Files
zig/src/parsergen.cpp
2015-11-23 19:19:38 -07:00

1126 lines
35 KiB
C++

/*
* Copyright (c) 2015 Andrew Kelley
*
* This file is part of zig, which is MIT licensed.
* See http://opensource.org/licenses/MIT
*/
#include "util.hpp"
#include "buffer.hpp"
#include "list.hpp"
#include <stdio.h>
#include <stdarg.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#include <limits.h>
#define WHITESPACE \
' ': \
case '\t': \
case '\n': \
case '\f': \
case '\r': \
case 0xb
#define DIGIT \
'0': \
case '1': \
case '2': \
case '3': \
case '4': \
case '5': \
case '6': \
case '7': \
case '8': \
case '9'
#define LOWER_ALPHA \
'a': \
case 'b': \
case 'c': \
case 'd': \
case 'e': \
case 'f': \
case 'g': \
case 'h': \
case 'i': \
case 'j': \
case 'k': \
case 'l': \
case 'm': \
case 'n': \
case 'o': \
case 'p': \
case 'q': \
case 'r': \
case 's': \
case 't': \
case 'u': \
case 'v': \
case 'w': \
case 'x': \
case 'y': \
case 'z'
#define UPPER_ALPHA \
'A': \
case 'B': \
case 'C': \
case 'D': \
case 'E': \
case 'F': \
case 'G': \
case 'H': \
case 'I': \
case 'J': \
case 'K': \
case 'L': \
case 'M': \
case 'N': \
case 'O': \
case 'P': \
case 'Q': \
case 'R': \
case 'S': \
case 'T': \
case 'U': \
case 'V': \
case 'W': \
case 'X': \
case 'Y': \
case 'Z'
#define ALPHA \
LOWER_ALPHA: \
case UPPER_ALPHA
#define SYMBOL_CHAR \
ALPHA: \
case DIGIT: \
case '_'
static Buf *fetch_file(FILE *f) {
int fd = fileno(f);
struct stat st;
if (fstat(fd, &st))
zig_panic("unable to stat file: %s", strerror(errno));
off_t big_size = st.st_size;
if (big_size > INT_MAX)
zig_panic("file too big");
int size = (int)big_size;
Buf *buf = buf_alloc_fixed(size);
size_t amt_read = fread(buf_ptr(buf), 1, buf_len(buf), f);
if (amt_read != (size_t)buf_len(buf))
zig_panic("error reading: %s", strerror(errno));
return buf;
}
static int usage(const char *arg0) {
fprintf(stderr, "Usage: %s in-grammar.txt out-parser.c\n", arg0);
return 1;
}
struct Token {
Buf name;
int id;
};
struct RuleNode;
struct RuleTuple {
ZigList<RuleNode *> children;
Buf body;
};
struct RuleMany {
RuleNode *child;
};
struct RuleOr {
Buf name;
Buf union_field_name;
ZigList<RuleNode *> children;
};
struct RuleToken {
Token *token;
};
struct RuleList {
RuleNode *rule;
RuleToken *separator;
};
struct RuleSubRule {
RuleNode *child;
// for lexer use only
Buf name;
};
enum RuleNodeType {
RuleNodeTypeTuple,
RuleNodeTypeMany,
RuleNodeTypeList,
RuleNodeTypeOr,
RuleNodeTypeToken,
RuleNodeTypeSubRule,
};
struct RuleNode {
RuleNodeType type;
int lex_line;
int lex_column;
union {
RuleTuple tuple;
RuleMany many;
RuleList list;
RuleOr _or;
RuleToken token;
RuleSubRule sub_rule;
};
};
enum CodeGenType {
CodeGenTypeTransition,
CodeGenTypeError,
CodeGenTypeSave,
CodeGenTypePushNode,
CodeGenTypeCapture,
CodeGenTypePopNode,
CodeGenTypeEatToken,
};
struct CodeGenError {
Buf *msg;
};
struct CodeGenCapture {
Buf *body;
bool is_root;
Buf *field_names;
Buf *union_field_name;
};
struct CodeGen {
CodeGenType type;
union {
CodeGenError error;
CodeGenCapture capture;
};
};
struct ParserState {
ZigList<CodeGen *> code_gen_list;
// One for each token ID.
ParserState **transition;
int index;
bool is_error;
};
enum LexState {
LexStateStart,
LexStateRuleName,
LexStateRuleFieldNameStart,
LexStateRuleFieldName,
LexStateWaitForColon,
LexStateTupleRule,
LexStateFnName,
LexStateTokenStart,
LexStateToken,
LexStateBody,
LexStateEndOrOr,
LexStateSubTupleName,
};
struct LexStack {
LexState state;
};
struct Gen {
ZigList<RuleNode *> rules;
ZigList<ParserState *> transition_table;
ParserState *start_state;
ZigList<Token *> tokens;
RuleNode *root;
int biggest_tuple_len;
Buf *in_buf;
LexState lex_state;
int lex_line;
int lex_column;
RuleNode *lex_cur_or_rule;
RuleNode *lex_cur_tuple_rule;;
int lex_cur_rule_begin;
int lex_fn_name_begin;
int lex_pos;
ZigList<LexStack> lex_stack;
int lex_token_name_begin;
int lex_body_begin;
int lex_body_end;
int lex_sub_tuple_begin;
int lex_field_name_begin;
};
static ParserState *create_state(Gen *g) {
ParserState *state = allocate<ParserState>(1);
state->index = -1;
state->transition = allocate<ParserState*>(g->tokens.length);
return state;
}
static void fill_state_with_transition(Gen *g, ParserState *source, ParserState *dest) {
for (int i = 0; i < g->tokens.length; i += 1) {
source->transition[i] = dest;
}
}
static void state_add_code(ParserState *state, CodeGen *code) {
state->code_gen_list.append(code);
}
static void state_add_save_token(ParserState *state) {
CodeGen *code = allocate<CodeGen>(1);
code->type = CodeGenTypeSave;
state_add_code(state, code);
}
static void state_add_error(ParserState *state, Buf *msg) {
CodeGen *code = allocate<CodeGen>(1);
code->type = CodeGenTypeError;
code->error.msg = msg;
state_add_code(state, code);
state->is_error = true;
}
static void state_add_transition(ParserState *state) {
CodeGen *code = allocate<CodeGen>(1);
code->type = CodeGenTypeTransition;
state_add_code(state, code);
}
static void state_add_push_node(ParserState *state) {
CodeGen *code = allocate<CodeGen>(1);
code->type = CodeGenTypePushNode;
state_add_code(state, code);
}
static CodeGen *codegen_create_capture(Buf *body, bool is_root, int field_name_count, Buf *union_field_name) {
CodeGen *code = allocate<CodeGen>(1);
code->type = CodeGenTypeCapture;
code->capture.body = body;
code->capture.is_root = is_root;
code->capture.field_names = allocate<Buf>(field_name_count);
code->capture.union_field_name = union_field_name;
return code;
}
static void state_add_pop_node(ParserState *state) {
CodeGen *code = allocate<CodeGen>(1);
code->type = CodeGenTypePopNode;
state_add_code(state, code);
}
static void state_add_eat_token(ParserState *state) {
CodeGen *code = allocate<CodeGen>(1);
code->type = CodeGenTypeEatToken;
state_add_code(state, code);
}
static void gen(Gen *g, RuleNode *node, Buf *out_field_name, ParserState *cur_state,
ZigList<ParserState *> *end_states, bool is_root)
{
struct PossibleState {
ParserState *test_state;
ZigList<ParserState *> end_states;
};
assert(node);
switch (node->type) {
case RuleNodeTypeToken:
{
buf_init_from_str(out_field_name, "token");
state_add_save_token(cur_state);
ParserState *ok_state = create_state(g);
ParserState *err_state = create_state(g);
state_add_error(err_state, buf_sprintf("expected token '%s'", buf_ptr(&node->token.token->name)));
fill_state_with_transition(g, cur_state, err_state);
cur_state->transition[node->token.token->id] = ok_state;
state_add_transition(cur_state);
state_add_eat_token(cur_state);
end_states->append(ok_state);
}
break;
case RuleNodeTypeTuple:
{
int field_name_count = node->tuple.children.length;
CodeGen *code = codegen_create_capture(&node->tuple.body, is_root, field_name_count,
out_field_name);
ZigList<ParserState *> *my_end_states = allocate<ZigList<ParserState *>>(1);
my_end_states->append(cur_state);
for (int child_index = 0; child_index < node->tuple.children.length; child_index += 1) {
RuleNode *child = node->tuple.children.at(child_index);
ZigList<ParserState *> *more_end_states = allocate<ZigList<ParserState *>>(1);
for (int i = 0; i < my_end_states->length; i += 1) {
ParserState *use_state = my_end_states->at(i);
gen(g, child, &code->capture.field_names[i], use_state, more_end_states, false);
}
my_end_states = more_end_states;
}
for (int i = 0; i < my_end_states->length; i += 1) {
ParserState *use_state = my_end_states->at(i);
state_add_code(use_state, code);
end_states->append(use_state);
}
}
break;
case RuleNodeTypeMany:
zig_panic("TODO");
break;
case RuleNodeTypeList:
zig_panic("TODO");
break;
case RuleNodeTypeOr:
{
buf_init_from_buf(out_field_name, &node->_or.union_field_name);
state_add_push_node(cur_state);
// TODO this probably need to get moved when or can handle conflicts
state_add_save_token(cur_state);
state_add_transition(cur_state);
state_add_eat_token(cur_state);
int possible_state_count = node->_or.children.length;
PossibleState *possible_states = allocate<PossibleState>(possible_state_count);
for (int i = 0; i < possible_state_count; i += 1) {
RuleNode *child = node->_or.children.at(i);
assert(child->type == RuleNodeTypeTuple);
PossibleState *possible_state = &possible_states[i];
possible_state->test_state = create_state(g);
gen(g, child, &node->_or.union_field_name, possible_state->test_state,
&possible_state->end_states, is_root);
}
// try to merge all the possible states into new state.
ParserState *err_state = create_state(g);
state_add_error(err_state, buf_create_from_str("unexpected token"));
for (int token_i = 0; token_i < g->tokens.length; token_i += 1) {
bool any_called_it = false;
bool conflict = false;
for (int state_i = 0; state_i < possible_state_count; state_i += 1) {
PossibleState *possible_state = &possible_states[state_i];
if (!possible_state->test_state->transition[token_i]->is_error) {
if (any_called_it) {
conflict = true;
} else {
any_called_it = true;
}
}
}
if (conflict) {
zig_panic("TODO state transition conflict");
} else {
cur_state->transition[token_i] = err_state;
for (int state_i = 0; state_i < possible_state_count; state_i += 1) {
PossibleState *possible_state = &possible_states[state_i];
if (!possible_state->test_state->transition[token_i]->is_error) {
cur_state->transition[token_i] = possible_state->test_state->transition[token_i];
}
}
}
}
for (int state_i = 0; state_i < possible_state_count; state_i += 1) {
PossibleState *possible_state = &possible_states[state_i];
for (int end_i = 0; end_i < possible_state->end_states.length; end_i += 1) {
ParserState *state = possible_state->end_states.at(end_i);
state_add_pop_node(state);
end_states->append(state);
}
}
}
break;
case RuleNodeTypeSubRule:
{
RuleNode *child = node->sub_rule.child;
gen(g, child, out_field_name, cur_state, end_states, false);
}
break;
}
}
static Token *find_token_by_name(Gen *g, Buf *name) {
for (int i = 0; i < g->tokens.length; i += 1) {
Token *token = g->tokens.at(i);
if (buf_eql_buf(name, &token->name))
return token;
}
return nullptr;
}
static Token *find_or_create_token(Gen *g, Buf *name) {
Token *token = find_token_by_name(g, name);
if (!token) {
token = allocate<Token>(1);
token->id = g->tokens.length;
buf_init_from_mem(&token->name, buf_ptr(name), buf_len(name));
g->tokens.append(token);
}
return token;
}
__attribute__ ((format (printf, 2, 3)))
static void lex_error(Gen *g, const char *format, ...) {
int line = g->lex_line + 1;
int column = g->lex_column + 1;
va_list ap;
va_start(ap, format);
fprintf(stderr, "Grammar Error: Line %d, column %d: ", line, column);
vfprintf(stderr, format, ap);
fprintf(stderr, "\n");
va_end(ap);
exit(EXIT_FAILURE);
}
static void lex_push_stack(Gen *g) {
g->lex_stack.append({g->lex_state});
}
static void lex_pop_stack(Gen *g) {
LexStack *entry = &g->lex_stack.last();
g->lex_state = entry->state;
g->lex_stack.pop();
}
static RuleNode *create_rule_node(Gen *g) {
RuleNode *node = allocate<RuleNode>(1);
node->lex_line = g->lex_line;
node->lex_column = g->lex_column;
return node;
}
static void begin_rule(Gen *g) {
assert(!g->lex_cur_or_rule);
assert(!g->lex_cur_tuple_rule);
g->lex_cur_or_rule = create_rule_node(g);
g->lex_cur_or_rule->type = RuleNodeTypeOr;
g->lex_cur_tuple_rule = create_rule_node(g);
g->lex_cur_tuple_rule->type = RuleNodeTypeTuple;
g->lex_cur_rule_begin = g->lex_pos;
}
static void end_rule(Gen *g) {
assert(g->lex_cur_or_rule);
assert(!g->lex_cur_tuple_rule);
g->rules.append(g->lex_cur_or_rule);
g->lex_cur_or_rule = nullptr;
}
static void perform_or(Gen *g) {
assert(g->lex_cur_or_rule);
assert(!g->lex_cur_tuple_rule);
g->lex_cur_tuple_rule = create_rule_node(g);
g->lex_cur_tuple_rule->type = RuleNodeTypeTuple;
g->lex_cur_rule_begin = g->lex_pos;
}
static void end_rule_name(Gen *g) {
assert(g->lex_cur_or_rule);
char *ptr = &buf_ptr(g->in_buf)[g->lex_cur_rule_begin];
int len = g->lex_pos - g->lex_cur_rule_begin;
buf_init_from_mem(&g->lex_cur_or_rule->_or.name, ptr, len);
}
static void begin_rule_field_name(Gen *g) {
assert(g->lex_cur_or_rule);
g->lex_field_name_begin = g->lex_pos;
}
static void end_rule_field_name(Gen *g) {
assert(g->lex_cur_or_rule);
char *ptr = &buf_ptr(g->in_buf)[g->lex_field_name_begin];
int len = g->lex_pos - g->lex_field_name_begin;
buf_init_from_mem(&g->lex_cur_or_rule->_or.union_field_name, ptr, len);
}
static void begin_fn_name(Gen *g) {
g->lex_fn_name_begin = g->lex_pos;
lex_push_stack(g);
}
static void end_fn_name(Gen *g) {
char *ptr = &buf_ptr(g->in_buf)[g->lex_fn_name_begin];
int len = g->lex_pos - g->lex_fn_name_begin;
if (mem_eql_str(ptr, len, "token")) {
g->lex_state = LexStateTokenStart;
} else {
lex_error(g, "invalid function name: '%s'", buf_ptr(buf_create_from_mem(ptr, len)));
}
}
static void begin_token_name(Gen *g) {
g->lex_token_name_begin = g->lex_pos;
}
static void end_token_name(Gen *g) {
assert(g->lex_cur_tuple_rule);
assert(g->lex_cur_tuple_rule->type == RuleNodeTypeTuple);
char *ptr = &buf_ptr(g->in_buf)[g->lex_token_name_begin];
int len = g->lex_pos - g->lex_token_name_begin;
Buf token_name = {0};
buf_init_from_mem(&token_name, ptr, len);
Token *token = find_or_create_token(g, &token_name);
RuleNode *node = create_rule_node(g);
node->type = RuleNodeTypeToken;
node->token.token = token;
g->lex_cur_tuple_rule->tuple.children.append(node);
lex_pop_stack(g);
}
static void begin_tuple_body(Gen *g) {
assert(g->lex_cur_tuple_rule->type == RuleNodeTypeTuple);
g->lex_body_begin = g->lex_pos;
}
static void end_tuple_body(Gen *g) {
assert(g->lex_cur_or_rule);
assert(g->lex_cur_tuple_rule->type == RuleNodeTypeTuple);
int end_pos = g->lex_pos + 1;
char *ptr = &buf_ptr(g->in_buf)[g->lex_body_begin];
int len = end_pos - g->lex_body_begin;
buf_init_from_mem(&g->lex_cur_tuple_rule->tuple.body, ptr, len);
g->lex_cur_or_rule->_or.children.append(g->lex_cur_tuple_rule);
g->lex_cur_tuple_rule = nullptr;
}
static void begin_sub_tuple(Gen *g) {
g->lex_sub_tuple_begin = g->lex_pos;
lex_push_stack(g);
}
static void end_sub_tuple(Gen *g) {
assert(g->lex_cur_tuple_rule->type == RuleNodeTypeTuple);
char *ptr = &buf_ptr(g->in_buf)[g->lex_sub_tuple_begin];
int len = g->lex_pos - g->lex_sub_tuple_begin;
RuleNode *node = create_rule_node(g);
node->type = RuleNodeTypeSubRule;
buf_init_from_mem(&node->sub_rule.name, ptr, len);
g->lex_cur_tuple_rule->tuple.children.append(node);
lex_pop_stack(g);
}
static RuleNode *find_rule_node(Gen *g, Buf *name) {
for (int i = 0; i < g->rules.length; i += 1) {
RuleNode *node = g->rules.at(i);
assert(node->type == RuleNodeTypeOr);
if (buf_eql_buf(&node->_or.name, name)) {
return node;
}
}
return nullptr;
}
static void initialize_rules(Gen *g) {
g->lex_state = LexStateStart;
for (g->lex_pos = 0; g->lex_pos < buf_len(g->in_buf); g->lex_pos += 1) {
uint8_t c = buf_ptr(g->in_buf)[g->lex_pos];
switch (g->lex_state) {
case LexStateStart:
switch (c) {
case WHITESPACE:
// ignore
break;
case UPPER_ALPHA:
begin_rule(g);
g->lex_state = LexStateRuleName;
break;
default:
lex_error(g, "invalid char: '%c'", c);
}
break;
case LexStateRuleName:
switch (c) {
case '<':
end_rule_name(g);
g->lex_state = LexStateRuleFieldNameStart;
break;
case SYMBOL_CHAR:
// ok
break;
default:
lex_error(g, "expected '<', not '%c'", c);
}
break;
case LexStateRuleFieldNameStart:
switch (c) {
case SYMBOL_CHAR:
begin_rule_field_name(g);
g->lex_state = LexStateRuleFieldName;
break;
default:
lex_error(g, "expected field name, not '%c'", c);
}
break;
case LexStateRuleFieldName:
switch (c) {
case SYMBOL_CHAR:
// ok
break;
case '>':
end_rule_field_name(g);
g->lex_state = LexStateWaitForColon;
break;
}
break;
case LexStateWaitForColon:
switch (c) {
case WHITESPACE:
// ignore
break;
case ':':
g->lex_state = LexStateTupleRule;
break;
default:
lex_error(g, "invalid char: '%c'", c);
}
break;
case LexStateTupleRule:
switch (c) {
case WHITESPACE:
// ignore
break;
case LOWER_ALPHA:
begin_fn_name(g);
g->lex_state = LexStateFnName;
break;
case UPPER_ALPHA:
begin_sub_tuple(g);
g->lex_state = LexStateSubTupleName;
break;
case '{':
begin_tuple_body(g);
g->lex_state = LexStateBody;
break;
default:
lex_error(g, "expected rule, not '%c'", c);
}
break;
case LexStateFnName:
switch (c) {
case LOWER_ALPHA:
// ignore
break;
case '(':
end_fn_name(g);
break;
default:
lex_error(g, "expected '('");
}
break;
case LexStateTokenStart:
switch (c) {
case WHITESPACE:
// ignore
break;
case ALPHA:
begin_token_name(g);
g->lex_state = LexStateToken;
break;
default:
lex_error(g, "expected token name, not '%c'", c);
}
break;
case LexStateToken:
switch (c) {
case ALPHA:
// ignore
break;
case ')':
end_token_name(g);
break;
default:
lex_error(g, "expected token name or ')', not '%c'", c);
}
break;
case LexStateBody:
switch (c) {
case '}':
end_tuple_body(g);
g->lex_state = LexStateEndOrOr;
break;
default:
// ignore
break;
}
break;
case LexStateEndOrOr:
switch (c) {
case WHITESPACE:
// ignore
break;
case ';':
end_rule(g);
g->lex_state = LexStateStart;
break;
case '|':
perform_or(g);
g->lex_state = LexStateTupleRule;
break;
default:
lex_error(g, "expected ';' or '|'");
}
break;
case LexStateSubTupleName:
switch (c) {
case ALPHA:
// ignore
break;
case WHITESPACE:
end_sub_tuple(g);
assert(g->lex_state == LexStateTupleRule);
break;
default:
lex_error(g, "expected rule name, not '%c'", c);
}
break;
}
if (c == '\n') {
g->lex_line += 1;
g->lex_column = 0;
} else {
g->lex_column += 1;
}
}
switch (g->lex_state) {
case LexStateStart:
// ok
break;
case LexStateEndOrOr:
case LexStateRuleName:
case LexStateWaitForColon:
case LexStateTupleRule:
case LexStateFnName:
case LexStateTokenStart:
case LexStateToken:
case LexStateBody:
case LexStateSubTupleName:
case LexStateRuleFieldNameStart:
case LexStateRuleFieldName:
lex_error(g, "unexpected EOF");
break;
}
// Iterate over the rules and
// * resolve child references into pointers
// * calculate the biggest tuple len
bool any_errors = false;
for (int or_i = 0; or_i < g->rules.length; or_i += 1) {
RuleNode *or_node = g->rules.at(or_i);
assert(or_node->type == RuleNodeTypeOr);
for (int tuple_i = 0; tuple_i < or_node->_or.children.length; tuple_i += 1) {
RuleNode *tuple_node = or_node->_or.children.at(tuple_i);
assert(tuple_node->type == RuleNodeTypeTuple);
g->biggest_tuple_len = max(g->biggest_tuple_len, tuple_node->tuple.children.length);
for (int child_i = 0; child_i < tuple_node->tuple.children.length; child_i += 1) {
RuleNode *child = tuple_node->tuple.children.at(child_i);
if (child->type == RuleNodeTypeSubRule) {
int line = child->lex_line + 1;
int column = child->lex_column + 1;
RuleNode *referenced_node = find_rule_node(g, &child->sub_rule.name);
if (!referenced_node) {
fprintf(stderr, "Grammar Error: Line %d, column %d: Rule not defined: '%s'\n",
line, column, buf_ptr(&child->sub_rule.name));
any_errors = true;
}
child->sub_rule.child = referenced_node;
}
}
}
}
if (any_errors) {
exit(EXIT_FAILURE);
}
}
enum TemplateState {
TemplateStateStart,
TemplateStateDollar,
TemplateStateNumber,
};
static Buf *fill_template(Buf *body, const char *result_name, Buf *field_names) {
//fprintf(stderr, "fill template input:\n%s\n", buf_ptr(body));
Buf *result = buf_alloc();
TemplateState state = TemplateStateStart;
int digit_start;
for (int i = 0; i < buf_len(body); i += 1) {
uint8_t c = buf_ptr(body)[i];
switch (state) {
case TemplateStateStart:
switch (c) {
case '$':
state = TemplateStateDollar;
break;
default:
buf_append_char(result, c);
break;
}
break;
case TemplateStateDollar:
switch (c) {
case '$':
buf_append_str(result, result_name);
state = TemplateStateStart;
break;
case DIGIT:
digit_start = i;
state = TemplateStateNumber;
break;
default:
buf_append_char(result, '$');
buf_append_char(result, c);
state = TemplateStateStart;
break;
}
break;
case TemplateStateNumber:
switch (c) {
case DIGIT:
// nothing
break;
default:
{
Buf *num_buf = buf_create_from_mem(&buf_ptr(body)[digit_start], i - digit_start);
int index = atoi(buf_ptr(num_buf)) - 1;
buf_appendf(result, "(top_node->data[%d].%s)%c",
index, buf_ptr(&field_names[index]), c);
state = TemplateStateStart;
}
break;
}
break;
}
}
switch (state) {
case TemplateStateStart:
// OK
break;
default:
zig_panic("unable to fill grammar template");
}
//fprintf(stderr, "fill template output:\n%s\n", buf_ptr(result));
return result;
}
static void build_transition_table(Gen *g, ParserState *state) {
if (!state)
return;
if (state->index >= 0)
return;
state->index = g->transition_table.length;
g->transition_table.append(state);
for (int i = 0; i < g->tokens.length; i += 1) {
ParserState *other_state = state->transition[i];
build_transition_table(g, other_state);
}
}
int main(int argc, char **argv) {
const char *in_filename = argv[1];
const char *out_filename = argv[2];
if (!in_filename || !out_filename)
return usage(argv[0]);
FILE *in_f;
if (strcmp(in_filename, "-") == 0) {
in_f = stdin;
} else {
in_f = fopen(in_filename, "rb");
}
FILE *out_f;
if (strcmp(out_filename, "-") == 0) {
out_f = stdout;
} else {
out_f = fopen(out_filename, "wb");
}
if (!in_f || !out_f)
zig_panic("unable to open file(s)");
Gen g = {0};
g.in_buf = fetch_file(in_f);
initialize_rules(&g);
g.root = g.rules.at(0);
g.start_state = create_state(&g);
Buf root_field_name = {0};
ZigList<ParserState *> end_states = {0};
gen(&g, g.root, &root_field_name, g.start_state, &end_states, true);
build_transition_table(&g, g.start_state);
fprintf(out_f, "/* This file is generated by parsergen.cpp */\n");
fprintf(out_f, "\n");
fprintf(out_f, "#include \"src/parser.hpp\"\n");
fprintf(out_f, "#include <stdio.h>\n");
fprintf(out_f, "\n");
fprintf(out_f, "/*\n");
fprintf(out_f, "enum TokenId {\n");
for (int i = 0; i < g.tokens.length; i += 1) {
Token *token = g.tokens.at(i);
fprintf(out_f, " TokenId%s = %d,\n", buf_ptr(&token->name), token->id);
}
fprintf(out_f, "};\n");
fprintf(out_f, "*/\n");
for (int i = 0; i < g.tokens.length; i += 1) {
Token *token = g.tokens.at(i);
fprintf(out_f, "static_assert(TokenId%s == %d, \"wrong token id\");\n",
buf_ptr(&token->name), token->id);
}
fprintf(out_f, "\n");
fprintf(out_f, "struct ParserGenNode {\n");
fprintf(out_f, " int next_index;\n");
fprintf(out_f, " union {\n");
fprintf(out_f, " Token *token;\n");
fprintf(out_f, " AstNode *node;\n");
fprintf(out_f, " } data[%d];\n", g.biggest_tuple_len);
fprintf(out_f, "};\n");
fprintf(out_f, "\n");
fprintf(out_f, "AstNode * ast_parse(Buf *buf, ZigList<Token> *tokens) {\n");
fprintf(out_f, " static const int transition[%d][%d] = {\n", g.transition_table.length, g.tokens.length);
for (int state_index = 0; state_index < g.transition_table.length; state_index += 1) {
ParserState *state = g.transition_table.at(state_index);
fprintf(out_f, " {\n");
for (int token_id = 0; token_id < g.tokens.length; token_id += 1) {
ParserState *dest = state->transition[token_id];
fprintf(out_f, " %d,\n", dest ? dest->index : -1);
}
fprintf(out_f, " },\n");
}
fprintf(out_f, " };\n");
fprintf(out_f, " int state = 0;\n");
fprintf(out_f, " int token_index = 0;\n");
fprintf(out_f, " Token *token = &tokens->at(token_index);\n");
fprintf(out_f, " AstNode *root = nullptr;\n");
fprintf(out_f, " ZigList<ParserGenNode *> stack = {0};\n");
fprintf(out_f, " ParserGenNode *top_node = nullptr;\n");
fprintf(out_f, " for (;;) {\n");
fprintf(out_f, " switch (state) {\n");
for (int state_i = 0; state_i < g.transition_table.length; state_i += 1) {
ParserState *state = g.transition_table.at(state_i);
fprintf(out_f, " case %d: {\n", state_i);
for (int code_i = 0; code_i < state->code_gen_list.length; code_i += 1) {
CodeGen *code = state->code_gen_list.at(code_i);
switch (code->type) {
case CodeGenTypeTransition:
fprintf(out_f, " if (token->id < 0 || token->id >= %d) {\n", g.tokens.length);
fprintf(out_f, " ast_invalid_token_error(buf, token);\n");
fprintf(out_f, " }\n");
fprintf(out_f, " assert(transition[%d][token->id] >= 0);\n", state->index);
fprintf(out_f, " assert(transition[%d][token->id] < %d);\n",
state->index, g.transition_table.length);
fprintf(out_f, " state = transition[%d][token->id];\n", state->index);
break;
case CodeGenTypeError:
fprintf(out_f, " token_index -= 1;\n");
fprintf(out_f, " token = &tokens->at(token_index);\n");
fprintf(out_f, " ast_error(token, \"%s\");\n", buf_ptr(code->error.msg));
break;
case CodeGenTypeSave:
fprintf(out_f, " top_node->data[top_node->next_index++].token = token;\n");
break;
case CodeGenTypePushNode:
fprintf(out_f, " top_node = allocate<ParserGenNode>(1);\n");
fprintf(out_f, " stack.append(top_node);\n");
break;
case CodeGenTypeCapture:
if (code->capture.is_root) {
Buf *code_text = fill_template(code->capture.body, "root", code->capture.field_names);
fprintf(out_f, "%s\n", buf_ptr(code_text));
fprintf(out_f, " return root;\n");
} else {
fprintf(out_f, " ParserGenNode *parent_node = stack.at(stack.length - 2);\n");
Buf *dest = buf_sprintf("parent_node->data[parent_node->next_index++].%s",
buf_ptr(code->capture.union_field_name));
Buf *code_text = fill_template(code->capture.body, buf_ptr(dest),
code->capture.field_names);
fprintf(out_f, "%s\n", buf_ptr(code_text));
}
break;
case CodeGenTypePopNode:
fprintf(out_f, " stack.pop();\n");
fprintf(out_f, " top_node = stack.length ? stack.last() : nullptr;\n");
break;
case CodeGenTypeEatToken:
fprintf(out_f, " token_index += 1;\n");
fprintf(out_f, " token = (token_index < tokens->length) ? &tokens->at(token_index) : nullptr;\n");
break;
}
}
fprintf(out_f, " break;\n");
fprintf(out_f, " }\n");
}
fprintf(out_f, " default:\n");
fprintf(out_f, " zig_panic(\"unreachable\");\n");
fprintf(out_f, " }\n");
fprintf(out_f, " }\n");
fprintf(out_f, " zig_panic(\"unreachable\");\n");
fprintf(out_f, "}\n");
return 0;
}