
_ = output;
|
||
const extra_bytes = std.mem.sliceAsBytes(self.air.extra[output_extra_i..]);
|
||
const constraint = std.mem.sliceTo(std.mem.sliceAsBytes(self.air.extra[output_extra_i..]), 0);
|
||
const name = std.mem.sliceTo(extra_bytes[constraint.len + 1 ..], 0);
|
||
output_extra_i += (constraint.len + name.len + (2 + 3)) / 4;
|
||
|
||
const result = as.value_map.get(name) orelse return {
|
||
return self.fail("invalid asm output '{s}'", .{name});
|
||
};
|
||
|
||
switch (result) {
|
||
.just_declared, .unresolved_forward_reference => unreachable,
|
||
.ty => return self.fail("cannot return spir-v type as value from assembly", .{}),
|
||
.value => |ref| return ref,
|
||
.constant, .string => return self.fail("cannot return constant from assembly", .{}),
|
||
}
|
||
|
||
// TODO: Multiple results
|
||
// TODO: Check that the output type from assembly is the same as the type actually expected by Zig.
|
||
}
|
||
|
||
return null;
|
||
}
|
||
|
||
fn airCall(self: *NavGen, inst: Air.Inst.Index, modifier: std.builtin.CallModifier) !?IdRef {
|
||
_ = modifier;
|
||
|
||
const pt = self.pt;
|
||
const zcu = pt.zcu;
|
||
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
|
||
const extra = self.air.extraData(Air.Call, pl_op.payload);
|
||
const args: []const Air.Inst.Ref = @ptrCast(self.air.extra[extra.end..][0..extra.data.args_len]);
|
||
const callee_ty = self.typeOf(pl_op.operand);
|
||
const zig_fn_ty = switch (callee_ty.zigTypeTag(zcu)) {
|
||
.@"fn" => callee_ty,
|
||
.pointer => return self.fail("cannot call function pointers", .{}),
|
||
else => unreachable,
|
||
};
|
||
const fn_info = zcu.typeToFunc(zig_fn_ty).?;
|
||
const return_type = fn_info.return_type;
|
||
|
||
const result_type_id = try self.resolveFnReturnType(Type.fromInterned(return_type));
|
||
const result_id = self.spv.allocId();
|
||
const callee_id = try self.resolve(pl_op.operand);
|
||
|
||
comptime assert(zig_call_abi_ver == 3);
|
||
const params = try self.gpa.alloc(spec.IdRef, args.len);
|
||
defer self.gpa.free(params);
|
||
var n_params: usize = 0;
|
||
for (args) |arg| {
|
||
// Note: resolve() might emit instructions, so we need to call it
|
||
// before starting to emit OpFunctionCall instructions. Hence the
|
||
// temporary params buffer.
|
||
const arg_ty = self.typeOf(arg);
|
||
if (!arg_ty.hasRuntimeBitsIgnoreComptime(zcu)) continue;
|
||
const arg_id = try self.resolve(arg);
|
||
|
||
params[n_params] = arg_id;
|
||
n_params += 1;
|
||
}
|
||
|
||
try self.func.body.emit(self.spv.gpa, .OpFunctionCall, .{
|
||
.id_result_type = result_type_id,
|
||
.id_result = result_id,
|
||
.function = callee_id,
|
||
.id_ref_3 = params[0..n_params],
|
||
});
|
||
|
||
if (self.liveness.isUnused(inst) or !Type.fromInterned(return_type).hasRuntimeBitsIgnoreComptime(zcu)) {
|
||
return null;
|
||
}
|
||
|
||
return result_id;
|
||
}
|
||
|
||
fn builtin3D(self: *NavGen, result_ty: Type, builtin: spec.BuiltIn, dimension: u32, out_of_range_value: anytype) !IdRef {
|
||
if (dimension >= 3) {
|
||
return try self.constInt(result_ty, out_of_range_value);
|
||
}
|
||
const vec_ty = try self.pt.vectorType(.{
|
||
.len = 3,
|
||
.child = result_ty.toIntern(),
|
||
});
|
||
const ptr_ty_id = try self.ptrType(vec_ty, .Input, .indirect);
|
||
const spv_decl_index = try self.spv.builtin(ptr_ty_id, builtin);
|
||
try self.func.decl_deps.put(self.spv.gpa, spv_decl_index, {});
|
||
const ptr = self.spv.declPtr(spv_decl_index).result_id;
|
||
const vec = try self.load(vec_ty, ptr, .{});
|
||
return try self.extractVectorComponent(result_ty, vec, dimension);
|
||
}
|
||
|
||
fn airWorkItemId(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
if (self.liveness.isUnused(inst)) return null;
|
||
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
|
||
const dimension = pl_op.payload;
|
||
// TODO: Should we make these builtins return usize?
|
||
const result_id = try self.builtin3D(Type.u64, .LocalInvocationId, dimension, 0);
|
||
const tmp = Temporary.init(Type.u64, result_id);
|
||
const result = try self.buildIntConvert(Type.u32, tmp);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
fn airWorkGroupSize(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
if (self.liveness.isUnused(inst)) return null;
|
||
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
|
||
const dimension = pl_op.payload;
|
||
// TODO: Should we make these builtins return usize?
|
||
const result_id = try self.builtin3D(Type.u64, .WorkgroupSize, dimension, 0);
|
||
const tmp = Temporary.init(Type.u64, result_id);
|
||
const result = try self.buildIntConvert(Type.u32, tmp);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
fn airWorkGroupId(self: *NavGen, inst: Air.Inst.Index) !?IdRef {
|
||
if (self.liveness.isUnused(inst)) return null;
|
||
const pl_op = self.air.instructions.items(.data)[@intFromEnum(inst)].pl_op;
|
||
const dimension = pl_op.payload;
|
||
// TODO: Should we make these builtins return usize?
|
||
const result_id = try self.builtin3D(Type.u64, .WorkgroupId, dimension, 0);
|
||
const tmp = Temporary.init(Type.u64, result_id);
|
||
const result = try self.buildIntConvert(Type.u32, tmp);
|
||
return try result.materialize(self);
|
||
}
|
||
|
||
fn typeOf(self: *NavGen, inst: Air.Inst.Ref) Type {
|
||
const zcu = self.pt.zcu;
|
||
return self.air.typeOf(inst, &zcu.intern_pool);
|
||
}
|
||
|
||
fn typeOfIndex(self: *NavGen, inst: Air.Inst.Index) Type {
|
||
const zcu = self.pt.zcu;
|
||
return self.air.typeOfIndex(inst, &zcu.intern_pool);
|
||
}
|
||
};
|