Files
zig/src/stage1/os.cpp

1276 lines
39 KiB
C++

/*
* Copyright (c) 2015 Andrew Kelley
*
* This file is part of zig, which is MIT licensed.
* See http://opensource.org/licenses/MIT
*/
#include "os.hpp"
#include "buffer.hpp"
#include "heap.hpp"
#include "util.hpp"
#include "error.hpp"
#include "util_base.hpp"
#include <stdint.h>
#include <stdio.h>
#if defined(_WIN32)
#if !defined(NOMINMAX)
#define NOMINMAX
#endif
#if !defined(VC_EXTRALEAN)
#define VC_EXTRALEAN
#endif
#if !defined(WIN32_LEAN_AND_MEAN)
#define WIN32_LEAN_AND_MEAN
#endif
#if !defined(_WIN32_WINNT)
#define _WIN32_WINNT 0x600
#endif
#if !defined(NTDDI_VERSION)
#define NTDDI_VERSION 0x06000000
#endif
#include <windows.h>
#include <shlobj.h>
#include <io.h>
#include <fcntl.h>
#include <ntsecapi.h>
// Workaround an upstream LLVM issue.
// See https://github.com/ziglang/zig/issues/7614#issuecomment-752939981
#if defined(_MSC_VER) && defined(_WIN64)
typedef SSIZE_T ssize_t;
#endif
#else
#define ZIG_OS_POSIX
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/resource.h>
#include <fcntl.h>
#include <limits.h>
#include <spawn.h>
#endif
#if defined(ZIG_OS_LINUX) || defined(ZIG_OS_FREEBSD) || defined(ZIG_OS_NETBSD) || defined(ZIG_OS_DRAGONFLY) || defined(ZIG_OS_OPENBSD) || defined(ZIG_OS_HAIKU)
#include <link.h>
#endif
#if defined(ZIG_OS_LINUX)
#include <sys/auxv.h>
#endif
#if defined(ZIG_OS_FREEBSD) || defined(ZIG_OS_NETBSD) || defined(ZIG_OS_DRAGONFLY) || defined(ZIG_OS_OPENBSD)
#include <sys/sysctl.h>
#endif
#if defined(__MACH__)
#include <mach/clock.h>
#include <mach/mach.h>
#include <mach-o/dyld.h>
#endif
#if defined(ZIG_OS_WINDOWS)
static void utf16le_ptr_to_utf8(Buf *out, WCHAR *utf16le);
static size_t utf8_to_utf16le(WCHAR *utf16_le, Slice<uint8_t> utf8);
static uint64_t windows_perf_freq;
#elif defined(__MACH__)
static clock_serv_t macos_calendar_clock;
static clock_serv_t macos_monotonic_clock;
#endif
#include <stdlib.h>
#include <errno.h>
#include <time.h>
#if !defined(environ)
extern char **environ;
#endif
void os_path_dirname(Buf *full_path, Buf *out_dirname) {
return os_path_split(full_path, out_dirname, nullptr);
}
bool os_is_sep(uint8_t c) {
#if defined(ZIG_OS_WINDOWS)
return c == '\\' || c == '/';
#else
return c == '/';
#endif
}
void os_path_split(Buf *full_path, Buf *out_dirname, Buf *out_basename) {
size_t len = buf_len(full_path);
if (len != 0) {
size_t last_index = len - 1;
char last_char = buf_ptr(full_path)[last_index];
if (os_is_sep(last_char)) {
if (last_index == 0) {
if (out_dirname) buf_init_from_mem(out_dirname, &last_char, 1);
if (out_basename) buf_init_from_str(out_basename, "");
return;
}
last_index -= 1;
}
for (size_t i = last_index;;) {
uint8_t c = buf_ptr(full_path)[i];
if (os_is_sep(c)) {
if (out_dirname) {
buf_init_from_mem(out_dirname, buf_ptr(full_path), (i == 0) ? 1 : i);
}
if (out_basename) {
buf_init_from_mem(out_basename, buf_ptr(full_path) + i + 1, buf_len(full_path) - (i + 1));
}
return;
}
if (i == 0) break;
i -= 1;
}
}
if (out_dirname) buf_init_from_mem(out_dirname, ".", 1);
if (out_basename) buf_init_from_buf(out_basename, full_path);
}
void os_path_extname(Buf *full_path, Buf *out_basename, Buf *out_extname) {
if (buf_len(full_path) == 0) {
if (out_basename) buf_init_from_str(out_basename, "");
if (out_extname) buf_init_from_str(out_extname, "");
return;
}
size_t i = buf_len(full_path) - 1;
while (true) {
if (buf_ptr(full_path)[i] == '.') {
if (out_basename) {
buf_resize(out_basename, 0);
buf_append_mem(out_basename, buf_ptr(full_path), i);
}
if (out_extname) {
buf_resize(out_extname, 0);
buf_append_mem(out_extname, buf_ptr(full_path) + i, buf_len(full_path) - i);
}
return;
}
if (i == 0) {
if (out_basename) buf_init_from_buf(out_basename, full_path);
if (out_extname) buf_init_from_str(out_extname, "");
return;
}
i -= 1;
}
}
void os_path_join(Buf *dirname, Buf *basename, Buf *out_full_path) {
if (buf_len(dirname) == 0) {
buf_init_from_buf(out_full_path, basename);
return;
}
buf_init_from_buf(out_full_path, dirname);
uint8_t c = *(buf_ptr(out_full_path) + buf_len(out_full_path) - 1);
if (!os_is_sep(c))
buf_append_char(out_full_path, ZIG_OS_SEP_CHAR);
buf_append_buf(out_full_path, basename);
}
#if defined(ZIG_OS_WINDOWS)
// Ported from std/os/path.zig
static bool isAbsoluteWindows(Slice<uint8_t> path) {
if (path.ptr[0] == '/')
return true;
if (path.ptr[0] == '\\') {
return true;
}
if (path.len < 3) {
return false;
}
if (path.ptr[1] == ':') {
if (path.ptr[2] == '/')
return true;
if (path.ptr[2] == '\\')
return true;
}
return false;
}
enum WindowsPathKind {
WindowsPathKindNone,
WindowsPathKindDrive,
WindowsPathKindNetworkShare,
};
struct WindowsPath {
Slice<uint8_t> disk_designator;
WindowsPathKind kind;
bool is_abs;
};
// Ported from std/os/path.zig
static WindowsPath windowsParsePath(Slice<uint8_t> path) {
if (path.len >= 2 && path.ptr[1] == ':') {
return WindowsPath{
path.slice(0, 2),
WindowsPathKindDrive,
isAbsoluteWindows(path),
};
}
if (path.len >= 1 && (path.ptr[0] == '/' || path.ptr[0] == '\\') &&
(path.len == 1 || (path.ptr[1] != '/' && path.ptr[1] != '\\')))
{
return WindowsPath{
path.slice(0, 0),
WindowsPathKindNone,
true,
};
}
WindowsPath relative_path = {
str(""),
WindowsPathKindNone,
false,
};
if (path.len < strlen("//a/b")) {
return relative_path;
}
{
if (memStartsWith(path, str("//"))) {
if (path.ptr[2] == '/') {
return relative_path;
}
SplitIterator it = memSplit(path, str("/"));
{
Optional<Slice<uint8_t>> opt_component = SplitIterator_next(&it);
if (!opt_component.is_some) return relative_path;
}
{
Optional<Slice<uint8_t>> opt_component = SplitIterator_next(&it);
if (!opt_component.is_some) return relative_path;
}
return WindowsPath{
path.slice(0, it.index),
WindowsPathKindNetworkShare,
isAbsoluteWindows(path),
};
}
}
{
if (memStartsWith(path, str("\\\\"))) {
if (path.ptr[2] == '\\') {
return relative_path;
}
SplitIterator it = memSplit(path, str("\\"));
{
Optional<Slice<uint8_t>> opt_component = SplitIterator_next(&it);
if (!opt_component.is_some) return relative_path;
}
{
Optional<Slice<uint8_t>> opt_component = SplitIterator_next(&it);
if (!opt_component.is_some) return relative_path;
}
return WindowsPath{
path.slice(0, it.index),
WindowsPathKindNetworkShare,
isAbsoluteWindows(path),
};
}
}
return relative_path;
}
// Ported from std/os/path.zig
static uint8_t asciiUpper(uint8_t byte) {
if (byte >= 'a' && byte <= 'z') {
return 'A' + (byte - 'a');
}
return byte;
}
// Ported from std/os/path.zig
static bool asciiEqlIgnoreCase(Slice<uint8_t> s1, Slice<uint8_t> s2) {
if (s1.len != s2.len)
return false;
for (size_t i = 0; i < s1.len; i += 1) {
if (asciiUpper(s1.ptr[i]) != asciiUpper(s2.ptr[i]))
return false;
}
return true;
}
// Ported from std/os/path.zig
static bool compareDiskDesignators(WindowsPathKind kind, Slice<uint8_t> p1, Slice<uint8_t> p2) {
switch (kind) {
case WindowsPathKindNone:
assert(p1.len == 0);
assert(p2.len == 0);
return true;
case WindowsPathKindDrive:
return asciiUpper(p1.ptr[0]) == asciiUpper(p2.ptr[0]);
case WindowsPathKindNetworkShare:
uint8_t sep1 = p1.ptr[0];
uint8_t sep2 = p2.ptr[0];
SplitIterator it1 = memSplit(p1, {&sep1, 1});
SplitIterator it2 = memSplit(p2, {&sep2, 1});
// TODO ASCII is wrong, we actually need full unicode support to compare paths.
return asciiEqlIgnoreCase(SplitIterator_next(&it1).value, SplitIterator_next(&it2).value) &&
asciiEqlIgnoreCase(SplitIterator_next(&it1).value, SplitIterator_next(&it2).value);
}
zig_unreachable();
}
// Ported from std/os/path.zig
static Buf os_path_resolve_windows(Buf **paths_ptr, size_t paths_len) {
if (paths_len == 0) {
Buf cwd = BUF_INIT;
int err;
if ((err = os_get_cwd(&cwd))) {
zig_panic("get cwd failed");
}
return cwd;
}
// determine which disk designator we will result with, if any
char result_drive_buf[3] = {'_', ':', '\0'}; // 0 needed for strlen later
Slice<uint8_t> result_disk_designator = str("");
WindowsPathKind have_drive_kind = WindowsPathKindNone;
bool have_abs_path = false;
size_t first_index = 0;
size_t max_size = 0;
for (size_t i = 0; i < paths_len; i += 1) {
Slice<uint8_t> p = buf_to_slice(paths_ptr[i]);
WindowsPath parsed = windowsParsePath(p);
if (parsed.is_abs) {
have_abs_path = true;
first_index = i;
max_size = result_disk_designator.len;
}
switch (parsed.kind) {
case WindowsPathKindDrive:
result_drive_buf[0] = asciiUpper(parsed.disk_designator.ptr[0]);
result_disk_designator = str(result_drive_buf);
have_drive_kind = WindowsPathKindDrive;
break;
case WindowsPathKindNetworkShare:
result_disk_designator = parsed.disk_designator;
have_drive_kind = WindowsPathKindNetworkShare;
break;
case WindowsPathKindNone:
break;
}
max_size += p.len + 1;
}
// if we will result with a disk designator, loop again to determine
// which is the last time the disk designator is absolutely specified, if any
// and count up the max bytes for paths related to this disk designator
if (have_drive_kind != WindowsPathKindNone) {
have_abs_path = false;
first_index = 0;
max_size = result_disk_designator.len;
bool correct_disk_designator = false;
for (size_t i = 0; i < paths_len; i += 1) {
Slice<uint8_t> p = buf_to_slice(paths_ptr[i]);
WindowsPath parsed = windowsParsePath(p);
if (parsed.kind != WindowsPathKindNone) {
if (parsed.kind == have_drive_kind) {
correct_disk_designator = compareDiskDesignators(have_drive_kind, result_disk_designator, parsed.disk_designator);
} else {
continue;
}
}
if (!correct_disk_designator) {
continue;
}
if (parsed.is_abs) {
first_index = i;
max_size = result_disk_designator.len;
have_abs_path = true;
}
max_size += p.len + 1;
}
}
// Allocate result and fill in the disk designator, calling getCwd if we have to.
Slice<uint8_t> result;
size_t result_index = 0;
if (have_abs_path) {
switch (have_drive_kind) {
case WindowsPathKindDrive: {
result = Slice<uint8_t>::alloc(max_size);
memCopy(result, result_disk_designator);
result_index += result_disk_designator.len;
break;
}
case WindowsPathKindNetworkShare: {
result = Slice<uint8_t>::alloc(max_size);
SplitIterator it = memSplit(buf_to_slice(paths_ptr[first_index]), str("/\\"));
Slice<uint8_t> server_name = SplitIterator_next(&it).value;
Slice<uint8_t> other_name = SplitIterator_next(&it).value;
result.ptr[result_index] = '\\';
result_index += 1;
result.ptr[result_index] = '\\';
result_index += 1;
memCopy(result.sliceFrom(result_index), server_name);
result_index += server_name.len;
result.ptr[result_index] = '\\';
result_index += 1;
memCopy(result.sliceFrom(result_index), other_name);
result_index += other_name.len;
result_disk_designator = result.slice(0, result_index);
break;
}
case WindowsPathKindNone: {
Buf cwd = BUF_INIT;
int err;
if ((err = os_get_cwd(&cwd))) {
zig_panic("get cwd failed");
}
WindowsPath parsed_cwd = windowsParsePath(buf_to_slice(&cwd));
result = Slice<uint8_t>::alloc(max_size + parsed_cwd.disk_designator.len + 1);
memCopy(result, parsed_cwd.disk_designator);
result_index += parsed_cwd.disk_designator.len;
result_disk_designator = result.slice(0, parsed_cwd.disk_designator.len);
if (parsed_cwd.kind == WindowsPathKindDrive) {
result.ptr[0] = asciiUpper(result.ptr[0]);
}
have_drive_kind = parsed_cwd.kind;
break;
}
}
} else {
// TODO call get cwd for the result_disk_designator instead of the global one
Buf cwd = BUF_INIT;
int err;
if ((err = os_get_cwd(&cwd))) {
zig_panic("get cwd failed");
}
result = Slice<uint8_t>::alloc(max_size + buf_len(&cwd) + 1);
memCopy(result, buf_to_slice(&cwd));
result_index += buf_len(&cwd);
WindowsPath parsed_cwd = windowsParsePath(result.slice(0, result_index));
result_disk_designator = parsed_cwd.disk_designator;
if (parsed_cwd.kind == WindowsPathKindDrive) {
result.ptr[0] = asciiUpper(result.ptr[0]);
}
have_drive_kind = parsed_cwd.kind;
}
// Now we know the disk designator to use, if any, and what kind it is. And our result
// is big enough to append all the paths to.
bool correct_disk_designator = true;
for (size_t i = 0; i < paths_len; i += 1) {
Slice<uint8_t> p = buf_to_slice(paths_ptr[i]);
WindowsPath parsed = windowsParsePath(p);
if (parsed.kind != WindowsPathKindNone) {
if (parsed.kind == have_drive_kind) {
correct_disk_designator = compareDiskDesignators(have_drive_kind, result_disk_designator, parsed.disk_designator);
} else {
continue;
}
}
if (!correct_disk_designator) {
continue;
}
SplitIterator it = memSplit(p.sliceFrom(parsed.disk_designator.len), str("/\\"));
while (true) {
Optional<Slice<uint8_t>> opt_component = SplitIterator_next(&it);
if (!opt_component.is_some) break;
Slice<uint8_t> component = opt_component.value;
if (memEql(component, str("."))) {
continue;
} else if (memEql(component, str(".."))) {
while (true) {
if (result_index == 0 || result_index == result_disk_designator.len)
break;
result_index -= 1;
if (result.ptr[result_index] == '\\' || result.ptr[result_index] == '/')
break;
}
} else {
result.ptr[result_index] = '\\';
result_index += 1;
memCopy(result.sliceFrom(result_index), component);
result_index += component.len;
}
}
}
if (result_index == result_disk_designator.len) {
result.ptr[result_index] = '\\';
result_index += 1;
}
Buf return_value = BUF_INIT;
buf_init_from_mem(&return_value, (char *)result.ptr, result_index);
return return_value;
}
#endif
#if defined(ZIG_OS_POSIX)
// Ported from std/os/path.zig
static Buf os_path_resolve_posix(Buf **paths_ptr, size_t paths_len) {
if (paths_len == 0) {
Buf cwd = BUF_INIT;
int err;
if ((err = os_get_cwd(&cwd))) {
zig_panic("get cwd failed");
}
return cwd;
}
size_t first_index = 0;
bool have_abs = false;
size_t max_size = 0;
for (size_t i = 0; i < paths_len; i += 1) {
Buf *p = paths_ptr[i];
if (buf_ptr(p)[0] == '/') {
first_index = i;
have_abs = true;
max_size = 0;
}
max_size += buf_len(p) + 1;
}
uint8_t *result_ptr;
size_t result_len;
size_t result_index = 0;
if (have_abs) {
result_len = max_size;
result_ptr = heap::c_allocator.allocate_nonzero<uint8_t>(result_len);
} else {
Buf cwd = BUF_INIT;
int err;
if ((err = os_get_cwd(&cwd))) {
zig_panic("get cwd failed");
}
result_len = max_size + buf_len(&cwd) + 1;
result_ptr = heap::c_allocator.allocate_nonzero<uint8_t>(result_len);
memcpy(result_ptr, buf_ptr(&cwd), buf_len(&cwd));
result_index += buf_len(&cwd);
}
for (size_t i = first_index; i < paths_len; i += 1) {
Buf *p = paths_ptr[i];
SplitIterator it = memSplit(buf_to_slice(p), str("/"));
while (true) {
Optional<Slice<uint8_t>> opt_component = SplitIterator_next(&it);
if (!opt_component.is_some) break;
Slice<uint8_t> component = opt_component.value;
if (memEql<uint8_t>(component, str("."))) {
continue;
} else if (memEql<uint8_t>(component, str(".."))) {
while (true) {
if (result_index == 0)
break;
result_index -= 1;
if (result_ptr[result_index] == '/')
break;
}
} else {
result_ptr[result_index] = '/';
result_index += 1;
memcpy(result_ptr + result_index, component.ptr, component.len);
result_index += component.len;
}
}
}
if (result_index == 0) {
result_ptr[0] = '/';
result_index += 1;
}
Buf return_value = BUF_INIT;
buf_init_from_mem(&return_value, (char *)result_ptr, result_index);
heap::c_allocator.deallocate(result_ptr, result_len);
return return_value;
}
#endif
// Ported from std/os/path.zig
Buf os_path_resolve(Buf **paths_ptr, size_t paths_len) {
#if defined(ZIG_OS_WINDOWS)
return os_path_resolve_windows(paths_ptr, paths_len);
#elif defined(ZIG_OS_POSIX)
return os_path_resolve_posix(paths_ptr, paths_len);
#else
#error "missing os_path_resolve implementation"
#endif
}
Error os_fetch_file(FILE *f, Buf *out_buf) {
static const ssize_t buf_size = 0x2000;
buf_resize(out_buf, buf_size);
ssize_t actual_buf_len = 0;
for (;;) {
size_t amt_read = fread(buf_ptr(out_buf) + actual_buf_len, 1, buf_size, f);
actual_buf_len += amt_read;
if (amt_read != buf_size) {
if (feof(f)) {
buf_resize(out_buf, actual_buf_len);
return ErrorNone;
} else {
return ErrorFileSystem;
}
}
buf_resize(out_buf, actual_buf_len + buf_size);
}
zig_unreachable();
}
Error os_write_file(Buf *full_path, Buf *contents) {
#if defined(ZIG_OS_WINDOWS)
PathSpace path_space = slice_to_prefixed_file_w(buf_to_slice(full_path));
FILE *f = _wfopen(&path_space.data.items[0], L"wb");
#else
FILE *f = fopen(buf_ptr(full_path), "wb");
#endif
if (!f) {
zig_panic("os_write_file failed for %s", buf_ptr(full_path));
}
size_t amt_written = fwrite(buf_ptr(contents), 1, buf_len(contents), f);
if (amt_written != (size_t)buf_len(contents))
zig_panic("write failed: %s", strerror(errno));
if (fclose(f))
zig_panic("close failed");
return ErrorNone;
}
static Error copy_open_files(FILE *src_f, FILE *dest_f) {
static const size_t buf_size = 2048;
char buf[buf_size];
for (;;) {
size_t amt_read = fread(buf, 1, buf_size, src_f);
if (amt_read != buf_size) {
if (ferror(src_f)) {
return ErrorFileSystem;
}
}
size_t amt_written = fwrite(buf, 1, amt_read, dest_f);
if (amt_written != amt_read) {
return ErrorFileSystem;
}
if (feof(src_f)) {
return ErrorNone;
}
}
}
Error os_copy_file(Buf *src_path, Buf *dest_path) {
#if defined(ZIG_OS_WINDOWS)
PathSpace src_path_space = slice_to_prefixed_file_w(buf_to_slice(src_path));
FILE *src_f = _wfopen(&src_path_space.data.items[0], L"rb");
#else
FILE *src_f = fopen(buf_ptr(src_path), "rb");
#endif
if (!src_f) {
int err = errno;
if (err == ENOENT) {
return ErrorFileNotFound;
} else if (err == EACCES || err == EPERM) {
return ErrorAccess;
} else {
return ErrorFileSystem;
}
}
#if defined(ZIG_OS_WINDOWS)
PathSpace dest_path_space = slice_to_prefixed_file_w(buf_to_slice(dest_path));
FILE *dest_f = _wfopen(&dest_path_space.data.items[0], L"wb");
#else
FILE *dest_f = fopen(buf_ptr(dest_path), "wb");
#endif
if (!dest_f) {
int err = errno;
if (err == ENOENT) {
fclose(src_f);
return ErrorFileNotFound;
} else if (err == EACCES || err == EPERM) {
fclose(src_f);
return ErrorAccess;
} else {
fclose(src_f);
return ErrorFileSystem;
}
}
Error err = copy_open_files(src_f, dest_f);
fclose(src_f);
fclose(dest_f);
return err;
}
Error os_fetch_file_path(Buf *full_path, Buf *out_contents) {
#if defined(ZIG_OS_WINDOWS)
PathSpace path_space = slice_to_prefixed_file_w(buf_to_slice(full_path));
FILE *f = _wfopen(&path_space.data.items[0], L"rb");
#else
FILE *f = fopen(buf_ptr(full_path), "rb");
#endif
if (!f) {
switch (errno) {
case EACCES:
return ErrorAccess;
case EINTR:
return ErrorInterrupted;
case EINVAL:
return ErrorInvalidFilename;
case ENFILE:
case ENOMEM:
return ErrorSystemResources;
case ENOENT:
return ErrorFileNotFound;
default:
return ErrorFileSystem;
}
}
Error result = os_fetch_file(f, out_contents);
fclose(f);
return result;
}
Error os_get_cwd(Buf *out_cwd) {
#if defined(ZIG_OS_WINDOWS)
PathSpace path_space;
if (GetCurrentDirectoryW(PATH_MAX_WIDE, &path_space.data.items[0]) == 0) {
zig_panic("GetCurrentDirectory failed");
}
utf16le_ptr_to_utf8(out_cwd, &path_space.data.items[0]);
return ErrorNone;
#elif defined(ZIG_OS_POSIX)
char buf[PATH_MAX];
char *res = getcwd(buf, PATH_MAX);
if (res == nullptr) {
zig_panic("unable to get cwd: %s", strerror(errno));
}
buf_init_from_str(out_cwd, res);
return ErrorNone;
#else
#error "missing os_get_cwd implementation"
#endif
}
#if defined(ZIG_OS_WINDOWS)
#define is_wprefix(s, prefix) \
(wcsncmp((s), (prefix), sizeof(prefix) / sizeof(WCHAR) - 1) == 0)
static bool is_stderr_cyg_pty(void) {
HANDLE stderr_handle = GetStdHandle(STD_ERROR_HANDLE);
if (stderr_handle == INVALID_HANDLE_VALUE)
return false;
const int size = sizeof(FILE_NAME_INFO) + sizeof(WCHAR) * MAX_PATH;
FILE_NAME_INFO *nameinfo;
WCHAR *p = NULL;
// Cygwin/msys's pty is a pipe.
if (GetFileType(stderr_handle) != FILE_TYPE_PIPE) {
return 0;
}
nameinfo = reinterpret_cast<FILE_NAME_INFO *>(heap::c_allocator.allocate<char>(size));
if (nameinfo == NULL) {
return 0;
}
// Check the name of the pipe:
// '\{cygwin,msys}-XXXXXXXXXXXXXXXX-ptyN-{from,to}-master'
if (GetFileInformationByHandleEx(stderr_handle, FileNameInfo, nameinfo, size)) {
nameinfo->FileName[nameinfo->FileNameLength / sizeof(WCHAR)] = L'\0';
p = nameinfo->FileName;
if (is_wprefix(p, L"\\cygwin-")) { /* Cygwin */
p += 8;
} else if (is_wprefix(p, L"\\msys-")) { /* MSYS and MSYS2 */
p += 6;
} else {
p = NULL;
}
if (p != NULL) {
while (*p && isxdigit(*p)) /* Skip 16-digit hexadecimal. */
++p;
if (is_wprefix(p, L"-pty")) {
p += 4;
} else {
p = NULL;
}
}
if (p != NULL) {
while (*p && isdigit(*p)) /* Skip pty number. */
++p;
if (is_wprefix(p, L"-from-master")) {
//p += 12;
} else if (is_wprefix(p, L"-to-master")) {
//p += 10;
} else {
p = NULL;
}
}
}
heap::c_allocator.deallocate(reinterpret_cast<char *>(nameinfo), size);
return (p != NULL);
}
#endif
bool os_stderr_tty(void) {
#if defined(ZIG_OS_WINDOWS)
return _isatty(_fileno(stderr)) != 0 || is_stderr_cyg_pty();
#elif defined(ZIG_OS_POSIX)
return isatty(STDERR_FILENO) != 0;
#else
#error "missing os_stderr_tty implementation"
#endif
}
Error os_rename(Buf *src_path, Buf *dest_path) {
if (buf_eql_buf(src_path, dest_path)) {
return ErrorNone;
}
#if defined(ZIG_OS_WINDOWS)
PathSpace src_path_space = slice_to_prefixed_file_w(buf_to_slice(src_path));
PathSpace dest_path_space = slice_to_prefixed_file_w(buf_to_slice(dest_path));
if (!MoveFileExW(&src_path_space.data.items[0], &dest_path_space.data.items[0], MOVEFILE_REPLACE_EXISTING | MOVEFILE_WRITE_THROUGH)) {
return ErrorFileSystem;
}
#else
if (rename(buf_ptr(src_path), buf_ptr(dest_path)) == -1) {
return ErrorFileSystem;
}
#endif
return ErrorNone;
}
OsTimeStamp os_timestamp_monotonic(void) {
OsTimeStamp result;
#if defined(ZIG_OS_WINDOWS)
uint64_t counts;
QueryPerformanceCounter((LARGE_INTEGER*)&counts);
result.sec = counts / windows_perf_freq;
result.nsec = (counts % windows_perf_freq) * 1000000000u / windows_perf_freq;
#elif defined(__MACH__)
mach_timespec_t mts;
kern_return_t err = clock_get_time(macos_monotonic_clock, &mts);
assert(!err);
result.sec = mts.tv_sec;
result.nsec = mts.tv_nsec;
#else
struct timespec tms;
clock_gettime(CLOCK_MONOTONIC, &tms);
result.sec = tms.tv_sec;
result.nsec = tms.tv_nsec;
#endif
return result;
}
Error os_make_path(Buf *path) {
Buf resolved_path = os_path_resolve(&path, 1);
size_t end_index = buf_len(&resolved_path);
Error err;
while (true) {
if ((err = os_make_dir(buf_slice(&resolved_path, 0, end_index)))) {
if (err == ErrorPathAlreadyExists) {
if (end_index == buf_len(&resolved_path))
return ErrorNone;
} else if (err == ErrorFileNotFound) {
// march end_index backward until next path component
while (true) {
end_index -= 1;
if (os_is_sep(buf_ptr(&resolved_path)[end_index]))
break;
}
continue;
} else {
return err;
}
}
if (end_index == buf_len(&resolved_path))
return ErrorNone;
// march end_index forward until next path component
while (true) {
end_index += 1;
if (end_index == buf_len(&resolved_path) || os_is_sep(buf_ptr(&resolved_path)[end_index]))
break;
}
}
return ErrorNone;
}
Error os_make_dir(Buf *path) {
#if defined(ZIG_OS_WINDOWS)
PathSpace path_space = slice_to_prefixed_file_w(buf_to_slice(path));
if (!CreateDirectoryW(&path_space.data.items[0], NULL)) {
if (GetLastError() == ERROR_ALREADY_EXISTS)
return ErrorPathAlreadyExists;
if (GetLastError() == ERROR_PATH_NOT_FOUND)
return ErrorFileNotFound;
if (GetLastError() == ERROR_ACCESS_DENIED)
return ErrorAccess;
return ErrorUnexpected;
}
return ErrorNone;
#else
if (mkdir(buf_ptr(path), 0755) == -1) {
if (errno == EEXIST)
return ErrorPathAlreadyExists;
if (errno == ENOENT)
return ErrorFileNotFound;
if (errno == EACCES)
return ErrorAccess;
return ErrorUnexpected;
}
return ErrorNone;
#endif
}
int os_init(void) {
#if defined(ZIG_OS_WINDOWS)
_setmode(fileno(stdout), _O_BINARY);
_setmode(fileno(stderr), _O_BINARY);
if (!QueryPerformanceFrequency((LARGE_INTEGER*)&windows_perf_freq)) {
return ErrorSystemResources;
}
#elif defined(__MACH__)
host_get_clock_service(mach_host_self(), SYSTEM_CLOCK, &macos_monotonic_clock);
host_get_clock_service(mach_host_self(), CALENDAR_CLOCK, &macos_calendar_clock);
#endif
return 0;
}
#define VT_RED "\x1b[31;1m"
#define VT_GREEN "\x1b[32;1m"
#define VT_CYAN "\x1b[36;1m"
#define VT_WHITE "\x1b[37;1m"
#define VT_BOLD "\x1b[0;1m"
#define VT_RESET "\x1b[0m"
static void set_color_posix(TermColor color) {
switch (color) {
case TermColorRed:
fprintf(stderr, VT_RED);
break;
case TermColorGreen:
fprintf(stderr, VT_GREEN);
break;
case TermColorCyan:
fprintf(stderr, VT_CYAN);
break;
case TermColorWhite:
fprintf(stderr, VT_WHITE);
break;
case TermColorBold:
fprintf(stderr, VT_BOLD);
break;
case TermColorReset:
fprintf(stderr, VT_RESET);
break;
}
}
#if defined(ZIG_OS_WINDOWS)
bool got_orig_console_attrs = false;
WORD original_console_attributes = FOREGROUND_RED|FOREGROUND_GREEN|FOREGROUND_BLUE;
#endif
void os_stderr_set_color(TermColor color) {
#if defined(ZIG_OS_WINDOWS)
if (is_stderr_cyg_pty()) {
set_color_posix(color);
return;
}
HANDLE stderr_handle = GetStdHandle(STD_ERROR_HANDLE);
if (stderr_handle == INVALID_HANDLE_VALUE)
zig_panic("unable to get stderr handle");
fflush(stderr);
if (!got_orig_console_attrs) {
got_orig_console_attrs = true;
CONSOLE_SCREEN_BUFFER_INFO info;
if (GetConsoleScreenBufferInfo(stderr_handle, &info)) {
original_console_attributes = info.wAttributes;
}
}
switch (color) {
case TermColorRed:
SetConsoleTextAttribute(stderr_handle, FOREGROUND_RED|FOREGROUND_INTENSITY);
break;
case TermColorGreen:
SetConsoleTextAttribute(stderr_handle, FOREGROUND_GREEN|FOREGROUND_INTENSITY);
break;
case TermColorCyan:
SetConsoleTextAttribute(stderr_handle, FOREGROUND_GREEN|FOREGROUND_BLUE|FOREGROUND_INTENSITY);
break;
case TermColorWhite:
case TermColorBold:
SetConsoleTextAttribute(stderr_handle,
FOREGROUND_RED|FOREGROUND_GREEN|FOREGROUND_BLUE|FOREGROUND_INTENSITY);
break;
case TermColorReset:
SetConsoleTextAttribute(stderr_handle, original_console_attributes);
break;
}
#else
set_color_posix(color);
#endif
}
#if defined(ZIG_OS_WINDOWS)
// Ported from std/unicode.zig
struct Utf16LeIterator {
uint8_t *bytes;
size_t i;
};
// Ported from std/unicode.zig
static Utf16LeIterator Utf16LeIterator_init(WCHAR *ptr) {
return {(uint8_t*)ptr, 0};
}
// Ported from std/unicode.zig
static Optional<uint32_t> Utf16LeIterator_nextCodepoint(Utf16LeIterator *it) {
if (it->bytes[it->i] == 0 && it->bytes[it->i + 1] == 0)
return {};
uint32_t c0 = ((uint32_t)it->bytes[it->i]) | (((uint32_t)it->bytes[it->i + 1]) << 8);
if ((c0 & ~((uint32_t)0x03ff)) == 0xd800) {
// surrogate pair
it->i += 2;
assert(it->bytes[it->i] != 0 || it->bytes[it->i + 1] != 0);
uint32_t c1 = ((uint32_t)it->bytes[it->i]) | (((uint32_t)it->bytes[it->i + 1]) << 8);
assert((c1 & ~((uint32_t)0x03ff)) == 0xdc00);
it->i += 2;
return Optional<uint32_t>::some(0x10000 + (((c0 & 0x03ff) << 10) | (c1 & 0x03ff)));
} else {
assert((c0 & ~((uint32_t)0x03ff)) != 0xdc00);
it->i += 2;
return Optional<uint32_t>::some(c0);
}
}
// Ported from std/unicode.zig
static uint8_t utf8CodepointSequenceLength(uint32_t c) {
if (c < 0x80) return 1;
if (c < 0x800) return 2;
if (c < 0x10000) return 3;
if (c < 0x110000) return 4;
zig_unreachable();
}
// Ported from std.unicode.utf8ByteSequenceLength
static uint8_t utf8ByteSequenceLength(uint8_t first_byte) {
if (first_byte < 0b10000000) return 1;
if ((first_byte & 0b11100000) == 0b11000000) return 2;
if ((first_byte & 0b11110000) == 0b11100000) return 3;
if ((first_byte & 0b11111000) == 0b11110000) return 4;
zig_unreachable();
}
// Ported from std/unicode.zig
static size_t utf8Encode(uint32_t c, Slice<uint8_t> out) {
size_t length = utf8CodepointSequenceLength(c);
assert(out.len >= length);
switch (length) {
// The pattern for each is the same
// - Increasing the initial shift by 6 each time
// - Each time after the first shorten the shifted
// value to a max of 0b111111 (63)
case 1:
out.ptr[0] = c; // Can just do 0 + codepoint for initial range
break;
case 2:
out.ptr[0] = 0b11000000 | (c >> 6);
out.ptr[1] = 0b10000000 | (c & 0b111111);
break;
case 3:
assert(!(0xd800 <= c && c <= 0xdfff));
out.ptr[0] = 0b11100000 | (c >> 12);
out.ptr[1] = 0b10000000 | ((c >> 6) & 0b111111);
out.ptr[2] = 0b10000000 | (c & 0b111111);
break;
case 4:
out.ptr[0] = 0b11110000 | (c >> 18);
out.ptr[1] = 0b10000000 | ((c >> 12) & 0b111111);
out.ptr[2] = 0b10000000 | ((c >> 6) & 0b111111);
out.ptr[3] = 0b10000000 | (c & 0b111111);
break;
default:
zig_unreachable();
}
return length;
}
// Ported from std.unicode.utf8Decode2
static uint32_t utf8Decode2(Slice<uint8_t> bytes) {
assert(bytes.len == 2);
assert((bytes.at(0) & 0b11100000) == 0b11000000);
uint32_t value = bytes.at(0) & 0b00011111;
assert((bytes.at(1) & 0b11000000) == 0b10000000);
value <<= 6;
value |= bytes.at(1) & 0b00111111;
assert(value >= 0x80);
return value;
}
// Ported from std.unicode.utf8Decode3
static uint32_t utf8Decode3(Slice<uint8_t> bytes) {
assert(bytes.len == 3);
assert((bytes.at(0) & 0b11110000) == 0b11100000);
uint32_t value = bytes.at(0) & 0b00001111;
assert((bytes.at(1) & 0b11000000) == 0b10000000);
value <<= 6;
value |= bytes.at(1) & 0b00111111;
assert((bytes.at(2) & 0b11000000) == 0b10000000);
value <<= 6;
value |= bytes.at(2) & 0b00111111;
assert(value >= 0x80);
assert(value < 0xd800 || value > 0xdfff);
return value;
}
// Ported from std.unicode.utf8Decode4
static uint32_t utf8Decode4(Slice<uint8_t> bytes) {
assert(bytes.len == 4);
assert((bytes.at(0) & 0b11111000) == 0b11110000);
uint32_t value = bytes.at(0) & 0b00000111;
assert((bytes.at(1) & 0b11000000) == 0b10000000);
value <<= 6;
value |= bytes.at(1) & 0b00111111;
assert((bytes.at(2) & 0b11000000) == 0b10000000);
value <<= 6;
value |= bytes.at(2) & 0b00111111;
assert((bytes.at(3) & 0b11000000) == 0b10000000);
value <<= 6;
value |= bytes.at(3) & 0b00111111;
assert(value >= 0x10000 && value <= 0x10FFFF);
return value;
}
// Ported from std.unicode.utf8Decode
static uint32_t utf8Decode(Slice<uint8_t> bytes) {
switch (bytes.len) {
case 1:
return bytes.at(0);
break;
case 2:
return utf8Decode2(bytes);
break;
case 3:
return utf8Decode3(bytes);
break;
case 4:
return utf8Decode4(bytes);
break;
default:
zig_unreachable();
}
}
// Ported from std.unicode.utf16leToUtf8Alloc
static void utf16le_ptr_to_utf8(Buf *out, WCHAR *utf16le) {
// optimistically guess that it will all be ascii.
buf_resize(out, 0);
size_t out_index = 0;
Utf16LeIterator it = Utf16LeIterator_init(utf16le);
for (;;) {
Optional<uint32_t> opt_codepoint = Utf16LeIterator_nextCodepoint(&it);
if (!opt_codepoint.is_some) break;
uint32_t codepoint = opt_codepoint.value;
size_t utf8_len = utf8CodepointSequenceLength(codepoint);
buf_resize(out, buf_len(out) + utf8_len);
utf8Encode(codepoint, {(uint8_t*)buf_ptr(out)+out_index, buf_len(out)-out_index});
out_index += utf8_len;
}
}
// Ported from std.unicode.utf8ToUtf16Le
static size_t utf8_to_utf16le(WCHAR *utf16_le, Slice<uint8_t> utf8) {
size_t dest_i = 0;
size_t src_i = 0;
while (src_i < utf8.len) {
uint8_t n = utf8ByteSequenceLength(utf8.at(src_i));
size_t next_src_i = src_i + n;
uint32_t codepoint = utf8Decode(utf8.slice(src_i, next_src_i));
if (codepoint < 0x10000) {
utf16_le[dest_i] = codepoint;
dest_i += 1;
} else {
WCHAR high = ((codepoint - 0x10000) >> 10) + 0xD800;
WCHAR low = (codepoint & 0x3FF) + 0xDC00;
utf16_le[dest_i] = high;
utf16_le[dest_i + 1] = low;
dest_i += 2;
}
src_i = next_src_i;
}
return dest_i;
}
// Ported from std.os.windows.sliceToPrefixedFileW
PathSpace slice_to_prefixed_file_w(Slice<uint8_t> path) {
PathSpace path_space;
for (size_t idx = 0; idx < path.len; idx++) {
assert(path.ptr[idx] != '*' && path.ptr[idx] != '?' && path.ptr[idx] != '"' &&
path.ptr[idx] != '<' && path.ptr[idx] != '>' && path.ptr[idx] != '|');
}
size_t start_index;
if (memStartsWith(path, str("\\?")) || !isAbsoluteWindows(path)) {
start_index = 0;
} else {
static WCHAR prefix[4] = { u'\\', u'?', u'?', u'\\' };
memCopy(path_space.data.slice(), Slice<WCHAR> { prefix, 4 });
start_index = 4;
}
path_space.len = start_index + utf8_to_utf16le(path_space.data.slice().sliceFrom(start_index).ptr, path);
assert(path_space.len <= path_space.data.len);
Slice<WCHAR> path_slice = path_space.data.slice().slice(0, path_space.len);
for (size_t elem_idx = 0; elem_idx < path_slice.len; elem_idx += 1) {
if (path_slice.at(elem_idx) == '/') {
path_slice.at(elem_idx) = '\\';
}
}
path_space.data.items[path_space.len] = 0;
return path_space;
}
#endif