Files
zig/src/stage1/heap.cpp
Andrew Kelley 5a65caa2a3 ability to build stage1 using only a zig tarball
The main idea here is that there are now 2 ways to get a stage1 zig
binary:

 * The cmake path. Requirements: cmake, system C++ compiler, system
   LLVM, LLD, Clang libraries, compiled by the system C++ compiler.

 * The zig path. Requirements: a zig installation, system LLVM, LLD,
   Clang libraries, compiled by the zig installation.

Note that the former can be used to now take the latter path.

Removed config.h.in and config.zig.in. The build.zig script no longer is
coupled to the cmake script.

cmake no longer tries to determine the zig version. A build with cmake
will yield a stage1 zig binary that reports 0.0.0+zig0. This is going to
get reverted.

`zig build` now accepts `-Dstage1` which will build the stage1 compiler,
and put the stage2 backend behind a feature flag.

build.zig is simplified to only support the use case of enabling LLVM
support when the LLVM, LLD, and Clang libraries were built by zig. This
part is probably sadly going to have to get reverted to make package
maintainers happy.

Zig build system addBuildOption supports a couple new types.

The biggest reason to make this change is that the zig path is an
attractive option for doing compiler development work on Windows. It
allows people to work on the compiler without having MSVC installed,
using only a .zip file that contains Zig + LLVM/LLD/Clang libraries.
2020-12-07 17:27:09 -07:00

315 lines
10 KiB
C++

/*
* Copyright (c) 2020 Andrew Kelley
*
* This file is part of zig, which is MIT licensed.
* See http://opensource.org/licenses/MIT
*/
#include <new>
#include <string.h>
#include "heap.hpp"
namespace heap {
extern mem::Allocator &bootstrap_allocator;
//
// BootstrapAllocator implementation is identical to CAllocator minus
// profile profile functionality. Splitting off to a base interface doesn't
// seem worthwhile.
//
void BootstrapAllocator::init(const char *name) {}
void BootstrapAllocator::deinit() {}
void *BootstrapAllocator::internal_allocate(const mem::TypeInfo &info, size_t count) {
return mem::os::calloc(count, info.size);
}
void *BootstrapAllocator::internal_allocate_nonzero(const mem::TypeInfo &info, size_t count) {
return mem::os::malloc(count * info.size);
}
void *BootstrapAllocator::internal_reallocate(const mem::TypeInfo &info, void *old_ptr, size_t old_count, size_t new_count) {
auto new_ptr = this->internal_reallocate_nonzero(info, old_ptr, old_count, new_count);
if (new_count > old_count)
memset(reinterpret_cast<uint8_t *>(new_ptr) + (old_count * info.size), 0, (new_count - old_count) * info.size);
return new_ptr;
}
void *BootstrapAllocator::internal_reallocate_nonzero(const mem::TypeInfo &info, void *old_ptr, size_t old_count, size_t new_count) {
return mem::os::realloc(old_ptr, new_count * info.size);
}
void BootstrapAllocator::internal_deallocate(const mem::TypeInfo &info, void *ptr, size_t count) {
mem::os::free(ptr);
}
void CAllocator::init(const char *name) { }
void CAllocator::deinit() { }
CAllocator *CAllocator::construct(mem::Allocator *allocator, const char *name) {
auto p = new(allocator->create<CAllocator>()) CAllocator();
p->init(name);
return p;
}
void CAllocator::destruct(mem::Allocator *allocator) {
this->deinit();
allocator->destroy(this);
}
void *CAllocator::internal_allocate(const mem::TypeInfo &info, size_t count) {
return mem::os::calloc(count, info.size);
}
void *CAllocator::internal_allocate_nonzero(const mem::TypeInfo &info, size_t count) {
return mem::os::malloc(count * info.size);
}
void *CAllocator::internal_reallocate(const mem::TypeInfo &info, void *old_ptr, size_t old_count, size_t new_count) {
auto new_ptr = this->internal_reallocate_nonzero(info, old_ptr, old_count, new_count);
if (new_count > old_count)
memset(reinterpret_cast<uint8_t *>(new_ptr) + (old_count * info.size), 0, (new_count - old_count) * info.size);
return new_ptr;
}
void *CAllocator::internal_reallocate_nonzero(const mem::TypeInfo &info, void *old_ptr, size_t old_count, size_t new_count) {
return mem::os::realloc(old_ptr, new_count * info.size);
}
void CAllocator::internal_deallocate(const mem::TypeInfo &info, void *ptr, size_t count) {
mem::os::free(ptr);
}
struct ArenaAllocator::Impl {
Allocator *backing;
// regular allocations bump through a segment of static size
struct Segment {
static constexpr size_t size = 65536;
static constexpr size_t object_threshold = 4096;
uint8_t data[size];
};
// active segment
Segment *segment;
size_t segment_offset;
// keep track of segments
struct SegmentTrack {
static constexpr size_t size = (4096 - sizeof(SegmentTrack *)) / sizeof(Segment *);
// null if first
SegmentTrack *prev;
Segment *segments[size];
};
static_assert(sizeof(SegmentTrack) <= 4096, "unwanted struct padding");
// active segment track
SegmentTrack *segment_track;
size_t segment_track_remain;
// individual allocations punted to backing allocator
struct Object {
uint8_t *ptr;
size_t len;
};
// keep track of objects
struct ObjectTrack {
static constexpr size_t size = (4096 - sizeof(ObjectTrack *)) / sizeof(Object);
// null if first
ObjectTrack *prev;
Object objects[size];
};
static_assert(sizeof(ObjectTrack) <= 4096, "unwanted struct padding");
// active object track
ObjectTrack *object_track;
size_t object_track_remain;
ATTRIBUTE_RETURNS_NOALIAS inline void *allocate(const mem::TypeInfo& info, size_t count);
inline void *reallocate(const mem::TypeInfo& info, void *old_ptr, size_t old_count, size_t new_count);
inline void new_segment();
inline void track_segment();
inline void track_object(Object object);
};
void *ArenaAllocator::Impl::allocate(const mem::TypeInfo& info, size_t count) {
#ifndef NDEBUG
// make behavior when size == 0 portable
if (info.size == 0 || count == 0)
return nullptr;
#endif
const size_t nbytes = info.size * count;
this->segment_offset = (this->segment_offset + (info.alignment - 1)) & ~(info.alignment - 1);
if (nbytes >= Segment::object_threshold) {
auto ptr = this->backing->allocate<uint8_t>(nbytes);
this->track_object({ptr, nbytes});
return ptr;
}
if (this->segment_offset + nbytes > Segment::size)
this->new_segment();
auto ptr = &this->segment->data[this->segment_offset];
this->segment_offset += nbytes;
return ptr;
}
void *ArenaAllocator::Impl::reallocate(const mem::TypeInfo& info, void *old_ptr, size_t old_count, size_t new_count) {
#ifndef NDEBUG
// make behavior when size == 0 portable
if (info.size == 0 && old_ptr == nullptr)
return nullptr;
#endif
const size_t new_nbytes = info.size * new_count;
if (new_nbytes <= info.size * old_count)
return old_ptr;
const size_t old_nbytes = info.size * old_count;
this->segment_offset = (this->segment_offset + (info.alignment - 1)) & ~(info.alignment - 1);
if (new_nbytes >= Segment::object_threshold) {
auto new_ptr = this->backing->allocate<uint8_t>(new_nbytes);
this->track_object({new_ptr, new_nbytes});
memcpy(new_ptr, old_ptr, old_nbytes);
return new_ptr;
}
if (this->segment_offset + new_nbytes > Segment::size)
this->new_segment();
auto new_ptr = &this->segment->data[this->segment_offset];
this->segment_offset += new_nbytes;
memcpy(new_ptr, old_ptr, old_nbytes);
return new_ptr;
}
void ArenaAllocator::Impl::new_segment() {
this->segment = this->backing->create<Segment>();
this->segment_offset = 0;
this->track_segment();
}
void ArenaAllocator::Impl::track_segment() {
assert(this->segment != nullptr);
if (this->segment_track_remain < 1) {
auto prev = this->segment_track;
this->segment_track = this->backing->create<SegmentTrack>();
this->segment_track->prev = prev;
this->segment_track_remain = SegmentTrack::size;
}
this->segment_track_remain -= 1;
this->segment_track->segments[this->segment_track_remain] = this->segment;
}
void ArenaAllocator::Impl::track_object(Object object) {
if (this->object_track_remain < 1) {
auto prev = this->object_track;
this->object_track = this->backing->create<ObjectTrack>();
this->object_track->prev = prev;
this->object_track_remain = ObjectTrack::size;
}
this->object_track_remain -= 1;
this->object_track->objects[this->object_track_remain] = object;
}
void ArenaAllocator::init(Allocator *backing, const char *name) {
this->impl = bootstrap_allocator.create<Impl>();
{
auto &r = *this->impl;
r.backing = backing;
r.segment_offset = Impl::Segment::size;
}
}
void ArenaAllocator::deinit() {
auto &backing = *this->impl->backing;
// segments
if (this->impl->segment_track) {
// active track is not full and bounded by track_remain
auto prev = this->impl->segment_track->prev;
{
auto t = this->impl->segment_track;
for (size_t i = this->impl->segment_track_remain; i < Impl::SegmentTrack::size; ++i)
backing.destroy(t->segments[i]);
backing.destroy(t);
}
// previous tracks are full
for (auto t = prev; t != nullptr;) {
for (size_t i = 0; i < Impl::SegmentTrack::size; ++i)
backing.destroy(t->segments[i]);
prev = t->prev;
backing.destroy(t);
t = prev;
}
}
// objects
if (this->impl->object_track) {
// active track is not full and bounded by track_remain
auto prev = this->impl->object_track->prev;
{
auto t = this->impl->object_track;
for (size_t i = this->impl->object_track_remain; i < Impl::ObjectTrack::size; ++i) {
auto &obj = t->objects[i];
backing.deallocate(obj.ptr, obj.len);
}
backing.destroy(t);
}
// previous tracks are full
for (auto t = prev; t != nullptr;) {
for (size_t i = 0; i < Impl::ObjectTrack::size; ++i) {
auto &obj = t->objects[i];
backing.deallocate(obj.ptr, obj.len);
}
prev = t->prev;
backing.destroy(t);
t = prev;
}
}
}
ArenaAllocator *ArenaAllocator::construct(mem::Allocator *allocator, mem::Allocator *backing, const char *name) {
auto p = new(allocator->create<ArenaAllocator>()) ArenaAllocator;
p->init(backing, name);
return p;
}
void ArenaAllocator::destruct(mem::Allocator *allocator) {
this->deinit();
allocator->destroy(this);
}
void *ArenaAllocator::internal_allocate(const mem::TypeInfo &info, size_t count) {
return this->impl->allocate(info, count);
}
void *ArenaAllocator::internal_allocate_nonzero(const mem::TypeInfo &info, size_t count) {
return this->impl->allocate(info, count);
}
void *ArenaAllocator::internal_reallocate(const mem::TypeInfo &info, void *old_ptr, size_t old_count, size_t new_count) {
return this->internal_reallocate_nonzero(info, old_ptr, old_count, new_count);
}
void *ArenaAllocator::internal_reallocate_nonzero(const mem::TypeInfo &info, void *old_ptr, size_t old_count, size_t new_count) {
return this->impl->reallocate(info, old_ptr, old_count, new_count);
}
void ArenaAllocator::internal_deallocate(const mem::TypeInfo &info, void *ptr, size_t count) {
// noop
}
BootstrapAllocator bootstrap_allocator_state;
mem::Allocator &bootstrap_allocator = bootstrap_allocator_state;
CAllocator c_allocator_state;
mem::Allocator &c_allocator = c_allocator_state;
} // namespace heap