bin | ||
ci | ||
contrib | ||
rules | ||
test | ||
toolchain | ||
.bazelrc | ||
.bazelversion | ||
.build.yml | ||
.envrc | ||
.gitignore | ||
BUILD | ||
go.mod | ||
go.sum | ||
LICENSE | ||
README.md | ||
release | ||
relnotes.awk | ||
repositories.bzl | ||
WORKSPACE |
Bazel zig cc toolchain
This is a C/C++ toolchain that can (cross-)compile C/C++ programs. It contains clang-13, musl, glibc 2-2.35, all in a ~40MB package. Read here about zig-cc; the rest of the README will present how to use this toolchain from Bazel.
Configuring toolchains in Bazel is complex, under-documented, and fraught with peril. I, the co-author of bazel-zig-cc, am still confused on how this all works, and often wonder why it works at all. That aside, we made the our best effort to make bazel-zig-cc usable for your C/C++/CGo projects, with as many guardrails as we could install.
While copy-pasting the code in your project, attempt to read and understand the text surrounding the code snippets. This will save you hours of head scratching, I promise.
Usage
Add this to your WORKSPACE
:
BAZEL_ZIG_CC_VERSION = "v0.7.1"
http_archive(
name = "bazel-zig-cc",
sha256 = "7e3955a3a2b5bf4e8d5a35e9d4e68a4155ca815de71c9515b533a6223e093fbe",
strip_prefix = "bazel-zig-cc-{}".format(BAZEL_ZIG_CC_VERSION),
urls = ["https://git.sr.ht/~motiejus/bazel-zig-cc/archive/{}.tar.gz".format(BAZEL_ZIG_CC_VERSION)],
)
load("@bazel-zig-cc//toolchain:defs.bzl", zig_toolchains = "toolchains")
# version, url_formats and host_platform_sha256 are optional, but highly
# recommended. Zig SDK is by default downloaded from dl.jakstys.lt, which is a
# tiny server in the closet of Yours Truly.
zig_toolchains(
version = "<...>",
url_formats = [
"https://example.org/zig/zig-{host_platform}-{version}.tar.xz",
],
host_platform_sha256 = { ... },
)
And this to .bazelrc
:
build --incompatible_enable_cc_toolchain_resolution
The snippets above will download the zig toolchain and make the bazel
toolchains available for registration and usage. If you do nothing else, this
may work. The .bazelrc
snippet instructs Bazel to use the registered "new
kinds of toolchains". All above are required regardless of how wants to use it.
The next steps depend on how one wants to use bazel-zig-cc. The descriptions
below is a gentle introduction to C++ toolchains from "user's perspective" too.
Use case: manually build a single target with a specific zig cc toolchain
This option is least disruptive to the workflow compared to no hermetic C++ toolchain, and works best when trying out or getting started with bazel-zig-cc for a subset of targets.
To request Bazel to use a specific toolchain (compatible with the specified platform) for build/tests/whatever on linux-amd64-musl, do:
bazel build \
--platforms @zig_sdk//platform:linux_arm64 \
--extra_toolchains @zig_sdk//toolchain:linux_arm64_musl \
//test/go:go
There are a few things going on here, let's try to dissect them.
Option --platforms @zig_sdk//platform:linux_arm64
Specifies that the our target platform is linux_arm64
, which resolves into:
$ bazel query --output=build @zig_sdk//platform:linux_arm64
platform(
name = "linux_arm64",
generator_name = "linux_arm64",
generator_function = "declare_platforms",
generator_location = "platform/BUILD:7:18",
constraint_values = ["@platforms//os:linux", "@platforms//cpu:aarch64"],
)
constraint_values
instructs Bazel to be looking for a toolchain that is
compatible with (in Bazelspeak, target_compatible_with
) all of the
["@platforms//os:linux", "@platforms//cpu:aarch64"]
.
Option --toolchains=@zig_sdk//toolchain:linux_arm64_musl
Inspect first (@platforms//cpu:aarch64
is an alias to
@platforms//cpu:arm64
):
$ bazel query --output=build @zig_sdk//toolchain:linux_arm64_musl
toolchain(
name = "linux_arm64_musl",
generator_name = "linux_arm64_musl",
generator_function = "declare_toolchains",
generator_location = "toolchain/BUILD:7:19",
toolchain_type = "@bazel_tools//tools/cpp:toolchain_type",
target_compatible_with = ["@platforms//os:linux", "@platforms//cpu:aarch64", "@zig_sdk//libc:unconstrained"],
toolchain = "@zig_sdk//private:aarch64-linux-musl_cc",
)
For a platform to pick up the right toolchain, the platform's
constraint_values
must be a subset1 of the toolchain's
target_compatible_with
. Since the platform is a subset (therefore,
toolchain's @zig_sdk//libc:unconstrained
does not matter), this toolchain is
selected for this platform. As a result, --platforms @zig_sdk//platform:linux_amd64
causes Bazel to select a toolchain
@zig_sdk//platform:linux_arm64_musl
(because it satisfies all constraints),
which will compile and link the C/C++ code with musl.
@zig_sdk//libc:unconstrained
will become important later.
Same as above, less typing (with --config
)
Specifying the platform and toolchain for every target may become burdensome,
so they can be put used via --config
. For example, append this to .bazelrc
:
build:linux_arm64 --platforms @zig_sdk//platform:linux_arm64
build:linux_arm64 --extra_toolchains @zig_sdk//toolchain:linux_arm64_musl
And then building to linux-arm64-musl boils down to:
bazel build --config=linux_arm64_musl //test/go:go
Use case: always compile with zig cc
Instead of adding the toolchains to .bazelrc
, they can be added
unconditionally. Append this to WORKSPACE
after zig_toolchains(...)
:
register_toolchains(
"@zig_sdk//toolchain:linux_amd64_gnu.2.19",
"@zig_sdk//toolchain:linux_arm64_gnu.2.28",
"@zig_sdk//toolchain:darwin_amd64",
"@zig_sdk//toolchain:darwin_arm64",
)
Append this to .bazelrc
:
build --action_env BAZEL_DO_NOT_DETECT_CPP_TOOLCHAIN=1
From Bazel's perspective, this is almost equivalent to always specifying
--extra_toolchains
on every bazel <...>
command-line invocation. It also
means there is no way to disable the toolchain with the command line. This is
useful if you find bazel-zig-cc useful enough to compile for all of your
targets and tools.
With BAZEL_DO_NOT_DETECT_CPP_TOOLCHAIN=1
Bazel stops detecting the default
host toolchain. Configuring toolchains is complicated enough, and the
auto-detection (read: fallback to non-hermetic toolchain) is a footgun best
avoided. This option is not documented in bazel, so may break. If you intend to
use the hermetic toolchain exclusively, it won't hurt.
Use case: zig-cc for targets for multiple libc variants
When some targets need to be build with different libcs (either different
versions of glibc or musl), use a linux toolchain from
@zig_sdk//libc_aware/toolchains:<...>
. The toolchain will only be selected
when building for a specific libc. For example, in WORKSPACE
:
register_toolchains(
"@zig_sdk//libc_aware/toolchain:linux_amd64_gnu.2.19",
"@zig_sdk//libc_aware/toolchain:linux_amd64_gnu.2.28",
"@zig_sdk//libc_aware/toolchain:x86_64-linux-musl",
)
What does @zig_sdk//libc_aware/toolchain:linux_amd64_gnu.2.19
mean?
$ bazel query --output=build @zig_sdk//libc_aware/toolchain:linux_amd64_gnu.2.19 |& grep target
target_compatible_with = ["@platforms//os:linux", "@platforms//cpu:x86_64", "@zig_sdk//libc:gnu.2.19"],
To see how this relates to the platform:
$ bazel query --output=build @zig_sdk//libc_aware/platform:linux_amd64_gnu.2.19 |& grep constraint
constraint_values = ["@platforms//os:linux", "@platforms//cpu:x86_64", "@zig_sdk//libc:gnu.2.19"],
In this case, the platform's constraint_values
and toolchain's
target_compatible_with
are identical, causing Bazel to select the right
toolchain for the requested platform. With these toolchains registered, one can
build a project for a specific libc-aware platform; it will select the
appropriate toolchain:
$ bazel run --platforms @zig_sdk//libc_aware/platform:linux_amd64_gnu.2.19 //test/c:which_libc
glibc_2.19
$ bazel run --platforms @zig_sdk//libc_aware/platform:linux_amd64_gnu.2.28 //test/c:which_libc
glibc_2.28
$ bazel run --platforms @zig_sdk//libc_aware/platform:linux_amd64_musl //test/c:which_libc
non_glibc
$ bazel run --run_under=file --platforms @zig_sdk//libc_aware/platform:linux_arm64_gnu.2.28 //test/c:which_libc
which_libc: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-aarch64.so.1, for GNU/Linux 2.0.0, stripped
To the list of libc aware toolchains and platforms:
$ bazel query @zig_sdk//libc_aware/toolchain/...
$ bazel query @zig_sdk//libc_aware/platform/...
Libc-aware toolchains are especially useful when relying on
transitions, as transitioning extra_platforms
will cause the
host tools to be rebuilt with the specific libc version, which takes time; also
the build host may not be able to run them if, say, target glibc version is
newer than on the host. Some tests in this repository (under test/
) are using
transitions; you may check out how it's done.
The @zig_sdk//libc:variant
constraint is necessary to select a matching
toolchain. Remember: the toolchain's target_compatible_with
must be
equivalent or a superset of the platform's constraint_values
. This is why
both libc-aware platforms and libc-aware toolchains reside in their own
namespace; if we try to mix non-libc-aware to libc-aware, confusion ensues.
To use the libc constraints in the project's platform definitions, add a
@zig_sdk//libc:variant
constraint to them. See the list of available values:
$ bazel query "attr(constraint_setting, @zig_sdk//libc:variant, @zig_sdk//...)"
@zig_sdk//libc:unconstrained
is a special value that indicates that no value
for the constraint is specified. The non libc aware linux toolchains are only
compatible with this value to prevent accidental silent fallthrough to them.
This is a guardrail. Thanks, future me!
Note: Naming
Both Go and Bazel naming schemes are accepted. For convenience with Go, the following Go-style toolchain aliases are created:
Bazel (zig) name | Go name |
---|---|
x86_64 |
amd64 |
aarch64 |
arm64 |
macos |
darwin |
For example, the toolchain linux_amd64_gnu.2.28
is aliased to
x86_64-linux-gnu.2.28
. To find out which toolchains can be registered or
used, run:
$ bazel query @zig_sdk//toolchain/...
Incompatibilities with clang and gcc
zig cc
is almost a drop-in replacement for clang/gcc. This section lists
some of the discovered differences and ways to live with them.
UBSAN and "SIGILL: Illegal Instruction"
zig cc
differs from "mainstream" compilers by enabling UBSAN by
default. Which means your program may compile successfully and crash
with:
SIGILL: illegal instruction
This flag encourages program authors to fix the undefined behavior. There are many ways to find the undefined behavior.
Use of --gc-sections
by default
zig cc
passes --gc-sections
to the ld.lld linker by default, this causes
problems for CGo. See
[below][#go-linker-does-not-put-libc-onto-the-linker-line].
Known Issues In bazel-zig-cc
These are the things you may stumble into when using bazel-zig-cc. I am unlikely to implement them any time soon, but patches implementing those will be accepted. See Questions & Contributions on how to contribute.
Zig cache
Currently zig cache is in $HOME
, so bazel clean --expunge
does not clear
the zig cache. Zig's cache should be stored somewhere in the project's path.
OSX: sysroot
For non-trivial programs (and for all darwin/arm64 cgo programs) MacOS SDK may be necessary. Read Jakub's comment about it. Support for OSX sysroot is currently not implemented.
OSX: different OS targets (Catalina -- Monterey)
Zig 0.9.0 may target macos.10 (Catalina), macos.11 (Big Sur) or macos.12 (Monterey). It currently targets the lowest version, without ability to change it.
Known Issues In Upstream
This section lists issues that I've stumbled into when using zig cc
, and is
outside of bazel-zig-cc's control.
Go linker does not put libc onto the linker line
Severity: Low
Task: golang/go #52690 Go linker does not put libc onto the linker line, causing undefined symbol errors
Background: when linking CGo programs that do not have C code by itself, the Golang linker does not link the C library, causing undefined symbols and a message similar to this:
runtime/race(.text): relocation target getuid not defined
runtime/race(.text): relocation target pthread_self not defined
This is because zig cc
emits --gc-sections
for the linker, which is
incompatbile with what CGo thinks about linking.
A workaround until #52690 is
resolved: add --no-gc-sections
to the link step. So the resulting command to
compile CGo code on Linux is:
CGO_ENABLED=1 CC="zig cc -Wl,--no-gc-sections" go build main.go
This is done automatically in bazel-zig-cc.
using glibc 2.27 or older
Severity: Low
Task: ziglang/zig #9485 glibc 2.27 or older: fcntl64 not found, but zig's glibc headers refer it
Background: when glibc 2.27 or older is selected, it may miss fcntl64
. A
workaround is applied for x86_64
, but not for aarch64. The same workaround
may apply to aarch64, but the author didn't find a need to test it (yet).
Closed Upstream Issues
- ziglang/zig #10386 zig cc regression in 0.9.0(CLOSED, thanks Xavier)
- ziglang/zig #10312 macho: fail if requested -framework is not found (CLOSED, thanks kubkon)
- ziglang/zig #10299 [darwin aarch64 cgo] regression (CLOSED, thanks kubkon)
- ziglang/zig #10297 [darwin x86_64 cgo] regression (CLOSED, thanks kubkon)
- ziglang/zig #9431 FileNotFound when compiling macos (CLOSED, thanks andrewrk)
- ziglang/zig #9139 zig c++ hanging when compiling in parallel (CLOSED, thanks andrewrk)
- ziglang/zig #9050 golang linker segfault (CLOSED, thanks kubkon)
- ziglang/zig #7917 [meta] better c/c++ toolchain compatibility (CLOSED, thanks andrewrk)
- ziglang/zig #7915 ar-compatible command for zig cc (CLOSED, thanks andrewrk)
- ziglang/zig #7667 misplaced relocated glibc stubs (pthread_sigmask) (CLOSED, thanks mjonaitis and andrewrk)
- rules/go #2894 Per-arch_target linker flags (CLOSED, thanks mjonaitis)
- golang/go #46644 cmd/link: with CC=zig: SIGSERV when cross-compiling to darwin/amd64 (CLOSED, thanks kubkon)
Host Environments
This repository is used on the following (host) platforms:
linux_amd64
, a.k.a.x86_64
.linux_arm64
, a.k.a.AArch64
.darwin_amd64
, the post-PowerPC models.darwin_arm64
, the M1.
The tests are running (CId) on linux-amd64, and are assuming the kernel is configured to run arm64 binaries. There are two reasonably convenient ways to configure arm64 emulation:
$ apt install qemu-user-static binfmt-support
; this should correctly setupbinfmt_misc
.$ docker run --rm --privileged multiarch/qemu-user-static --reset -p yes
.
Transient docker environment
A standalone Docker environment to play with bazel-zig-cc:
$ docker run -e CC=/usr/bin/false -ti --rm -v "$PWD:/x" -w /x debian:bullseye-slim
# dpkg --add-architecture arm64 && apt update
# apt install --no-install-recommends -y direnv git shellcheck ca-certificates libc6:arm64
# eval "$(direnv hook bash)" && direnv allow
# ./ci/test
# ./ci/lint
Questions & Contributions
Project's mailing list is ~motiejus/bazel-zig-cc. The mailing list is used for:
- announcements (I am aiming to send an email with every release).
- user discussions.
- raising issues.
- contributions.
I will generally respond to emails about issues. I may even be able to fix them. However, no promises: you are much more likely (and welcome!) to get it fixed by submitting a patch.
To contribute, send your patches to the mailing list, as described in git-send-email.io or via Sourcehut web UI.
Copyright is retained by the contributors.
Thanks
Many thanks to Adam Bouhenguel and his bazel-zig-cc, the parent of this repository. Also, the Zig team for making this all possible and handling the issues promptly.
-
a mathematical subset: both can be equal. ↩︎