Files
zig/src/codegen/spirv.zig

724 lines
34 KiB
Zig

const std = @import("std");
const Allocator = std.mem.Allocator;
const Target = std.Target;
const log = std.log.scoped(.codegen);
const spec = @import("spirv/spec.zig");
const Opcode = spec.Opcode;
const Module = @import("../Module.zig");
const Decl = Module.Decl;
const Type = @import("../type.zig").Type;
const Value = @import("../value.zig").Value;
const LazySrcLoc = Module.LazySrcLoc;
const ir = @import("../ir.zig");
const Inst = ir.Inst;
pub const Word = u32;
pub const ResultId = u32;
pub const TypeMap = std.HashMap(Type, ResultId, Type.hash, Type.eql, std.hash_map.default_max_load_percentage);
pub const InstMap = std.AutoHashMap(*Inst, ResultId);
pub fn writeOpcode(code: *std.ArrayList(Word), opcode: Opcode, arg_count: u16) !void {
const word_count: Word = arg_count + 1;
try code.append((word_count << 16) | @enumToInt(opcode));
}
pub fn writeInstruction(code: *std.ArrayList(Word), opcode: Opcode, args: []const Word) !void {
try writeOpcode(code, opcode, @intCast(u16, args.len));
try code.appendSlice(args);
}
/// This structure represents a SPIR-V (binary) module being compiled, and keeps track of all relevant information.
/// That includes the actual instructions, the current result-id bound, and data structures for querying result-id's
/// of data which needs to be persistent over different calls to Decl code generation.
pub const SPIRVModule = struct {
next_result_id: ResultId,
binary: struct {
types_globals_constants: std.ArrayList(Word),
fn_decls: std.ArrayList(Word),
},
types: TypeMap,
pub fn init(gpa: *Allocator) SPIRVModule {
return .{
.next_result_id = 1, // 0 is an invalid SPIR-V result ID.
.binary = .{
.types_globals_constants = std.ArrayList(Word).init(gpa),
.fn_decls = std.ArrayList(Word).init(gpa),
},
.types = TypeMap.init(gpa),
};
}
pub fn deinit(self: *SPIRVModule) void {
self.binary.types_globals_constants.deinit();
self.binary.fn_decls.deinit();
self.types.deinit();
}
pub fn allocResultId(self: *SPIRVModule) Word {
defer self.next_result_id += 1;
return self.next_result_id;
}
pub fn resultIdBound(self: *SPIRVModule) Word {
return self.next_result_id;
}
};
/// This structure is used to compile a declaration, and contains all relevant meta-information to deal with that.
pub const DeclGen = struct {
/// The parent module.
module: *Module,
/// The SPIR-V module code should be put in.
spv: *SPIRVModule,
/// An array of function argument result-ids. Each index corresponds with the function argument of the same index.
args: std.ArrayList(ResultId),
/// A counter to keep track of how many `arg` instructions we've seen yet.
next_arg_index: u32,
/// A map keeping track of which instruction generated which result-id.
inst_results: InstMap,
/// The decl we are currently generating code for.
decl: *Decl,
/// If `gen` returned `Error.AnalysisFail`, this contains an explanatory message. Memory is owned by
/// `module.gpa`.
error_msg: ?*Module.ErrorMsg,
/// Possible errors the `gen` function may return.
const Error = error{ AnalysisFail, OutOfMemory };
/// This structure is used to return information about a type typically used for arithmetic operations.
/// These types may either be integers, floats, or a vector of these. Most scalar operations also work on vectors,
/// so we can easily represent those as arithmetic types.
/// If the type is a scalar, 'inner type' refers to the scalar type. Otherwise, if its a vector, it refers
/// to the vector's element type.
const ArithmeticTypeInfo = struct {
/// A classification of the inner type.
const Class = enum {
/// A boolean.
bool,
/// A regular, **native**, integer.
/// This is only returned when the backend supports this int as a native type (when
/// the relevant capability is enabled).
integer,
/// A regular float. These are all required to be natively supported. Floating points for
/// which the relevant capability is not enabled are not emulated.
float,
/// An integer of a 'strange' size (which' bit size is not the same as its backing type. **Note**: this
/// may **also** include power-of-2 integers for which the relevant capability is not enabled), but still
/// within the limits of the largest natively supported integer type.
strange_integer,
/// An integer with more bits than the largest natively supported integer type.
composite_integer,
};
/// The number of bits in the inner type.
/// Note: this is the actual number of bits of the type, not the size of the backing integer.
bits: u16,
/// Whether the type is a vector.
is_vector: bool,
/// Whether the inner type is signed. Only relevant for integers.
signedness: std.builtin.Signedness,
/// A classification of the inner type. These scenarios
/// will all have to be handled slightly different.
class: Class,
};
fn fail(self: *DeclGen, src: LazySrcLoc, comptime format: []const u8, args: anytype) Error {
@setCold(true);
const src_loc = src.toSrcLocWithDecl(self.decl);
self.error_msg = try Module.ErrorMsg.create(self.module.gpa, src_loc, format, args);
return error.AnalysisFail;
}
fn resolve(self: *DeclGen, inst: *Inst) !ResultId {
if (inst.value()) |val| {
return self.genConstant(inst.src, inst.ty, val);
}
return self.inst_results.get(inst).?; // Instruction does not dominate all uses!
}
/// SPIR-V requires enabling specific integer sizes through capabilities, and so if they are not enabled, we need
/// to emulate them in other instructions/types. This function returns, given an integer bit width (signed or unsigned, sign
/// included), the width of the underlying type which represents it, given the enabled features for the current target.
/// If the result is `null`, the largest type the target platform supports natively is not able to perform computations using
/// that size. In this case, multiple elements of the largest type should be used.
/// The backing type will be chosen as the smallest supported integer larger or equal to it in number of bits.
/// The result is valid to be used with OpTypeInt.
/// TODO: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
/// TODO: This probably needs an ABI-version as well (especially in combination with SPV_INTEL_arbitrary_precision_integers).
/// TODO: Should the result of this function be cached?
fn backingIntBits(self: *DeclGen, bits: u16) ?u16 {
const target = self.module.getTarget();
// The backend will never be asked to compiler a 0-bit integer, so we won't have to handle those in this function.
std.debug.assert(bits != 0);
// 8, 16 and 64-bit integers require the Int8, Int16 and Inr64 capabilities respectively.
// 32-bit integers are always supported (see spec, 2.16.1, Data rules).
const ints = [_]struct { bits: u16, feature: ?Target.spirv.Feature }{
.{ .bits = 8, .feature = .Int8 },
.{ .bits = 16, .feature = .Int16 },
.{ .bits = 32, .feature = null },
.{ .bits = 64, .feature = .Int64 },
};
for (ints) |int| {
const has_feature = if (int.feature) |feature|
Target.spirv.featureSetHas(target.cpu.features, feature)
else
true;
if (bits <= int.bits and has_feature) {
return int.bits;
}
}
return null;
}
/// Return the amount of bits in the largest supported integer type. This is either 32 (always supported), or 64 (if
/// the Int64 capability is enabled).
/// Note: The extension SPV_INTEL_arbitrary_precision_integers allows any integer size (at least up to 32 bits).
/// In theory that could also be used, but since the spec says that it only guarantees support up to 32-bit ints there
/// is no way of knowing whether those are actually supported.
/// TODO: Maybe this should be cached?
fn largestSupportedIntBits(self: *DeclGen) u16 {
const target = self.module.getTarget();
return if (Target.spirv.featureSetHas(target.cpu.features, .Int64))
64
else
32;
}
/// Checks whether the type is "composite int", an integer consisting of multiple native integers. These are represented by
/// arrays of largestSupportedIntBits().
/// Asserts `ty` is an integer.
fn isCompositeInt(self: *DeclGen, ty: Type) bool {
return self.backingIntBits(ty) == null;
}
fn arithmeticTypeInfo(self: *DeclGen, ty: Type) !ArithmeticTypeInfo {
const target = self.module.getTarget();
return switch (ty.zigTypeTag()) {
.Bool => ArithmeticTypeInfo{
.bits = 1, // Doesn't matter for this class.
.is_vector = false,
.signedness = .unsigned, // Technically, but doesn't matter for this class.
.class = .bool,
},
.Float => ArithmeticTypeInfo{
.bits = ty.floatBits(target),
.is_vector = false,
.signedness = .signed, // Technically, but doesn't matter for this class.
.class = .float,
},
.Int => blk: {
const int_info = ty.intInfo(target);
// TODO: Maybe it's useful to also return this value.
const maybe_backing_bits = self.backingIntBits(int_info.bits);
break :blk ArithmeticTypeInfo{ .bits = int_info.bits, .is_vector = false, .signedness = int_info.signedness, .class = if (maybe_backing_bits) |backing_bits|
if (backing_bits == int_info.bits)
ArithmeticTypeInfo.Class.integer
else
ArithmeticTypeInfo.Class.strange_integer
else
.composite_integer };
},
// As of yet, there is no vector support in the self-hosted compiler.
.Vector => self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement arithmeticTypeInfo for Vector", .{}),
// TODO: For which types is this the case?
else => self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: implement arithmeticTypeInfo for {}", .{ty}),
};
}
/// Generate a constant representing `val`.
/// TODO: Deduplication?
fn genConstant(self: *DeclGen, src: LazySrcLoc, ty: Type, val: Value) Error!ResultId {
const target = self.module.getTarget();
const code = &self.spv.binary.types_globals_constants;
const result_id = self.spv.allocResultId();
const result_type_id = try self.genType(src, ty);
if (val.isUndef()) {
try writeInstruction(code, .OpUndef, &[_]Word{ result_type_id, result_id });
return result_id;
}
switch (ty.zigTypeTag()) {
.Int => {
const int_info = ty.intInfo(target);
const backing_bits = self.backingIntBits(int_info.bits) orelse {
// Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
return self.fail(src, "TODO: SPIR-V backend: implement composite int constants for {}", .{ty});
};
// We can just use toSignedInt/toUnsignedInt here as it returns u64 - a type large enough to hold any
// SPIR-V native type (up to i/u64 with Int64). If SPIR-V ever supports native ints of a larger size, this
// might need to be updated.
std.debug.assert(self.largestSupportedIntBits() <= std.meta.bitCount(u64));
var int_bits = if (ty.isSignedInt()) @bitCast(u64, val.toSignedInt()) else val.toUnsignedInt();
// Mask the low bits which make up the actual integer. This is to make sure that negative values
// only use the actual bits of the type.
// TODO: Should this be the backing type bits or the actual type bits?
int_bits &= (@as(u64, 1) << @intCast(u6, backing_bits)) - 1;
switch (backing_bits) {
0 => unreachable,
1...32 => try writeInstruction(code, .OpConstant, &[_]Word{
result_type_id,
result_id,
@truncate(u32, int_bits),
}),
33...64 => try writeInstruction(code, .OpConstant, &[_]Word{
result_type_id,
result_id,
@truncate(u32, int_bits),
@truncate(u32, int_bits >> @bitSizeOf(u32)),
}),
else => unreachable, // backing_bits is bounded by largestSupportedIntBits.
}
},
.Bool => {
const opcode: Opcode = if (val.toBool()) .OpConstantTrue else .OpConstantFalse;
try writeInstruction(code, opcode, &[_]Word{ result_type_id, result_id });
},
.Float => {
// At this point we are guaranteed that the target floating point type is supported, otherwise the function
// would have exited at genType(ty).
// f16 and f32 require one word of storage. f64 requires 2, low-order first.
switch (ty.floatBits(target)) {
16 => try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @bitCast(u16, val.toFloat(f16)) }),
32 => try writeInstruction(code, .OpConstant, &[_]Word{ result_type_id, result_id, @bitCast(u32, val.toFloat(f32)) }),
64 => {
const float_bits = @bitCast(u64, val.toFloat(f64));
try writeInstruction(code, .OpConstant, &[_]Word{
result_type_id,
result_id,
@truncate(u32, float_bits),
@truncate(u32, float_bits >> @bitSizeOf(u32)),
});
},
128 => unreachable, // Filtered out in the call to genType.
// TODO: Insert case for long double when the layout for that is determined.
else => unreachable,
}
},
else => return self.fail(src, "TODO: SPIR-V backend: constant generation of type {s}\n", .{ty.zigTypeTag()}),
}
return result_id;
}
fn genType(self: *DeclGen, src: LazySrcLoc, ty: Type) Error!ResultId {
// We can't use getOrPut here so we can recursively generate types.
if (self.spv.types.get(ty)) |already_generated| {
return already_generated;
}
const target = self.module.getTarget();
const code = &self.spv.binary.types_globals_constants;
const result_id = self.spv.allocResultId();
switch (ty.zigTypeTag()) {
.Void => try writeInstruction(code, .OpTypeVoid, &[_]Word{result_id}),
.Bool => try writeInstruction(code, .OpTypeBool, &[_]Word{result_id}),
.Int => {
const int_info = ty.intInfo(target);
const backing_bits = self.backingIntBits(int_info.bits) orelse {
// Integers too big for any native type are represented as "composite integers": An array of largestSupportedIntBits.
return self.fail(src, "TODO: SPIR-V backend: implement composite int {}", .{ty});
};
// TODO: If backing_bits != int_info.bits, a duplicate type might be generated here.
try writeInstruction(code, .OpTypeInt, &[_]Word{
result_id,
backing_bits,
switch (int_info.signedness) {
.unsigned => 0,
.signed => 1,
},
});
},
.Float => {
// We can (and want) not really emulate floating points with other floating point types like with the integer types,
// so if the float is not supported, just return an error.
const bits = ty.floatBits(target);
const supported = switch (bits) {
16 => Target.spirv.featureSetHas(target.cpu.features, .Float16),
// 32-bit floats are always supported (see spec, 2.16.1, Data rules).
32 => true,
64 => Target.spirv.featureSetHas(target.cpu.features, .Float64),
else => false,
};
if (!supported) {
return self.fail(src, "Floating point width of {} bits is not supported for the current SPIR-V feature set", .{bits});
}
try writeInstruction(code, .OpTypeFloat, &[_]Word{ result_id, bits });
},
.Fn => {
// We only support zig-calling-convention functions, no varargs.
if (ty.fnCallingConvention() != .Unspecified)
return self.fail(src, "Unsupported calling convention for SPIR-V", .{});
if (ty.fnIsVarArgs())
return self.fail(src, "VarArgs unsupported for SPIR-V", .{});
// In order to avoid a temporary here, first generate all the required types and then simply look them up
// when generating the function type.
const params = ty.fnParamLen();
var i: usize = 0;
while (i < params) : (i += 1) {
_ = try self.genType(src, ty.fnParamType(i));
}
const return_type_id = try self.genType(src, ty.fnReturnType());
// result id + result type id + parameter type ids.
try writeOpcode(code, .OpTypeFunction, 2 + @intCast(u16, ty.fnParamLen()));
try code.appendSlice(&.{ result_id, return_type_id });
i = 0;
while (i < params) : (i += 1) {
const param_type_id = self.spv.types.get(ty.fnParamType(i)).?;
try code.append(param_type_id);
}
},
// When recursively generating a type, we cannot infer the pointer's storage class. See genPointerType.
.Pointer => return self.fail(src, "Cannot create pointer with unkown storage class", .{}),
.Vector => {
// Although not 100% the same, Zig vectors map quite neatly to SPIR-V vectors (including many integer and float operations
// which work on them), so simply use those.
// Note: SPIR-V vectors only support bools, ints and floats, so pointer vectors need to be supported another way.
// "composite integers" (larger than the largest supported native type) can probably be represented by an array of vectors.
// TODO: The SPIR-V spec mentions that vector sizes may be quite restricted! look into which we can use, and whether OpTypeVector
// is adequate at all for this.
// TODO: Vectors are not yet supported by the self-hosted compiler itself it seems.
return self.fail(src, "TODO: SPIR-V backend: implement type Vector", .{});
},
.Null,
.Undefined,
.EnumLiteral,
.ComptimeFloat,
.ComptimeInt,
.Type,
=> unreachable, // Must be const or comptime.
.BoundFn => unreachable, // this type will be deleted from the language.
else => |tag| return self.fail(src, "TODO: SPIR-V backend: implement type {}s", .{tag}),
}
try self.spv.types.putNoClobber(ty, result_id);
return result_id;
}
/// SPIR-V requires pointers to have a storage class (address space), and so we have a special function for that.
/// TODO: The result of this needs to be cached.
fn genPointerType(self: *DeclGen, src: LazySrcLoc, ty: Type, storage_class: spec.StorageClass) !ResultId {
std.debug.assert(ty.zigTypeTag() == .Pointer);
const code = &self.spv.binary.types_globals_constants;
const result_id = self.spv.allocResultId();
// TODO: There are many constraints which are ignored for now: We may only create pointers to certain types, and to other types
// if more capabilities are enabled. For example, we may only create pointers to f16 if Float16Buffer is enabled.
// These also relates to the pointer's address space.
const child_id = try self.genType(src, ty.elemType());
try writeInstruction(code, .OpTypePointer, &[_]Word{ result_id, @enumToInt(storage_class), child_id });
return result_id;
}
pub fn gen(self: *DeclGen) !void {
const decl = self.decl;
const result_id = decl.fn_link.spirv.id;
if (decl.val.castTag(.function)) |func_payload| {
std.debug.assert(decl.ty.zigTypeTag() == .Fn);
const prototype_id = try self.genType(.{ .node_offset = 0 }, decl.ty);
try writeInstruction(&self.spv.binary.fn_decls, .OpFunction, &[_]Word{
self.spv.types.get(decl.ty.fnReturnType()).?, // This type should be generated along with the prototype.
result_id,
@bitCast(Word, spec.FunctionControl{}), // TODO: We can set inline here if the type requires it.
prototype_id,
});
const params = decl.ty.fnParamLen();
var i: usize = 0;
try self.args.ensureCapacity(params);
while (i < params) : (i += 1) {
const param_type_id = self.spv.types.get(decl.ty.fnParamType(i)).?;
const arg_result_id = self.spv.allocResultId();
try writeInstruction(&self.spv.binary.fn_decls, .OpFunctionParameter, &[_]Word{ param_type_id, arg_result_id });
self.args.appendAssumeCapacity(arg_result_id);
}
// TODO: This could probably be done in a better way...
const root_block_id = self.spv.allocResultId();
_ = try writeInstruction(&self.spv.binary.fn_decls, .OpLabel, &[_]Word{root_block_id});
try self.genBody(func_payload.data.body);
try writeInstruction(&self.spv.binary.fn_decls, .OpFunctionEnd, &[_]Word{});
} else {
return self.fail(.{ .node_offset = 0 }, "TODO: SPIR-V backend: generate decl type {}", .{decl.ty.zigTypeTag()});
}
}
fn genBody(self: *DeclGen, body: ir.Body) !void {
for (body.instructions) |inst| {
const maybe_result_id = try self.genInst(inst);
if (maybe_result_id) |result_id|
try self.inst_results.putNoClobber(inst, result_id);
}
}
fn genInst(self: *DeclGen, inst: *Inst) !?ResultId {
return switch (inst.tag) {
.add, .addwrap => try self.genBinOp(inst.castTag(.add).?),
.sub, .subwrap => try self.genBinOp(inst.castTag(.sub).?),
.mul, .mulwrap => try self.genBinOp(inst.castTag(.mul).?),
.div => try self.genBinOp(inst.castTag(.div).?),
.bit_and => try self.genBinOp(inst.castTag(.bit_and).?),
.bit_or => try self.genBinOp(inst.castTag(.bit_or).?),
.xor => try self.genBinOp(inst.castTag(.xor).?),
.cmp_eq => try self.genCmp(inst.castTag(.cmp_eq).?),
.cmp_neq => try self.genCmp(inst.castTag(.cmp_neq).?),
.cmp_gt => try self.genCmp(inst.castTag(.cmp_gt).?),
.cmp_gte => try self.genCmp(inst.castTag(.cmp_gte).?),
.cmp_lt => try self.genCmp(inst.castTag(.cmp_lt).?),
.cmp_lte => try self.genCmp(inst.castTag(.cmp_lte).?),
.bool_and => try self.genBinOp(inst.castTag(.bool_and).?),
.bool_or => try self.genBinOp(inst.castTag(.bool_or).?),
.not => try self.genUnOp(inst.castTag(.not).?),
.alloc => try self.genAlloc(inst.castTag(.alloc).?),
.arg => self.genArg(),
// TODO: Breakpoints won't be supported in SPIR-V, but the compiler seems to insert them
// throughout the IR.
.breakpoint => null,
.constant => unreachable,
.dbg_stmt => null,
.load => try self.genLoad(inst.castTag(.load).?),
.ret => self.genRet(inst.castTag(.ret).?),
.retvoid => self.genRetVoid(),
.store => try self.genStore(inst.castTag(.store).?),
.unreach => self.genUnreach(),
else => self.fail(inst.src, "TODO: SPIR-V backend: implement inst {s}", .{@tagName(inst.tag)}),
};
}
fn genBinOp(self: *DeclGen, inst: *Inst.BinOp) !ResultId {
// TODO: Will lhs and rhs have the same type?
const lhs_id = try self.resolve(inst.lhs);
const rhs_id = try self.resolve(inst.rhs);
const result_id = self.spv.allocResultId();
const result_type_id = try self.genType(inst.base.src, inst.base.ty);
// TODO: Is the result the same as the argument types?
// This is supposed to be the case for SPIR-V.
std.debug.assert(inst.rhs.ty.eql(inst.lhs.ty));
std.debug.assert(inst.base.ty.tag() == .bool or inst.base.ty.eql(inst.lhs.ty));
// Binary operations are generally applicable to both scalar and vector operations in SPIR-V, but int and float
// versions of operations require different opcodes.
// For operations which produce bools, the information of inst.base.ty is not useful, so just pick either operand
// instead.
const info = try self.arithmeticTypeInfo(inst.lhs.ty);
if (info.class == .composite_integer) {
return self.fail(inst.base.src, "TODO: SPIR-V backend: binary operations for composite integers", .{});
} else if (info.class == .strange_integer) {
return self.fail(inst.base.src, "TODO: SPIR-V backend: binary operations for strange integers", .{});
}
const is_bool = info.class == .bool;
const is_float = info.class == .float;
const is_signed = info.signedness == .signed;
// **Note**: All these operations must be valid for vectors as well!
const opcode = switch (inst.base.tag) {
// The regular integer operations are all defined for wrapping. Since theyre only relevant for integers,
// we can just switch on both cases here.
.add, .addwrap => if (is_float) Opcode.OpFAdd else Opcode.OpIAdd,
.sub, .subwrap => if (is_float) Opcode.OpFSub else Opcode.OpISub,
.mul, .mulwrap => if (is_float) Opcode.OpFMul else Opcode.OpIMul,
// TODO: Trap if divisor is 0?
// TODO: Figure out of OpSDiv for unsigned/OpUDiv for signed does anything useful.
// => Those are probably for divTrunc and divFloor, though the compiler does not yet generate those.
// => TODO: Figure out how those work on the SPIR-V side.
// => TODO: Test these.
.div => if (is_float) Opcode.OpFDiv else if (is_signed) Opcode.OpSDiv else Opcode.OpUDiv,
// Only integer versions for these.
.bit_and => Opcode.OpBitwiseAnd,
.bit_or => Opcode.OpBitwiseOr,
.xor => Opcode.OpBitwiseXor,
// Bool -> bool operations.
.bool_and => Opcode.OpLogicalAnd,
.bool_or => Opcode.OpLogicalOr,
else => unreachable,
};
try writeInstruction(&self.spv.binary.fn_decls, opcode, &[_]Word{ result_type_id, result_id, lhs_id, rhs_id });
// TODO: Trap on overflow? Probably going to be annoying.
// TODO: Look into SPV_KHR_no_integer_wrap_decoration which provides NoSignedWrap/NoUnsignedWrap.
if (info.class != .strange_integer)
return result_id;
return self.fail(inst.base.src, "TODO: SPIR-V backend: strange integer operation mask", .{});
}
fn genCmp(self: *DeclGen, inst: *Inst.BinOp) !ResultId {
const lhs_id = try self.resolve(inst.lhs);
const rhs_id = try self.resolve(inst.rhs);
const result_id = self.spv.allocResultId();
const result_type_id = try self.genType(inst.base.src, inst.base.ty);
// All of these operations should be 2 equal types -> bool
std.debug.assert(inst.rhs.ty.eql(inst.lhs.ty));
std.debug.assert(inst.base.ty.tag() == .bool);
// Comparisons are generally applicable to both scalar and vector operations in SPIR-V, but int and float
// versions of operations require different opcodes.
// Since inst.base.ty is always bool and so not very useful, and because both arguments must be the same, just get the info
// from either of the operands.
const info = try self.arithmeticTypeInfo(inst.lhs.ty);
if (info.class == .composite_integer) {
return self.fail(inst.base.src, "TODO: SPIR-V backend: binary operations for composite integers", .{});
} else if (info.class == .strange_integer) {
return self.fail(inst.base.src, "TODO: SPIR-V backend: comparison for strange integers", .{});
}
const is_bool = info.class == .bool;
const is_float = info.class == .float;
const is_signed = info.signedness == .signed;
// **Note**: All these operations must be valid for vectors as well!
// For floating points, we generally want ordered operations (which return false if either operand is nan).
const opcode = switch (inst.base.tag) {
.cmp_eq => if (is_float) Opcode.OpFOrdEqual else if (is_bool) Opcode.OpLogicalEqual else Opcode.OpIEqual,
.cmp_neq => if (is_float) Opcode.OpFOrdNotEqual else if (is_bool) Opcode.OpLogicalNotEqual else Opcode.OpINotEqual,
// TODO: Verify that these OpFOrd type operations produce the right value.
// TODO: Is there a more fundamental difference between OpU and OpS operations here than just the type?
.cmp_gt => if (is_float) Opcode.OpFOrdGreaterThan else if (is_signed) Opcode.OpSGreaterThan else Opcode.OpUGreaterThan,
.cmp_gte => if (is_float) Opcode.OpFOrdGreaterThanEqual else if (is_signed) Opcode.OpSGreaterThanEqual else Opcode.OpUGreaterThanEqual,
.cmp_lt => if (is_float) Opcode.OpFOrdLessThan else if (is_signed) Opcode.OpSLessThan else Opcode.OpULessThan,
.cmp_lte => if (is_float) Opcode.OpFOrdLessThanEqual else if (is_signed) Opcode.OpSLessThanEqual else Opcode.OpULessThanEqual,
else => unreachable,
};
try writeInstruction(&self.spv.binary.fn_decls, opcode, &[_]Word{ result_type_id, result_id, lhs_id, rhs_id });
return result_id;
}
fn genUnOp(self: *DeclGen, inst: *Inst.UnOp) !ResultId {
const operand_id = try self.resolve(inst.operand);
const result_id = self.spv.allocResultId();
const result_type_id = try self.genType(inst.base.src, inst.base.ty);
const info = try self.arithmeticTypeInfo(inst.operand.ty);
const opcode = switch (inst.base.tag) {
// Bool -> bool
.not => Opcode.OpLogicalNot,
else => unreachable,
};
try writeInstruction(&self.spv.binary.fn_decls, opcode, &[_]Word{ result_type_id, result_id, operand_id });
return result_id;
}
fn genAlloc(self: *DeclGen, inst: *Inst.NoOp) !ResultId {
const storage_class = spec.StorageClass.Function;
const result_type_id = try self.genPointerType(inst.base.src, inst.base.ty, storage_class);
const result_id = self.spv.allocResultId();
try writeInstruction(&self.spv.binary.fn_decls, .OpVariable, &[_]Word{ result_type_id, result_id, @enumToInt(storage_class) });
return result_id;
}
fn genArg(self: *DeclGen) ResultId {
defer self.next_arg_index += 1;
return self.args.items[self.next_arg_index];
}
fn genLoad(self: *DeclGen, inst: *Inst.UnOp) !ResultId {
const operand_id = try self.resolve(inst.operand);
const result_type_id = try self.genType(inst.base.src, inst.base.ty);
const result_id = self.spv.allocResultId();
const operands = if (inst.base.ty.isVolatilePtr())
&[_]Word{ result_type_id, result_id, operand_id, @bitCast(u32, spec.MemoryAccess{.Volatile = true}) }
else
&[_]Word{ result_type_id, result_id, operand_id};
try writeInstruction(&self.spv.binary.fn_decls, .OpLoad, operands);
return result_id;
}
fn genRet(self: *DeclGen, inst: *Inst.UnOp) !?ResultId {
const operand_id = try self.resolve(inst.operand);
// TODO: This instruction needs to be the last in a block. Is that guaranteed?
try writeInstruction(&self.spv.binary.fn_decls, .OpReturnValue, &[_]Word{operand_id});
return null;
}
fn genRetVoid(self: *DeclGen) !?ResultId {
// TODO: This instruction needs to be the last in a block. Is that guaranteed?
try writeInstruction(&self.spv.binary.fn_decls, .OpReturn, &[_]Word{});
return null;
}
fn genStore(self: *DeclGen, inst: *Inst.BinOp) !?ResultId {
const dst_ptr_id = try self.resolve(inst.lhs);
const src_val_id = try self.resolve(inst.rhs);
const operands = if (inst.lhs.ty.isVolatilePtr())
&[_]Word{ dst_ptr_id, src_val_id, @bitCast(u32, spec.MemoryAccess{.Volatile = true}) }
else
&[_]Word{ dst_ptr_id, src_val_id };
try writeInstruction(&self.spv.binary.fn_decls, .OpStore, operands);
return null;
}
fn genUnreach(self: *DeclGen) !?ResultId {
// TODO: This instruction needs to be the last in a block. Is that guaranteed?
try writeInstruction(&self.spv.binary.fn_decls, .OpUnreachable, &[_]Word{});
return null;
}
};