Files
zig/src/link/Wasm/Object.zig
Luuk de Gram ced958e8a8 wasm-linker: Simplify symbol names
No longer duplicate the symbol name and instead take the pointer from the decl itself.
Also fix 32bit build
2022-02-17 18:11:48 +01:00

856 lines
37 KiB
Zig

//! Object represents a wasm object file. When initializing a new
//! `Object`, it will parse the contents of a given file handler, and verify
//! the data on correctness. The result can then be used by the linker.
const Object = @This();
const Atom = @import("Atom.zig");
const types = @import("types.zig");
const std = @import("std");
const Wasm = @import("../Wasm.zig");
const Symbol = @import("Symbol.zig");
const Allocator = std.mem.Allocator;
const leb = std.leb;
const meta = std.meta;
const log = std.log.scoped(.link);
/// Wasm spec version used for this `Object`
version: u32 = 0,
/// The entire object file is read and parsed in a single pass.
/// For this reason it's a lot simpler to use an arena and store the entire
/// state after parsing. This also allows to free all memory at once.
arena: std.heap.ArenaAllocator.State = .{},
/// The file descriptor that represents the wasm object file.
file: ?std.fs.File = null,
/// Name (read path) of the object file.
name: []const u8,
/// Parsed type section
func_types: []const std.wasm.Type = &.{},
/// A list of all imports for this module
imports: []std.wasm.Import = &.{},
/// Parsed function section
functions: []std.wasm.Func = &.{},
/// Parsed table section
tables: []std.wasm.Table = &.{},
/// Parsed memory section
memories: []const std.wasm.Memory = &.{},
/// Parsed global section
globals: []std.wasm.Global = &.{},
/// Parsed export section
exports: []const std.wasm.Export = &.{},
/// Parsed element section
elements: []const std.wasm.Element = &.{},
/// Represents the function ID that must be called on startup.
/// This is `null` by default as runtimes may determine the startup
/// function themselves. This is essentially legacy.
start: ?u32 = null,
/// A slice of features that tell the linker what features are mandatory,
/// used (or therefore missing) and must generate an error when another
/// object uses features that are not supported by the other.
features: []const types.Feature = &.{},
/// A table that maps the relocations we must perform where the key represents
/// the section that the list of relocations applies to.
relocations: std.AutoArrayHashMapUnmanaged(u32, []types.Relocation) = .{},
/// Table of symbols belonging to this Object file
symtable: []Symbol = &.{},
/// Extra metadata about the linking section, such as alignment of segments and their name
segment_info: []const types.Segment = &.{},
/// A sequence of function initializers that must be called on startup
init_funcs: []const types.InitFunc = &.{},
/// Comdat information
comdat_info: []const types.Comdat = &.{},
/// Represents non-synthetic sections that can essentially be mem-cpy'd into place
/// after performing relocations.
relocatable_data: []RelocatableData = &.{},
/// Represents a single item within a section (depending on its `type`)
const RelocatableData = struct {
/// The type of the relocatable data
type: enum { data, code, custom },
/// Pointer to the data of the segment, where it's length is written to `size`
data: [*]u8,
/// The size in bytes of the data representing the segment within the section
size: u32,
/// The index within the section itself
index: u32,
/// The offset within the section where the data starts
offset: u32,
/// Represents the index of the section it belongs to
section_index: u32,
/// Returns the alignment of the segment, by retrieving it from the segment
/// meta data of the given object file.
/// NOTE: Alignment is encoded as a power of 2, so we shift the symbol's
/// alignment to retrieve the natural alignment.
pub fn getAlignment(self: RelocatableData, object: *const Object) u32 {
if (self.type != .data) return 1;
const data_alignment = object.segment_info[self.index].alignment;
if (data_alignment == 0) return 1;
// Decode from power of 2 to natural alignment
return @as(u32, 1) << @intCast(u5, data_alignment);
}
/// Returns the symbol kind that corresponds to the relocatable section
pub fn getSymbolKind(self: RelocatableData) Symbol.Tag {
return switch (self.type) {
.data => .data,
.code => .function,
.custom => .section,
};
}
};
pub const InitError = error{NotObjectFile} || ParseError || std.fs.File.ReadError;
/// Initializes a new `Object` from a wasm object file.
/// This also parses and verifies the object file.
pub fn create(gpa: Allocator, file: std.fs.File, path: []const u8) InitError!Object {
var object: Object = .{
.file = file,
.name = path,
};
var arena = std.heap.ArenaAllocator.init(gpa);
errdefer arena.deinit();
var is_object_file: bool = false;
try object.parse(arena.allocator(), file.reader(), &is_object_file);
object.arena = arena.state;
if (!is_object_file) return error.NotObjectFile;
return object;
}
/// Frees all memory of `Object` at once. The given `Allocator` must be
/// the same allocator that was used when `init` was called.
pub fn deinit(self: *Object, gpa: Allocator) void {
self.arena.promote(gpa).deinit();
self.* = undefined;
}
/// Finds the import within the list of imports from a given kind and index of that kind.
/// Asserts the import exists
pub fn findImport(self: *const Object, import_kind: std.wasm.ExternalKind, index: u32) std.wasm.Import {
var i: u32 = 0;
return for (self.imports) |import| {
if (std.meta.activeTag(import.kind) == import_kind) {
if (i == index) return import;
i += 1;
}
} else unreachable; // Only existing imports are allowed to be found
}
/// Counts the entries of imported `kind` and returns the result
pub fn importedCountByKind(self: *const Object, kind: std.wasm.ExternalKind) u32 {
var i: u32 = 0;
return for (self.imports) |imp| {
if (@as(std.wasm.ExternalKind, imp.kind) == kind) i += 1;
} else i;
}
/// Returns a table by a given id, rather than by its index within the list.
pub fn getTable(self: *const Object, id: u32) *std.wasm.Table {
return for (self.tables) |*table| {
if (table.table_idx == id) break table;
} else unreachable;
}
/// Checks if the object file is an MVP version.
/// When that's the case, we check if there's an import table definiton with its name
/// set to '__indirect_function_table". When that's also the case,
/// we initialize a new table symbol that corresponds to that import and return that symbol.
///
/// When the object file is *NOT* MVP, we return `null`.
fn checkLegacyIndirectFunctionTable(self: *Object, gpa: Allocator) !?Symbol {
var table_count: usize = 0;
for (self.symtable) |sym| {
if (sym.tag == .table) table_count += 1;
}
const import_table_count = self.importedCountByKind(.table);
// For each import table, we also have a symbol so this is not a legacy object file
if (import_table_count == table_count) return null;
if (table_count != 0) {
log.err("Expected a table entry symbol for each of the {d} table(s), but instead got {d} symbols.", .{
import_table_count,
table_count,
});
return error.MissingTableSymbols;
}
// MVP object files cannot have any table definitions, only imports (for the indirect function table).
if (self.tables.len > 0) {
log.err("Unexpected table definition without representing table symbols.", .{});
return error.UnexpectedTable;
}
if (import_table_count != 1) {
log.err("Found more than one table import, but no representing table symbols", .{});
return error.MissingTableSymbols;
}
var table_import: std.wasm.Import = for (self.imports) |imp| {
if (imp.kind == .table) {
break imp;
}
} else unreachable;
if (!std.mem.eql(u8, table_import.name, "__indirect_function_table")) {
log.err("Non-indirect function table import '{s}' is missing a corresponding symbol", .{table_import.name});
return error.MissingTableSymbols;
}
var table_symbol: Symbol = .{
.flags = 0,
.name = try gpa.dupeZ(u8, table_import.name),
.tag = .table,
.index = 0,
};
table_symbol.setFlag(.WASM_SYM_UNDEFINED);
table_symbol.setFlag(.WASM_SYM_NO_STRIP);
return table_symbol;
}
/// Error set containing parsing errors.
/// Merged with reader's errorset by `Parser`
pub const ParseError = error{
/// The magic byte is either missing or does not contain \0Asm
InvalidMagicByte,
/// The wasm version is either missing or does not match the supported version.
InvalidWasmVersion,
/// Expected the functype byte while parsing the Type section but did not find it.
ExpectedFuncType,
/// Missing an 'end' opcode when defining a constant expression.
MissingEndForExpression,
/// Missing an 'end' opcode at the end of a body expression.
MissingEndForBody,
/// The size defined in the section code mismatches with the actual payload size.
MalformedSection,
/// Stream has reached the end. Unreachable for caller and must be handled internally
/// by the parser.
EndOfStream,
/// Ran out of memory when allocating.
OutOfMemory,
/// A non-zero flag was provided for comdat info
UnexpectedValue,
/// An import symbol contains an index to an import that does
/// not exist, or no imports were defined.
InvalidIndex,
/// The section "linking" contains a version that is not supported.
UnsupportedVersion,
/// When reading the data in leb128 compressed format, its value was overflown.
Overflow,
/// Found table definitions but no corresponding table symbols
MissingTableSymbols,
/// Did not expect a table definiton, but did find one
UnexpectedTable,
/// Object file contains a feature that is unknown to the linker
UnknownFeature,
};
fn parse(self: *Object, gpa: Allocator, reader: anytype, is_object_file: *bool) Parser(@TypeOf(reader)).Error!void {
var parser = Parser(@TypeOf(reader)).init(self, reader);
return parser.parseObject(gpa, is_object_file);
}
fn Parser(comptime ReaderType: type) type {
return struct {
const Self = @This();
const Error = ReaderType.Error || ParseError;
reader: std.io.CountingReader(ReaderType),
/// Object file we're building
object: *Object,
fn init(object: *Object, reader: ReaderType) Self {
return .{ .object = object, .reader = std.io.countingReader(reader) };
}
/// Verifies that the first 4 bytes contains \0Asm
fn verifyMagicBytes(self: *Self) Error!void {
var magic_bytes: [4]u8 = undefined;
try self.reader.reader().readNoEof(&magic_bytes);
if (!std.mem.eql(u8, &magic_bytes, &std.wasm.magic)) {
log.debug("Invalid magic bytes '{s}'", .{&magic_bytes});
return error.InvalidMagicByte;
}
}
fn parseObject(self: *Self, gpa: Allocator, is_object_file: *bool) Error!void {
try self.verifyMagicBytes();
const version = try self.reader.reader().readIntLittle(u32);
self.object.version = version;
var relocatable_data = std.ArrayList(RelocatableData).init(gpa);
defer relocatable_data.deinit();
var section_index: u32 = 0;
while (self.reader.reader().readByte()) |byte| : (section_index += 1) {
const len = try readLeb(u32, self.reader.reader());
const reader = std.io.limitedReader(self.reader.reader(), len).reader();
switch (@intToEnum(std.wasm.Section, byte)) {
.custom => {
const name_len = try readLeb(u32, reader);
const name = try gpa.alloc(u8, name_len);
defer gpa.free(name);
try reader.readNoEof(name);
if (std.mem.eql(u8, name, "linking")) {
is_object_file.* = true;
try self.parseMetadata(gpa, @intCast(usize, reader.context.bytes_left));
} else if (std.mem.startsWith(u8, name, "reloc")) {
try self.parseRelocations(gpa);
} else if (std.mem.eql(u8, name, "target_features")) {
try self.parseFeatures(gpa);
} else {
try reader.skipBytes(reader.context.bytes_left, .{});
}
},
.type => {
for (try readVec(&self.object.func_types, reader, gpa)) |*type_val| {
if ((try reader.readByte()) != std.wasm.function_type) return error.ExpectedFuncType;
for (try readVec(&type_val.params, reader, gpa)) |*param| {
param.* = try readEnum(std.wasm.Valtype, reader);
}
for (try readVec(&type_val.returns, reader, gpa)) |*result| {
result.* = try readEnum(std.wasm.Valtype, reader);
}
}
try assertEnd(reader);
},
.import => {
for (try readVec(&self.object.imports, reader, gpa)) |*import| {
const module_len = try readLeb(u32, reader);
const module_name = try gpa.alloc(u8, module_len);
try reader.readNoEof(module_name);
const name_len = try readLeb(u32, reader);
const name = try gpa.alloc(u8, name_len);
try reader.readNoEof(name);
const kind = try readEnum(std.wasm.ExternalKind, reader);
const kind_value: std.wasm.Import.Kind = switch (kind) {
.function => .{ .function = try readLeb(u32, reader) },
.memory => .{ .memory = try readLimits(reader) },
.global => .{ .global = .{
.valtype = try readEnum(std.wasm.Valtype, reader),
.mutable = (try reader.readByte()) == 0x01,
} },
.table => .{ .table = .{
.reftype = try readEnum(std.wasm.RefType, reader),
.limits = try readLimits(reader),
} },
};
import.* = .{
.module_name = module_name,
.name = name,
.kind = kind_value,
};
}
try assertEnd(reader);
},
.function => {
for (try readVec(&self.object.functions, reader, gpa)) |*func| {
func.* = .{ .type_index = try readLeb(u32, reader) };
}
try assertEnd(reader);
},
.table => {
for (try readVec(&self.object.tables, reader, gpa)) |*table| {
table.* = .{
.reftype = try readEnum(std.wasm.RefType, reader),
.limits = try readLimits(reader),
};
}
try assertEnd(reader);
},
.memory => {
for (try readVec(&self.object.memories, reader, gpa)) |*memory| {
memory.* = .{ .limits = try readLimits(reader) };
}
try assertEnd(reader);
},
.global => {
for (try readVec(&self.object.globals, reader, gpa)) |*global| {
global.* = .{
.global_type = .{
.valtype = try readEnum(std.wasm.Valtype, reader),
.mutable = (try reader.readByte()) == 0x01,
},
.init = try readInit(reader),
};
}
try assertEnd(reader);
},
.@"export" => {
for (try readVec(&self.object.exports, reader, gpa)) |*exp| {
const name_len = try readLeb(u32, reader);
const name = try gpa.alloc(u8, name_len);
try reader.readNoEof(name);
exp.* = .{
.name = name,
.kind = try readEnum(std.wasm.ExternalKind, reader),
.index = try readLeb(u32, reader),
};
}
try assertEnd(reader);
},
.start => {
self.object.start = try readLeb(u32, reader);
try assertEnd(reader);
},
.element => {
for (try readVec(&self.object.elements, reader, gpa)) |*elem| {
elem.table_index = try readLeb(u32, reader);
elem.offset = try readInit(reader);
for (try readVec(&elem.func_indexes, reader, gpa)) |*idx| {
idx.* = try readLeb(u32, reader);
}
}
try assertEnd(reader);
},
.code => {
var start = reader.context.bytes_left;
var index: u32 = 0;
const count = try readLeb(u32, reader);
while (index < count) : (index += 1) {
const code_len = try readLeb(u32, reader);
const offset = @intCast(u32, start - reader.context.bytes_left);
const data = try gpa.alloc(u8, code_len);
try reader.readNoEof(data);
try relocatable_data.append(.{
.type = .code,
.data = data.ptr,
.size = code_len,
.index = self.object.importedCountByKind(.function) + index,
.offset = offset,
.section_index = section_index,
});
}
},
.data => {
var start = reader.context.bytes_left;
var index: u32 = 0;
const count = try readLeb(u32, reader);
while (index < count) : (index += 1) {
const flags = try readLeb(u32, reader);
const data_offset = try readInit(reader);
_ = flags; // TODO: Do we need to check flags to detect passive/active memory?
_ = data_offset;
const data_len = try readLeb(u32, reader);
const offset = @intCast(u32, start - reader.context.bytes_left);
const data = try gpa.alloc(u8, data_len);
try reader.readNoEof(data);
try relocatable_data.append(.{
.type = .data,
.data = data.ptr,
.size = data_len,
.index = index,
.offset = offset,
.section_index = section_index,
});
}
},
else => try self.reader.reader().skipBytes(len, .{}),
}
} else |err| switch (err) {
error.EndOfStream => {}, // finished parsing the file
else => |e| return e,
}
self.object.relocatable_data = relocatable_data.toOwnedSlice();
}
/// Based on the "features" custom section, parses it into a list of
/// features that tell the linker what features were enabled and may be mandatory
/// to be able to link.
/// Logs an info message when an undefined feature is detected.
fn parseFeatures(self: *Self, gpa: Allocator) !void {
const reader = self.reader.reader();
for (try readVec(&self.object.features, reader, gpa)) |*feature| {
const prefix = try readEnum(types.Feature.Prefix, reader);
const name_len = try leb.readULEB128(u32, reader);
const name = try gpa.alloc(u8, name_len);
try reader.readNoEof(name);
const tag = types.known_features.get(name) orelse {
log.err("Object file contains unknown feature: {s}", .{name});
return error.UnknownFeature;
};
feature.* = .{
.prefix = prefix,
.tag = tag,
};
}
}
/// Parses a "reloc" custom section into a list of relocations.
/// The relocations are mapped into `Object` where the key is the section
/// they apply to.
fn parseRelocations(self: *Self, gpa: Allocator) !void {
const reader = self.reader.reader();
const section = try leb.readULEB128(u32, reader);
const count = try leb.readULEB128(u32, reader);
const relocations = try gpa.alloc(types.Relocation, count);
log.debug("Found {d} relocations for section ({d})", .{
count,
section,
});
for (relocations) |*relocation| {
const rel_type = try leb.readULEB128(u8, reader);
const rel_type_enum = @intToEnum(types.Relocation.RelocationType, rel_type);
relocation.* = .{
.relocation_type = rel_type_enum,
.offset = try leb.readULEB128(u32, reader),
.index = try leb.readULEB128(u32, reader),
.addend = if (rel_type_enum.addendIsPresent()) try leb.readULEB128(u32, reader) else null,
};
log.debug("Found relocation: type({s}) offset({d}) index({d}) addend({d})", .{
@tagName(relocation.relocation_type),
relocation.offset,
relocation.index,
relocation.addend,
});
}
try self.object.relocations.putNoClobber(gpa, section, relocations);
}
/// Parses the "linking" custom section. Versions that are not
/// supported will be an error. `payload_size` is required to be able
/// to calculate the subsections we need to parse, as that data is not
/// available within the section itself.
fn parseMetadata(self: *Self, gpa: Allocator, payload_size: usize) !void {
var limited = std.io.limitedReader(self.reader.reader(), payload_size);
const limited_reader = limited.reader();
const version = try leb.readULEB128(u32, limited_reader);
log.debug("Link meta data version: {d}", .{version});
if (version != 2) return error.UnsupportedVersion;
while (limited.bytes_left > 0) {
try self.parseSubsection(gpa, limited_reader);
}
}
/// Parses a `spec.Subsection`.
/// The `reader` param for this is to provide a `LimitedReader`, which allows
/// us to only read until a max length.
///
/// `self` is used to provide access to other sections that may be needed,
/// such as access to the `import` section to find the name of a symbol.
fn parseSubsection(self: *Self, gpa: Allocator, reader: anytype) !void {
const sub_type = try leb.readULEB128(u8, reader);
log.debug("Found subsection: {s}", .{@tagName(@intToEnum(types.SubsectionType, sub_type))});
const payload_len = try leb.readULEB128(u32, reader);
if (payload_len == 0) return;
var limited = std.io.limitedReader(reader, payload_len);
const limited_reader = limited.reader();
// every subsection contains a 'count' field
const count = try leb.readULEB128(u32, limited_reader);
switch (@intToEnum(types.SubsectionType, sub_type)) {
.WASM_SEGMENT_INFO => {
const segments = try gpa.alloc(types.Segment, count);
for (segments) |*segment| {
const name_len = try leb.readULEB128(u32, reader);
const name = try gpa.alloc(u8, name_len);
try reader.readNoEof(name);
segment.* = .{
.name = name,
.alignment = try leb.readULEB128(u32, reader),
.flags = try leb.readULEB128(u32, reader),
};
log.debug("Found segment: {s} align({d}) flags({b})", .{
segment.name,
segment.alignment,
segment.flags,
});
}
self.object.segment_info = segments;
},
.WASM_INIT_FUNCS => {
const funcs = try gpa.alloc(types.InitFunc, count);
for (funcs) |*func| {
func.* = .{
.priority = try leb.readULEB128(u32, reader),
.symbol_index = try leb.readULEB128(u32, reader),
};
log.debug("Found function - prio: {d}, index: {d}", .{ func.priority, func.symbol_index });
}
self.object.init_funcs = funcs;
},
.WASM_COMDAT_INFO => {
const comdats = try gpa.alloc(types.Comdat, count);
for (comdats) |*comdat| {
const name_len = try leb.readULEB128(u32, reader);
const name = try gpa.alloc(u8, name_len);
try reader.readNoEof(name);
const flags = try leb.readULEB128(u32, reader);
if (flags != 0) {
return error.UnexpectedValue;
}
const symbol_count = try leb.readULEB128(u32, reader);
const symbols = try gpa.alloc(types.ComdatSym, symbol_count);
for (symbols) |*symbol| {
symbol.* = .{
.kind = @intToEnum(types.ComdatSym.Type, try leb.readULEB128(u8, reader)),
.index = try leb.readULEB128(u32, reader),
};
}
comdat.* = .{
.name = name,
.flags = flags,
.symbols = symbols,
};
}
self.object.comdat_info = comdats;
},
.WASM_SYMBOL_TABLE => {
var symbols = try std.ArrayList(Symbol).initCapacity(gpa, count);
var i: usize = 0;
while (i < count) : (i += 1) {
const symbol = symbols.addOneAssumeCapacity();
symbol.* = try self.parseSymbol(gpa, reader);
log.debug("Found symbol: type({s}) name({s}) flags(0b{b:0>8})", .{
@tagName(symbol.tag),
symbol.name,
symbol.flags,
});
}
// we found all symbols, check for indirect function table
// in case of an MVP object file
if (try self.object.checkLegacyIndirectFunctionTable(gpa)) |symbol| {
try symbols.append(symbol);
log.debug("Found legacy indirect function table. Created symbol", .{});
}
self.object.symtable = symbols.toOwnedSlice();
},
}
}
/// Parses the symbol information based on its kind,
/// requires access to `Object` to find the name of a symbol when it's
/// an import and flag `WASM_SYM_EXPLICIT_NAME` is not set.
fn parseSymbol(self: *Self, gpa: Allocator, reader: anytype) !Symbol {
const tag = @intToEnum(Symbol.Tag, try leb.readULEB128(u8, reader));
const flags = try leb.readULEB128(u32, reader);
var symbol: Symbol = .{
.flags = flags,
.tag = tag,
.name = undefined,
.index = undefined,
};
switch (tag) {
.data => {
const name_len = try leb.readULEB128(u32, reader);
const name = try gpa.allocSentinel(u8, name_len, 0);
try reader.readNoEof(name);
symbol.name = name;
// Data symbols only have the following fields if the symbol is defined
if (symbol.isDefined()) {
symbol.index = try leb.readULEB128(u32, reader);
// @TODO: We should verify those values
_ = try leb.readULEB128(u32, reader);
_ = try leb.readULEB128(u32, reader);
}
},
.section => {
symbol.index = try leb.readULEB128(u32, reader);
symbol.name = @tagName(symbol.tag);
},
else => {
symbol.index = try leb.readULEB128(u32, reader);
var maybe_import: ?std.wasm.Import = null;
const is_undefined = symbol.isUndefined();
if (is_undefined) {
maybe_import = self.object.findImport(symbol.tag.externalType(), symbol.index);
}
const explicit_name = symbol.hasFlag(.WASM_SYM_EXPLICIT_NAME);
if (!(is_undefined and !explicit_name)) {
const name_len = try leb.readULEB128(u32, reader);
const name = try gpa.allocSentinel(u8, name_len, 0);
try reader.readNoEof(name);
symbol.name = name;
} else {
symbol.name = try gpa.dupeZ(u8, maybe_import.?.name);
}
},
}
return symbol;
}
};
}
/// First reads the count from the reader and then allocate
/// a slice of ptr child's element type.
fn readVec(ptr: anytype, reader: anytype, gpa: Allocator) ![]ElementType(@TypeOf(ptr)) {
const len = try readLeb(u32, reader);
const slice = try gpa.alloc(ElementType(@TypeOf(ptr)), len);
ptr.* = slice;
return slice;
}
fn ElementType(comptime ptr: type) type {
return meta.Elem(meta.Child(ptr));
}
/// Uses either `readILEB128` or `readULEB128` depending on the
/// signedness of the given type `T`.
/// Asserts `T` is an integer.
fn readLeb(comptime T: type, reader: anytype) !T {
if (comptime std.meta.trait.isSignedInt(T)) {
return try leb.readILEB128(T, reader);
} else {
return try leb.readULEB128(T, reader);
}
}
/// Reads an enum type from the given reader.
/// Asserts `T` is an enum
fn readEnum(comptime T: type, reader: anytype) !T {
switch (@typeInfo(T)) {
.Enum => |enum_type| return @intToEnum(T, try readLeb(enum_type.tag_type, reader)),
else => @compileError("T must be an enum. Instead was given type " ++ @typeName(T)),
}
}
fn readLimits(reader: anytype) !std.wasm.Limits {
const flags = try readLeb(u1, reader);
const min = try readLeb(u32, reader);
return std.wasm.Limits{
.min = min,
.max = if (flags == 0) null else try readLeb(u32, reader),
};
}
fn readInit(reader: anytype) !std.wasm.InitExpression {
const opcode = try reader.readByte();
const init_expr: std.wasm.InitExpression = switch (@intToEnum(std.wasm.Opcode, opcode)) {
.i32_const => .{ .i32_const = try readLeb(i32, reader) },
.global_get => .{ .global_get = try readLeb(u32, reader) },
else => @panic("TODO: initexpression for other opcodes"),
};
if ((try readEnum(std.wasm.Opcode, reader)) != .end) return error.MissingEndForExpression;
return init_expr;
}
fn assertEnd(reader: anytype) !void {
var buf: [1]u8 = undefined;
const len = try reader.read(&buf);
if (len != 0) return error.MalformedSection;
if (reader.context.bytes_left != 0) return error.MalformedSection;
}
/// Parses an object file into atoms, for code and data sections
pub fn parseIntoAtoms(self: *Object, gpa: Allocator, object_index: u16, wasm_bin: *Wasm) !void {
log.debug("Parsing data section into atoms", .{});
const Key = struct {
kind: Symbol.Tag,
index: u32,
};
var symbol_for_segment = std.AutoArrayHashMap(Key, u32).init(gpa);
defer symbol_for_segment.deinit();
for (self.symtable) |symbol, symbol_index| {
switch (symbol.tag) {
.function, .data => if (!symbol.isUndefined()) {
try symbol_for_segment.putNoClobber(
.{ .kind = symbol.tag, .index = symbol.index },
@intCast(u32, symbol_index),
);
},
else => continue,
}
}
for (self.relocatable_data) |relocatable_data, index| {
const sym_index = symbol_for_segment.get(.{
.kind = relocatable_data.getSymbolKind(),
.index = @intCast(u32, relocatable_data.index),
}) orelse continue; // encountered a segment we do not create an atom for
const final_index = try wasm_bin.getMatchingSegment(object_index, @intCast(u32, index));
const atom = try gpa.create(Atom);
atom.* = Atom.empty;
errdefer {
atom.deinit(gpa);
gpa.destroy(atom);
}
try wasm_bin.managed_atoms.append(gpa, atom);
atom.file = object_index;
atom.size = relocatable_data.size;
atom.alignment = relocatable_data.getAlignment(self);
atom.sym_index = sym_index;
const relocations: []types.Relocation = self.relocations.get(relocatable_data.section_index) orelse &.{};
for (relocations) |relocation| {
if (isInbetween(relocatable_data.offset, atom.size, relocation.offset)) {
// set the offset relative to the offset of the segment itself,
// rather than within the entire section.
var reloc = relocation;
reloc.offset -= relocatable_data.offset;
try atom.relocs.append(gpa, reloc);
// TODO: Automatically append the target symbol to the indirect
// function table when the relocation is a table index.
//
// if (relocation.isTableIndex()) {
// try wasm_bin.elements.appendSymbol(gpa, .{
// .file = object_index,
// .sym_index = relocation.index,
// });
// }
}
}
try atom.code.appendSlice(gpa, relocatable_data.data[0..relocatable_data.size]);
const segment: *Wasm.Segment = &wasm_bin.segments.items[final_index];
segment.alignment = std.math.max(segment.alignment, atom.alignment);
segment.size = std.mem.alignForwardGeneric(
u32,
std.mem.alignForwardGeneric(u32, segment.size, atom.alignment) + atom.size,
segment.alignment,
);
if (wasm_bin.atoms.getPtr(final_index)) |last| {
last.*.next = atom;
atom.prev = last.*;
last.* = atom;
} else {
try wasm_bin.atoms.putNoClobber(gpa, final_index, atom);
}
log.debug("Parsed into atom: '{s}'", .{self.symtable[atom.sym_index].name});
}
}
/// Verifies if a given value is in between a minimum -and maximum value.
/// The maxmimum value is calculated using the length, both start and end are inclusive.
inline fn isInbetween(min: u32, length: u32, value: u32) bool {
return value >= min and value <= min + length;
}