Initial revision

This commit is contained in:
davi 2004-12-23 13:16:30 +00:00
commit b3f008eb40
42 changed files with 3448 additions and 0 deletions

2
AUTHORS Normal file
View File

@ -0,0 +1,2 @@
Davi de Castro Reis
Fabiano Cupertino Botelho

340
COPYING Normal file
View File

@ -0,0 +1,340 @@
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

159
ChangeLog Normal file
View File

@ -0,0 +1,159 @@
2004-11-24 12:42 davi
* src/czech.c: Fixed some leaks.
2004-11-24 11:34 davi
* src/: Makefile.am, cmph.h, cmph_types.h, czech.h, graph.h,
hash.h, jenkins_hash.h, types.h, vstack.h: Better header layout.
2004-11-23 15:15 davi
* src/jenkins_hash.c: Fixed trivial bug.
2004-11-04 00:56 davi
* src/: czech.c, graph.c: Forgot.
2004-11-04 00:09 davi
* src/: cmph.c, cmph.h, czech.c, czech.h, graph.c, main.c: Fixed
small bug due to fgets trick.
2004-11-03 23:15 davi
* src/: cmph.c, cmph.h, cmph_structs.c, cmph_structs.h, czech.c,
main.c: Added verbosity option
2004-11-03 22:42 davi
* src/czech.c: [no log message]
2004-11-03 20:57 davi
* src/: Makefile.am, fnv_hash.c, fnv_hash.h, hash.c, hash_state.h:
Added fnv hash function.
2004-11-03 18:10 davi
* src/: Makefile.am, cmph.c, cmph.h, czech.c, czech.h, djb2_hash.c,
hash.c, hash_state.h, jenkins_hash.c, main.c, sdbm_hash.c,
sdbm_hash.h: Added sdbm hash function.
2004-11-03 15:53 davi
* src/cmph.c, src/cmph.h, src/cmph_structs.c, src/cmph_structs.h,
src/czech.c, src/czech.h, src/czech_structs.h, src/main.c,
tests/Makefile.am, tests/czech_tests.c: Added callback structure to
retrieve keys in disk.
2004-10-31 22:57 davi
* src/: Makefile.am, djb2_hash.c, djb2_hash.h, hash.c, hash.h,
hash_funcs.h, jenkins_hash.h: Added new hash function.
2004-10-31 20:53 davi
* src/main.c: Added random seed.
2004-10-31 20:48 davi
* src/main.c, tests/czech_tests.c: Better getopt code.
2004-10-31 19:27 davi
* src/: cmph.c, cmph.h, cmph_structs.c, cmph_structs.h, czech.c,
czech.h, czech_structs.h, hash.c, hash.h, jenkins_hash.c,
jenkins_hash.h, main.c: Everything working flawlessly.
2004-10-30 20:12 davi
* src/cmph_structs.c: Added missing file.
2004-10-30 20:09 davi
* src/main.c: forgot.
2004-10-29 19:02 davi
* src/: Makefile.am, cmph.c, cmph.h, cmph_structs.h, czech.c,
czech.h, czech_structs.h, graph.c, hash.c, hash.h, jenkins_hash.c,
jenkins_hash.h, main.c: Cleaned some warnings.
2004-10-29 16:14 davi
* src/: hash.c, hash_state.h: Missing file.
2004-10-29 14:18 davi
* src/: Makefile.am, cmph.c, cmph.h, czech.c, graph.c, hash.h,
jenkins_hash.c, jenkins_hash.h, jenkinshash.c, jenkinshash.h:
Working nice. Serialization almost there.
2004-10-28 11:21 davi
* Makefile.am, src/cmph.c, src/cmph_structs.h, src/czech.c,
src/czech_structs.h, src/jenkinshash.c: Hash generation seems to be
working fine.
2004-10-27 15:19 davi
* src/hash.h: Added hash header.
2004-10-27 15:06 davi
* COPYING, INSTALL, Makefile.am, src/czech.c, src/czech_structs.h,
src/graph.c, src/graph.h, src/vstack.c, tests/Makefile.am,
tests/czech_tests.c, tests/graph_tests.c: Cool. Now it is
serialization time.
2004-10-27 13:06 davi
* tests/: czech_tests.c, keys: Added missing files.
2004-10-26 21:23 davi
* src/graph.c, tests/Makefile.am: Still working on f*cking graph
implementation.
2004-10-25 20:05 davi
* src/: cmph.c, cmph.h, cmph_structs.h, czech.c, czech.h,
czech_structs.h, graph.c, graph.h, jenkinshash.c, jenkinshash.h,
vstack.c: Added some new files.
2004-10-25 00:27 davi
* src/: czech.c, czech.h, graph.c, graph.h, jenkinshash.c: Some
random code.
2004-10-24 23:07 davi
* src/: Makefile.am, debug.h, graph.c, main.c, vstack.c, vstack.h:
Added stack implementation.
2004-10-24 21:57 davi
* src/list.h: Added missing file.
2004-10-24 21:50 davi
* src/types.h: Added missing file.
2004-10-22 20:30 davi
* src/: Makefile.am, cmph.h, czech.c, czech.h, graph.c, graph.h,
jenkinshash.c, jenkinshash.h: Added a lot of files.
2004-10-19 17:08 davi
* AUTHORS, COPYING, ChangeLog, INSTALL, Makefile.am, NEWS, README,
cmph.spec, configure.ac, src/Makefile.am, src/cmph.c, src/cmph.h,
src/main.c, tests/Makefile.am: Initial revision
2004-10-19 17:08 davi
* AUTHORS, COPYING, ChangeLog, INSTALL, Makefile.am, NEWS, README,
cmph.spec, configure.ac, src/Makefile.am, src/cmph.c, src/cmph.h,
src/main.c, tests/Makefile.am: Minimum perfect hashing library

229
INSTALL Normal file
View File

@ -0,0 +1,229 @@
Copyright (C) 1994, 1995, 1996, 1999, 2000, 2001, 2002 Free Software
Foundation, Inc.
This file is free documentation; the Free Software Foundation gives
unlimited permission to copy, distribute and modify it.
Basic Installation
==================
These are generic installation instructions.
The `configure' shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a `Makefile' in each directory of the package.
It may also create one or more `.h' files containing system-dependent
definitions. Finally, it creates a shell script `config.status' that
you can run in the future to recreate the current configuration, and a
file `config.log' containing compiler output (useful mainly for
debugging `configure').
It can also use an optional file (typically called `config.cache'
and enabled with `--cache-file=config.cache' or simply `-C') that saves
the results of its tests to speed up reconfiguring. (Caching is
disabled by default to prevent problems with accidental use of stale
cache files.)
If you need to do unusual things to compile the package, please try
to figure out how `configure' could check whether to do them, and mail
diffs or instructions to the address given in the `README' so they can
be considered for the next release. If you are using the cache, and at
some point `config.cache' contains results you don't want to keep, you
may remove or edit it.
The file `configure.ac' (or `configure.in') is used to create
`configure' by a program called `autoconf'. You only need
`configure.ac' if you want to change it or regenerate `configure' using
a newer version of `autoconf'.
The simplest way to compile this package is:
1. `cd' to the directory containing the package's source code and type
`./configure' to configure the package for your system. If you're
using `csh' on an old version of System V, you might need to type
`sh ./configure' instead to prevent `csh' from trying to execute
`configure' itself.
Running `configure' takes awhile. While running, it prints some
messages telling which features it is checking for.
2. Type `make' to compile the package.
3. Optionally, type `make check' to run any self-tests that come with
the package.
4. Type `make install' to install the programs and any data files and
documentation.
5. You can remove the program binaries and object files from the
source code directory by typing `make clean'. To also remove the
files that `configure' created (so you can compile the package for
a different kind of computer), type `make distclean'. There is
also a `make maintainer-clean' target, but that is intended mainly
for the package's developers. If you use it, you may have to get
all sorts of other programs in order to regenerate files that came
with the distribution.
Compilers and Options
=====================
Some systems require unusual options for compilation or linking that
the `configure' script does not know about. Run `./configure --help'
for details on some of the pertinent environment variables.
You can give `configure' initial values for configuration parameters
by setting variables in the command line or in the environment. Here
is an example:
./configure CC=c89 CFLAGS=-O2 LIBS=-lposix
*Note Defining Variables::, for more details.
Compiling For Multiple Architectures
====================================
You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their
own directory. To do this, you must use a version of `make' that
supports the `VPATH' variable, such as GNU `make'. `cd' to the
directory where you want the object files and executables to go and run
the `configure' script. `configure' automatically checks for the
source code in the directory that `configure' is in and in `..'.
If you have to use a `make' that does not support the `VPATH'
variable, you have to compile the package for one architecture at a
time in the source code directory. After you have installed the
package for one architecture, use `make distclean' before reconfiguring
for another architecture.
Installation Names
==================
By default, `make install' will install the package's files in
`/usr/local/bin', `/usr/local/man', etc. You can specify an
installation prefix other than `/usr/local' by giving `configure' the
option `--prefix=PATH'.
You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
give `configure' the option `--exec-prefix=PATH', the package will use
PATH as the prefix for installing programs and libraries.
Documentation and other data files will still use the regular prefix.
In addition, if you use an unusual directory layout you can give
options like `--bindir=PATH' to specify different values for particular
kinds of files. Run `configure --help' for a list of the directories
you can set and what kinds of files go in them.
If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving `configure' the
option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'.
Optional Features
=================
Some packages pay attention to `--enable-FEATURE' options to
`configure', where FEATURE indicates an optional part of the package.
They may also pay attention to `--with-PACKAGE' options, where PACKAGE
is something like `gnu-as' or `x' (for the X Window System). The
`README' should mention any `--enable-' and `--with-' options that the
package recognizes.
For packages that use the X Window System, `configure' can usually
find the X include and library files automatically, but if it doesn't,
you can use the `configure' options `--x-includes=DIR' and
`--x-libraries=DIR' to specify their locations.
Specifying the System Type
==========================
There may be some features `configure' cannot figure out
automatically, but needs to determine by the type of machine the package
will run on. Usually, assuming the package is built to be run on the
_same_ architectures, `configure' can figure that out, but if it prints
a message saying it cannot guess the machine type, give it the
`--build=TYPE' option. TYPE can either be a short name for the system
type, such as `sun4', or a canonical name which has the form:
CPU-COMPANY-SYSTEM
where SYSTEM can have one of these forms:
OS KERNEL-OS
See the file `config.sub' for the possible values of each field. If
`config.sub' isn't included in this package, then this package doesn't
need to know the machine type.
If you are _building_ compiler tools for cross-compiling, you should
use the `--target=TYPE' option to select the type of system they will
produce code for.
If you want to _use_ a cross compiler, that generates code for a
platform different from the build platform, you should specify the
"host" platform (i.e., that on which the generated programs will
eventually be run) with `--host=TYPE'.
Sharing Defaults
================
If you want to set default values for `configure' scripts to share,
you can create a site shell script called `config.site' that gives
default values for variables like `CC', `cache_file', and `prefix'.
`configure' looks for `PREFIX/share/config.site' if it exists, then
`PREFIX/etc/config.site' if it exists. Or, you can set the
`CONFIG_SITE' environment variable to the location of the site script.
A warning: not all `configure' scripts look for a site script.
Defining Variables
==================
Variables not defined in a site shell script can be set in the
environment passed to `configure'. However, some packages may run
configure again during the build, and the customized values of these
variables may be lost. In order to avoid this problem, you should set
them in the `configure' command line, using `VAR=value'. For example:
./configure CC=/usr/local2/bin/gcc
will cause the specified gcc to be used as the C compiler (unless it is
overridden in the site shell script).
`configure' Invocation
======================
`configure' recognizes the following options to control how it
operates.
`--help'
`-h'
Print a summary of the options to `configure', and exit.
`--version'
`-V'
Print the version of Autoconf used to generate the `configure'
script, and exit.
`--cache-file=FILE'
Enable the cache: use and save the results of the tests in FILE,
traditionally `config.cache'. FILE defaults to `/dev/null' to
disable caching.
`--config-cache'
`-C'
Alias for `--cache-file=config.cache'.
`--quiet'
`--silent'
`-q'
Do not print messages saying which checks are being made. To
suppress all normal output, redirect it to `/dev/null' (any error
messages will still be shown).
`--srcdir=DIR'
Look for the package's source code in directory DIR. Usually
`configure' can determine that directory automatically.
`configure' also accepts some other, not widely useful, options. Run
`configure --help' for more details.

2
Makefile.am Normal file
View File

@ -0,0 +1,2 @@
SUBDIRS = src tests
EXTRA_DIST = cmph.spec configure.ac

0
NEWS Normal file
View File

0
README Normal file
View File

39
cmph.spec Normal file
View File

@ -0,0 +1,39 @@
%define name cmph
%define version 0.2
%define release 1
Name: %{name}
Version: %{version}
Release: %{release}
Summary: C Minimal perfect hash library
Source: %{name}-%{version}.tar.gz
License: Proprietary
URL: http://www.akwan.com.br
BuildArch: i386
Group: Sitesearch
BuildRoot: %{_tmppath}/%{name}-root
%description
C Minimal perfect hash library
%prep
rm -Rf $RPM_BUILD_ROOT
rm -rf $RPM_BUILD_ROOT
%setup
mkdir $RPM_BUILD_ROOT
mkdir $RPM_BUILD_ROOT/usr
CXXFLAGS="-O2" ./configure --prefix=/usr/
%build
make
%install
DESTDIR=$RPM_BUILD_ROOT make install
%files
%defattr(755,root,root)
/
%changelog
* Tue Jun 1 2004 Davi de Castro Reis <davi@akwan.com.br>
+ Initial build

23
configure.ac Normal file
View File

@ -0,0 +1,23 @@
dnl Process this file with autoconf to produce a configure script.
AC_INIT(Makefile.am)
AM_INIT_AUTOMAKE(cmph, 0.2)
AM_CONFIG_HEADER(config.h)
dnl Checks for programs.
AC_PROG_AWK
AC_PROG_CC
AC_PROG_INSTALL
AC_PROG_LN_S
AC_PROG_LIBTOOL
dnl Checks for headers
AC_CHECK_HEADERS([getopt.h math.h])
dnl Checks for libraries.
AC_CHECK_LIBM
LDFLAGS="$LIBM $LDFLAGS"
dnl Checks for library functions.
dnl AC_OUTPUT(Makefile tests/Makefile samples/Makefile)
AC_OUTPUT(Makefile src/Makefile tests/Makefile)

22
src/Makefile.am Normal file
View File

@ -0,0 +1,22 @@
bin_PROGRAMS = cmph
lib_LTLIBRARIES = libcmph.la
include_HEADERS = cmph.h cmph_types.h
libcmph_la_SOURCES = debug.h\
cmph_types.h\
hash.h hash_state.h hash.c\
jenkins_hash.h jenkins_hash.c\
djb2_hash.h djb2_hash.c\
sdbm_hash.h sdbm_hash.c\
fnv_hash.h fnv_hash.c\
vstack.h vstack.c\
vqueue.h vqueue.c\
graph.h graph.c\
cmph.h cmph.c\
cmph_structs.h cmph_structs.c\
czech.h czech_structs.h czech.c\
bmz.h bmz_structs.h bmz.c
libcmph_la_LDFLAGS = -version-info 0:0:0
cmph_SOURCES = main.c
cmph_LDADD = libcmph.la

439
src/bmz.c Normal file
View File

@ -0,0 +1,439 @@
#include "bmz.h"
#include "cmph_structs.h"
#include "bmz_structs.h"
#include "hash.h"
#include "vqueue.h"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <netinet/in.h>
//#define DEBUG
#include "debug.h"
static uint32 UNDEFINED = UINT_MAX;
static int bmz_gen_edges(mph_t *mph);
static void bmz_traverse_critical_nodes(bmz_mph_data_t *bmz, uint32 v, uint32 * biggest_g_value, uint32 * biggest_edge_value, uint8 * used_edges);
static void bmz_traverse_non_critical_nodes(bmz_mph_data_t *bmz, uint8 * used_edges);
mph_t *bmz_mph_new(key_source_t *key_source)
{
mph_t *mph = NULL;
bmz_mph_data_t *bmz = NULL;
mph = __mph_new(MPH_BMZ, key_source);
if (mph == NULL) return NULL;
bmz = (bmz_mph_data_t *)malloc(sizeof(bmz_mph_data_t));
if (bmz == NULL)
{
__mph_destroy(mph);
return NULL;
}
bmz->hashfuncs[0] = HASH_JENKINS;
bmz->hashfuncs[1] = HASH_JENKINS;
bmz->g = NULL;
bmz->graph = NULL;
bmz->hashes = NULL;
mph->data = bmz;
assert(mph->data);
return mph;
}
void bmz_mph_destroy(mph_t *mph)
{
bmz_mph_data_t *data = (bmz_mph_data_t *)mph->data;
DEBUGP("Destroying algorithm dependent data\n");
free(data);
__mph_destroy(mph);
}
void bmz_mph_set_hashfuncs(mph_t *mph, CMPH_HASH *hashfuncs)
{
bmz_mph_data_t *bmz = (bmz_mph_data_t *)mph->data;
CMPH_HASH *hashptr = hashfuncs;
uint32 i = 0;
while(*hashptr != HASH_COUNT)
{
if (i >= 2) break; //bmz only uses two hash functions
bmz->hashfuncs[i] = *hashptr;
++i, ++hashptr;
}
}
mphf_t *bmz_mph_create(mph_t *mph, float bmz_c)
{
mphf_t *mphf = NULL;
bmz_mphf_data_t *bmzf = NULL;
uint32 i;
uint32 iterations = 10;
uint8 *used_edges = NULL;
uint32 unused_edge_index = 0;
uint32 biggest_g_value = 0;
uint32 biggest_edge_value = 1;
DEBUGP("bmz_c: %f\n", bmz_c);
bmz_mph_data_t *bmz = (bmz_mph_data_t *)mph->data;
bmz->m = mph->key_source->nkeys;
bmz->n = ceil(bmz_c * mph->key_source->nkeys);
DEBUGP("m (edges): %u n (vertices): %u bmz_c: %f\n", bmz->m, bmz->n, bmz_c);
bmz->graph = graph_new(bmz->n, bmz->m);
DEBUGP("Created graph\n");
bmz->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*3);
for(i = 0; i < 3; ++i) bmz->hashes[i] = NULL;
// Mapping step
if (mph->verbosity)
{
fprintf(stderr, "Entering mapping step for mph creation of %u keys with graph sized %u\n", bmz->m, bmz->n);
}
while(1)
{
int ok;
DEBUGP("hash function 1\n");
bmz->hashes[0] = hash_state_new(bmz->hashfuncs[0], bmz->n);
DEBUGP("hash function 2\n");
bmz->hashes[1] = hash_state_new(bmz->hashfuncs[1], bmz->n);
DEBUGP("Generating edges\n");
ok = bmz_gen_edges(mph);
if (!ok)
{
--iterations;
hash_state_destroy(bmz->hashes[0]);
bmz->hashes[0] = NULL;
hash_state_destroy(bmz->hashes[1]);
bmz->hashes[1] = NULL;
DEBUGP("%u iterations remaining\n", iterations);
if (mph->verbosity)
{
fprintf(stderr, "simple graph creation failure - %u iterations remaining\n", iterations);
}
if (iterations == 0) break;
}
else break;
}
if (iterations == 0)
{
graph_destroy(bmz->graph);
return NULL;
}
// Ordering step
if (mph->verbosity)
{
fprintf(stderr, "Starting ordering step\n");
}
graph_obtain_critical_nodes(bmz->graph);
// Searching step
if (mph->verbosity)
{
fprintf(stderr, "Starting Searching step\n");
fprintf(stderr, "\tTraversing critical vertices.\n");
}
DEBUGP("Searching step\n");
used_edges = (uint8 *)malloc(bmz->m*sizeof(uint8));
memset(used_edges, 0, bmz->m);
free(bmz->g);
bmz->g = malloc(bmz->n * sizeof(uint32));
assert(bmz->g);
for (i = 0; i < bmz->n; ++i) bmz->g[i] = UNDEFINED;
for (i = 0; i < bmz->n; ++i) // critical nodes
{
if (graph_node_is_critical(bmz->graph, i) && (bmz->g[i] == UNDEFINED))
{
bmz_traverse_critical_nodes(bmz, i, &biggest_g_value, &biggest_edge_value, used_edges);
}
}
if (mph->verbosity)
{
fprintf(stderr, "\tTraversing non critical vertices.\n");
}
bmz_traverse_non_critical_nodes(bmz, used_edges); // non_critical_nodes
graph_destroy(bmz->graph);
free(used_edges);
bmz->graph = NULL;
mphf = (mphf_t *)malloc(sizeof(mphf_t));
mphf->algo = mph->algo;
bmzf = (bmz_mphf_data_t *)malloc(sizeof(bmz_mph_data_t));
bmzf->g = bmz->g;
bmz->g = NULL; //transfer memory ownership
bmzf->hashes = bmz->hashes;
bmz->hashes = NULL; //transfer memory ownership
bmzf->n = bmz->n;
bmzf->m = bmz->m;
mphf->data = bmzf;
mphf->size = bmz->m;
DEBUGP("Successfully generated minimal perfect hash\n");
if (mph->verbosity)
{
fprintf(stderr, "Successfully generated minimal perfect hash function\n");
}
return mphf;
}
static void bmz_traverse_critical_nodes(bmz_mph_data_t *bmz, uint32 v, uint32 * biggest_g_value, uint32 * biggest_edge_value, uint8 * used_edges)
{
uint32 next_g;
uint32 u; /* Auxiliary vertex */
uint32 lav; /* lookahead vertex */
uint8 collision;
vqueue_t * q = vqueue_new(graph_ncritical_nodes(bmz->graph));
graph_iterator_t it, it1;
DEBUGP("Labelling critical vertices\n");
bmz->g[v] = (uint32)ceil ((double)(*biggest_edge_value)/2) - 1;
next_g = (uint32)floor((double)(*biggest_edge_value/2)); /* next_g is incremented in the do..while statement*/
*biggest_g_value = next_g;
vqueue_insert(q, v);
while(!vqueue_is_empty(q))
{
v = vqueue_remove(q);
it = graph_neighbors_it(bmz->graph, v);
while ((u = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR)
{
if (graph_node_is_critical(bmz->graph, u) && (bmz->g[u] == UNDEFINED))
{
collision = 1;
while(collision) // lookahead to resolve collisions
{
next_g = *biggest_g_value + 1;
it1 = graph_neighbors_it(bmz->graph, u);
collision = 0;
while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
{
if (graph_node_is_critical(bmz->graph, lav) && (bmz->g[lav] != UNDEFINED))
{
assert(next_g + bmz->g[lav] < bmz->m);
if (used_edges[next_g + bmz->g[lav]])
{
collision = 1;
break;
}
}
}
if (next_g > *biggest_g_value) *biggest_g_value = next_g;
}
// Marking used edges...
it1 = graph_neighbors_it(bmz->graph, u);
while((lav = graph_next_neighbor(bmz->graph, &it1)) != GRAPH_NO_NEIGHBOR)
{
if (graph_node_is_critical(bmz->graph, lav) && (bmz->g[lav] != UNDEFINED))
{
used_edges[next_g + bmz->g[lav]] = 1;
if(next_g + bmz->g[lav] > *biggest_edge_value) *biggest_edge_value = next_g + bmz->g[lav];
}
}
bmz->g[u] = next_g; // Labelling vertex u.
vqueue_insert(q, u);
}
}
}
vqueue_destroy(q);
}
static uint32 next_unused_edge(bmz_mph_data_t *bmz, uint8 * used_edges, uint32 unused_edge_index)
{
while(1)
{
assert(unused_edge_index < bmz->m);
if(used_edges[unused_edge_index]) unused_edge_index ++;
else break;
}
return unused_edge_index;
}
static void bmz_traverse(bmz_mph_data_t *bmz, uint8 * used_edges, uint32 v, uint32 * unused_edge_index)
{
graph_iterator_t it = graph_neighbors_it(bmz->graph, v);
uint32 neighbor = 0;
while((neighbor = graph_next_neighbor(bmz->graph, &it)) != GRAPH_NO_NEIGHBOR)
{
DEBUGP("Visiting neighbor %u\n", neighbor);
if(bmz->g[neighbor] != UNDEFINED) continue;
*unused_edge_index = next_unused_edge(bmz, used_edges, *unused_edge_index + 1);
bmz->g[neighbor] = *unused_edge_index - bmz->g[v];
bmz_traverse(bmz, used_edges, neighbor, unused_edge_index);
}
}
static void bmz_traverse_non_critical_nodes(bmz_mph_data_t *bmz, uint8 * used_edges)
{
uint32 i, v1, v2, unused_edge_index = -1;
DEBUGP("Labelling non critical vertices\n");
for(i = 0; i < bmz->m; i++)
{
v1 = graph_vertex_id(bmz->graph, i, 0);
v2 = graph_vertex_id(bmz->graph, i, 1);
if((bmz->g[v1] != UNDEFINED && bmz->g[v2] != UNDEFINED) || (bmz->g[v1] == UNDEFINED && bmz->g[v2] == UNDEFINED)) continue;
if(bmz->g[v1] != UNDEFINED) bmz_traverse(bmz, used_edges, v1, &unused_edge_index);
else bmz_traverse(bmz, used_edges, v2, &unused_edge_index);
}
for(i = 0; i < bmz->n; i++)
{
if(bmz->g[i] == UNDEFINED)
{
bmz->g[i] = 0;
bmz_traverse(bmz, used_edges, i, &unused_edge_index);
}
}
}
static int bmz_gen_edges(mph_t *mph)
{
uint32 e;
bmz_mph_data_t *bmz = (bmz_mph_data_t *)mph->data;
uint8 multiple_edges = 0;
DEBUGP("Generating edges for %u vertices\n", bmz->n);
graph_clear_edges(bmz->graph);
mph->key_source->rewind(mph->key_source->data);
for (e = 0; e < mph->key_source->nkeys; ++e)
{
uint32 h1, h2;
uint32 keylen;
char *key;
mph->key_source->read(mph->key_source->data, &key, &keylen);
h1 = hash(bmz->hashes[0], key, keylen) % bmz->n;
h2 = hash(bmz->hashes[1], key, keylen) % bmz->n;
if (h1 == h2) if (++h2 >= bmz->n) h2 = 0;
if (h1 == h2)
{
if (mph->verbosity) fprintf(stderr, "Self loop for key %e\n", e);
mph->key_source->dispose(mph->key_source->data, key, keylen);
return 0;
}
DEBUGP("Adding edge: %u -> %u for key %s\n", h1, h2, key);
mph->key_source->dispose(mph->key_source->data, key, keylen);
multiple_edges = graph_contains_edge(bmz->graph, h1, h2);
if (mph->verbosity && multiple_edges) fprintf(stderr, "A non simple graph was generated\n");
if (multiple_edges) return 0; // checking multiple edge restriction.
graph_add_edge(bmz->graph, h1, h2);
}
return !multiple_edges;
}
int bmz_mphf_dump(mphf_t *mphf, FILE *fd)
{
char *buf = NULL;
uint32 buflen;
uint32 nbuflen;
uint32 i;
uint32 two = htonl(2); //number of hash functions
bmz_mphf_data_t *data = (bmz_mphf_data_t *)mphf->data;
uint32 nn, nm;
__mphf_dump(mphf, fd);
fwrite(&two, sizeof(uint32), 1, fd);
hash_state_dump(data->hashes[0], &buf, &buflen);
DEBUGP("Dumping hash state with %u bytes to disk\n", buflen);
nbuflen = htonl(buflen);
fwrite(&nbuflen, sizeof(uint32), 1, fd);
fwrite(buf, buflen, 1, fd);
free(buf);
hash_state_dump(data->hashes[1], &buf, &buflen);
DEBUGP("Dumping hash state with %u bytes to disk\n", buflen);
nbuflen = htonl(buflen);
fwrite(&nbuflen, sizeof(uint32), 1, fd);
fwrite(buf, buflen, 1, fd);
free(buf);
nn = htonl(data->n);
fwrite(&nn, sizeof(uint32), 1, fd);
nm = htonl(data->m);
fwrite(&nm, sizeof(uint32), 1, fd);
for (i = 0; i < data->n; ++i)
{
uint32 ng = htonl(data->g[i]);
fwrite(&ng, sizeof(uint32), 1, fd);
}
#ifdef DEBUG
fprintf(stderr, "G: ");
for (i = 0; i < data->n; ++i) fprintf(stderr, "%u ", data->g[i]);
fprintf(stderr, "\n");
#endif
return 1;
}
void bmz_mphf_load(FILE *f, mphf_t *mphf)
{
uint32 nhashes;
char fbuf[BUFSIZ];
char *buf = NULL;
uint32 buflen;
uint32 i;
hash_state_t *state;
bmz_mphf_data_t *bmz = (bmz_mphf_data_t *)malloc(sizeof(bmz_mphf_data_t));
DEBUGP("Loading bmz mphf\n");
mphf->data = bmz;
fread(&nhashes, sizeof(uint32), 1, f);
nhashes = ntohl(nhashes);
bmz->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*(nhashes + 1));
bmz->hashes[nhashes] = NULL;
DEBUGP("Reading %u hashes\n", nhashes);
for (i = 0; i < nhashes; ++i)
{
hash_state_t *state = NULL;
fread(&buflen, sizeof(uint32), 1, f);
buflen = ntohl(buflen);
DEBUGP("Hash state has %u bytes\n", buflen);
buf = (char *)malloc(buflen);
fread(buf, buflen, 1, f);
state = hash_state_load(buf, buflen);
bmz->hashes[i] = state;
free(buf);
}
DEBUGP("Reading m and n\n");
fread(&(bmz->n), sizeof(uint32), 1, f);
bmz->n = ntohl(bmz->n);
fread(&(bmz->m), sizeof(uint32), 1, f);
bmz->m = ntohl(bmz->m);
bmz->g = (uint32 *)malloc(sizeof(uint32)*bmz->n);
fread(bmz->g, bmz->n*sizeof(uint32), 1, f);
for (i = 0; i < bmz->n; ++i) bmz->g[i] = ntohl(bmz->g[i]);
#ifdef DEBUG
fprintf(stderr, "G: ");
for (i = 0; i < bmz->n; ++i) fprintf(stderr, "%u ", bmz->g[i]);
fprintf(stderr, "\n");
#endif
return;
}
uint32 bmz_mphf_search(mphf_t *mphf, const char *key, uint32 keylen)
{
bmz_mphf_data_t *bmz = mphf->data;
uint32 h1 = hash(bmz->hashes[0], key, keylen) % bmz->n;
uint32 h2 = hash(bmz->hashes[1], key, keylen) % bmz->n;
DEBUGP("key: %s h1: %u h2: %u\n", key, h1, h2);
if (h1 == h2 && ++h2 > bmz->n) h2 = 0;
DEBUGP("key: %s g[h1]: %u g[h2]: %u edges: %u\n", key, bmz->g[h1], bmz->g[h2], bmz->m);
return bmz->g[h1] + bmz->g[h2];
}
void bmz_mphf_destroy(mphf_t *mphf)
{
bmz_mphf_data_t *data = (bmz_mphf_data_t *)mphf->data;
free(data->g);
hash_state_destroy(data->hashes[0]);
hash_state_destroy(data->hashes[1]);
free(data->hashes);
free(data);
free(mphf);
}

18
src/bmz.h Normal file
View File

@ -0,0 +1,18 @@
#ifndef __BMZ_H__
#define __BMZ_H__
#include "graph.h"
#include "cmph.h"
typedef struct __bmz_mphf_data_t bmz_mphf_data_t;
typedef struct __bmz_mph_data_t bmz_mph_data_t;
mph_t *bmz_mph_new(key_source_t *key_source);
void bmz_mph_set_hashfuncs(mph_t *mph, CMPH_HASH *hashfuncs);
void bmz_mph_destroy(mph_t *mph);
mphf_t *bmz_mph_create(mph_t *mph, float bmz_c);
void bmz_mphf_load(FILE *f, mphf_t *mphf);
int bmz_mphf_dump(mphf_t *mphf, FILE *f);
uint32 bmz_mphf_search(mphf_t *mphf, const char *key, uint32 keylen);
#endif

24
src/bmz_structs.h Normal file
View File

@ -0,0 +1,24 @@
#ifndef __BMZ_STRUCTS_H__
#define __BMZ_STRUCTS_H__
#include "hash_state.h"
struct __bmz_mphf_data_t
{
uint32 m; //edges (words) count
uint32 n; //vertex count
uint32 *g;
hash_state_t **hashes;
};
struct __bmz_mph_data_t
{
CMPH_HASH hashfuncs[2];
uint32 m; //edges (words) count
uint32 n; //vertex count
graph_t *graph;
uint32 *g;
hash_state_t **hashes;
};
#endif

169
src/cmph.c Normal file
View File

@ -0,0 +1,169 @@
#include "cmph.h"
#include "cmph_structs.h"
#include "czech.h"
#include "bmz.h"
//#include "bmz.h" /* included -- Fabiano */
#include <stdlib.h>
#include <assert.h>
//#define DEBUG
#include "debug.h"
const char *mph_names[] = { "czech", "bmz", NULL }; /* included -- Fabiano */
mph_t *mph_new(MPH_ALGO algo, key_source_t *key_source)
{
mph_t *mph = NULL;
DEBUGP("Creating mph with algorithm %s\n", mph_names[algo]);
switch (algo)
{
case MPH_CZECH:
mph = czech_mph_new(key_source);
break;
case MPH_BMZ: /* included -- Fabiano */
DEBUGP("new bmz algorithm \n");
mph = bmz_mph_new(key_source);
break;
default:
assert(0);
}
assert(mph);
return mph;
}
void mph_destroy(mph_t *mph)
{
DEBUGP("Destroying mph with algo %s\n", mph_names[mph->algo]);
switch (mph->algo)
{
case MPH_CZECH:
czech_mph_destroy(mph);
break;
case MPH_BMZ: /* included -- Fabiano */
bmz_mph_destroy(mph);
break;
default:
assert(0);
}
}
void mph_set_verbosity(mph_t *mph, uint32 verbosity)
{
mph->verbosity = verbosity;
}
void mph_set_hashfuncs(mph_t *mph, CMPH_HASH *hashfuncs)
{
switch (mph->algo)
{
case MPH_CZECH:
czech_mph_set_hashfuncs(mph, hashfuncs);
break;
case MPH_BMZ: /* included -- Fabiano */
bmz_mph_set_hashfuncs(mph, hashfuncs);
break;
default:
break;
}
return;
}
mphf_t *mph_create(mph_t *mph)
{
mphf_t *mphf = NULL;
switch (mph->algo)
{
case MPH_CZECH:
DEBUGP("Creating czech hash\n");
mphf = czech_mph_create(mph, 2.09);
break;
case MPH_BMZ: /* included -- Fabiano */
DEBUGP("Creating bmz hash\n");
mphf = bmz_mph_create(mph, 1.10);
break;
default:
assert(0);
}
return mphf;
}
int mphf_dump(mphf_t *mphf, FILE *f)
{
switch (mphf->algo)
{
case MPH_CZECH:
return czech_mphf_dump(mphf, f);
break;
case MPH_BMZ: /* included -- Fabiano */
return bmz_mphf_dump(mphf, f);
break;
default:
assert(0);
}
assert(0);
return 0;
}
mphf_t *mphf_load(FILE *f)
{
mphf_t *mphf = NULL;
DEBUGP("Loading mphf generic parts\n");
mphf = __mphf_load(f);
if (mphf == NULL) return NULL;
DEBUGP("Loading mphf algorithm dependent parts\n");
switch (mphf->algo)
{
case MPH_CZECH:
czech_mphf_load(f, mphf);
break;
case MPH_BMZ: /* included -- Fabiano */
DEBUGP("Loading bmz algorithm dependent parts\n");
bmz_mphf_load(f, mphf);
break;
default:
assert(0);
}
DEBUGP("Loaded mphf\n");
return mphf;
}
uint32 mphf_search(mphf_t *mphf, const char *key, uint32 keylen)
{
DEBUGP("mphf algorithm: %u \n", mphf->algo);
switch(mphf->algo)
{
case MPH_CZECH:
return czech_mphf_search(mphf, key, keylen);
case MPH_BMZ: /* included -- Fabiano */
DEBUGP("bmz algorithm search\n");
return bmz_mphf_search(mphf, key, keylen);
default:
assert(0);
}
assert(0);
return;
}
uint32 mphf_size(mphf_t *mphf)
{
return mphf->size;
}
void mphf_destroy(mphf_t *mphf)
{
switch(mphf->algo)
{
case MPH_CZECH:
czech_mphf_destroy(mphf);
return;
case MPH_BMZ: /* included -- Fabiano */
bmz_mphf_destroy(mphf);
return;
default:
assert(0);
}
assert(0);
return;
}

44
src/cmph.h Normal file
View File

@ -0,0 +1,44 @@
#ifndef __CMPH_H__
#define __CMPH_H__
#include <stdlib.h>
#include <stdio.h>
#ifdef __cplusplus
extern "C"
{
#endif
#include "cmph_types.h"
typedef struct __mph_t mph_t;
typedef struct __mphf_t mphf_t;
typedef struct
{
void *data;
uint32 nkeys;
int (*read)(void *, char **, uint32 *);
void (*dispose)(void *, char *, uint32);
void (*rewind)(void *);
} key_source_t;
/** Hash generation API **/
mph_t *mph_new(MPH_ALGO algo, key_source_t *key_source);
void mph_set_hashfuncs(mph_t *mph, CMPH_HASH *hashfuncs);
void mph_set_verbosity(mph_t *mph, uint32 verbosity);
void mph_destroy(mph_t *mph);
mphf_t *mph_create(mph_t *mph);
/** Hash querying API **/
mphf_t *mphf_load(FILE *f);
int mphf_dump(mphf_t *mphf, FILE *f);
uint32 mphf_search(mphf_t *mphf, const char *key, uint32 keylen);
uint32 mphf_size(mphf_t *mphf);
void mphf_destroy(mphf_t *mphf);
#ifdef __cplusplus
}
#endif
#endif

68
src/cmph_structs.c Normal file
View File

@ -0,0 +1,68 @@
#include "cmph_structs.h"
#include <string.h>
#define DEBUG
#include "debug.h"
mph_t *__mph_new(MPH_ALGO algo, key_source_t *key_source)
{
mph_t *mph = (mph_t *)malloc(sizeof(mph_t));
DEBUGP("Creating mph with algorithm %s\n", mph_names[algo]);
if (mph == NULL) return NULL;
mph->algo = algo;
mph->key_source = key_source;
mph->verbosity = 0;
return mph;
}
void __mph_destroy(mph_t *mph)
{
free(mph);
}
void __mphf_dump(mphf_t *mphf, FILE *fd)
{
uint32 nsize = htonl(mphf->size);
fwrite(mph_names[mphf->algo], strlen(mph_names[mphf->algo]) + 1, 1, fd);
fwrite(&nsize, sizeof(mphf->size), 1, fd);
}
mphf_t *__mphf_load(FILE *f)
{
mphf_t *mphf = NULL;
uint32 i;
char algo_name[BUFSIZ];
char *ptr = algo_name;
MPH_ALGO algo = MPH_COUNT;
DEBUGP("Loading mphf\n");
while(1)
{
uint32 c = fread(ptr, 1, 1, f);
if (c != 1) return NULL;
if (*ptr == 0) break;
++ptr;
}
for(i = 0; i < MPH_COUNT; ++i)
{
if (strcmp(algo_name, mph_names[i]) == 0)
{
algo = i;
}
}
if (algo == MPH_COUNT)
{
DEBUGP("Algorithm %s not found\n", algo_name);
return NULL;
}
mphf = (mphf_t *)malloc(sizeof(mphf_t));
mphf->algo = algo;
fread(&(mphf->size), sizeof(mphf->size), 1, f);
mphf->size = ntohl(mphf->size);
mphf->data = NULL;
DEBUGP("Algorithm is %s and mphf is sized %u\n", mph_names[algo], mphf->size);
return mphf;
}

32
src/cmph_structs.h Normal file
View File

@ -0,0 +1,32 @@
#ifndef __CMPH_STRUCTS_H__
#define __CMPH_STRUCTS_H__
#include "cmph.h"
/** Hash generation algorithm data
*/
struct __mph_t
{
MPH_ALGO algo;
key_source_t *key_source;
uint32 verbosity;
void *data; //algorithm dependent data
};
/** Hash querying algorithm data
*/
struct __mphf_t
{
MPH_ALGO algo;
uint32 size;
key_source_t *key_source;
void *data; //algorithm dependent data
};
mph_t *__mph_new(MPH_ALGO algo, key_source_t *key_source);
void __mph_destroy();
void __mphf_dump(mphf_t *mphf, FILE *);
mphf_t *__mphf_load(FILE *f);
#endif

13
src/cmph_types.h Normal file
View File

@ -0,0 +1,13 @@
#ifndef __CMPH_TYPES_H__
#define __CMPH_TYPES_H__
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef unsigned int uint32;
typedef enum { HASH_JENKINS, HASH_DJB2, HASH_SDBM, HASH_FNV, HASH_GLIB, HASH_PJW, HASH_COUNT } CMPH_HASH;
extern const char *hash_names[];
typedef enum { MPH_CZECH, MPH_BMZ, MPH_COUNT } MPH_ALGO; /* included -- Fabiano */
extern const char *mph_names[];
#endif

320
src/czech.c Normal file
View File

@ -0,0 +1,320 @@
#include "czech.h"
#include "cmph_structs.h"
#include "czech_structs.h"
#include "hash.h"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <netinet/in.h>
//#define DEBUG
#include "debug.h"
static int czech_gen_edges(mph_t *mph);
static void czech_traverse(czech_mph_data_t *czech, char *visited, uint32 v);
mph_t *czech_mph_new(key_source_t *key_source)
{
mph_t *mph = NULL;
czech_mph_data_t *czech = NULL;
mph = __mph_new(MPH_CZECH, key_source);
if (mph == NULL) return NULL;
czech = (czech_mph_data_t *)malloc(sizeof(czech_mph_data_t));
if (czech == NULL)
{
__mph_destroy(mph);
return NULL;
}
czech->hashfuncs[0] = HASH_JENKINS;
czech->hashfuncs[1] = HASH_JENKINS;
czech->g = NULL;
czech->graph = NULL;
czech->hashes = NULL;
mph->data = czech;
assert(mph->data);
return mph;
}
void czech_mph_destroy(mph_t *mph)
{
czech_mph_data_t *data = (czech_mph_data_t *)mph->data;
DEBUGP("Destroying algorithm dependent data\n");
free(data);
__mph_destroy(mph);
}
void czech_mph_set_hashfuncs(mph_t *mph, CMPH_HASH *hashfuncs)
{
czech_mph_data_t *czech = (czech_mph_data_t *)mph->data;
CMPH_HASH *hashptr = hashfuncs;
uint32 i = 0;
while(*hashptr != HASH_COUNT)
{
if (i >= 2) break; //czech only uses two hash functions
czech->hashfuncs[i] = *hashptr;
++i, ++hashptr;
}
}
mphf_t *czech_mph_create(mph_t *mph, float c)
{
mphf_t *mphf = NULL;
czech_mphf_data_t *czechf = NULL;
uint32 i;
uint32 iterations = 10;
char *visited = NULL;
czech_mph_data_t *czech = (czech_mph_data_t *)mph->data;
czech->m = mph->key_source->nkeys;
czech->n = ceil(c * mph->key_source->nkeys);
DEBUGP("m (edges): %u n (vertices): %u c: %f\n", czech->m, czech->n, c);
czech->graph = graph_new(czech->n, czech->m);
DEBUGP("Created graph\n");
czech->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*3);
for(i = 0; i < 3; ++i) czech->hashes[i] = NULL;
//Mapping step
if (mph->verbosity)
{
fprintf(stderr, "Entering mapping step for mph creation of %u keys with graph sized %u\n", czech->m, czech->n);
}
while(1)
{
int ok;
czech->hashes[0] = hash_state_new(czech->hashfuncs[0], czech->n);
czech->hashes[1] = hash_state_new(czech->hashfuncs[1], czech->n);
ok = czech_gen_edges(mph);
if (!ok)
{
--iterations;
hash_state_destroy(czech->hashes[0]);
czech->hashes[0] = NULL;
hash_state_destroy(czech->hashes[1]);
czech->hashes[1] = NULL;
DEBUGP("%u iterations remaining\n", iterations);
if (mph->verbosity)
{
fprintf(stderr, "Acyclic graph creation failure - %u iterations remaining\n", iterations);
}
if (iterations == 0) break;
}
else break;
}
if (iterations == 0)
{
graph_destroy(czech->graph);
return NULL;
}
//Assignment step
if (mph->verbosity)
{
fprintf(stderr, "Starting assignment step\n");
}
DEBUGP("Assignment step\n");
visited = (char *)malloc(czech->n);
memset(visited, 0, czech->n);
free(czech->g);
czech->g = malloc(czech->n * sizeof(uint32));
assert(czech->g);
for (i = 0; i < czech->n; ++i)
{
if (!visited[i])
{
czech->g[i] = 0;
czech_traverse(czech, visited, i);
}
}
graph_destroy(czech->graph);
free(visited);
czech->graph = NULL;
mphf = (mphf_t *)malloc(sizeof(mphf_t));
mphf->algo = mph->algo;
czechf = (czech_mphf_data_t *)malloc(sizeof(czech_mph_data_t));
czechf->g = czech->g;
czech->g = NULL; //transfer memory ownership
czechf->hashes = czech->hashes;
czech->hashes = NULL; //transfer memory ownership
czechf->n = czech->n;
czechf->m = czech->m;
mphf->data = czechf;
mphf->size = czech->m;
DEBUGP("Successfully generated minimal perfect hash\n");
if (mph->verbosity)
{
fprintf(stderr, "Successfully generated minimal perfect hash function\n");
}
return mphf;
}
static void czech_traverse(czech_mph_data_t *czech, char *visited, uint32 v)
{
graph_iterator_t it = graph_neighbors_it(czech->graph, v);
uint32 neighbor = 0;
visited[v] = 1;
DEBUGP("Visiting vertex %u\n", v);
while((neighbor = graph_next_neighbor(czech->graph, &it)) != GRAPH_NO_NEIGHBOR)
{
DEBUGP("Visiting neighbor %u\n", neighbor);
if(visited[neighbor]) continue;
DEBUGP("Visiting neighbor %u\n", neighbor);
DEBUGP("Visiting edge %u->%u with id %u\n", v, neighbor, graph_edge_id(czech->graph, v, neighbor));
czech->g[neighbor] = graph_edge_id(czech->graph, v, neighbor) - czech->g[v];
DEBUGP("g is %u (%u - %u mod %u)\n", czech->g[neighbor], graph_edge_id(czech->graph, v, neighbor), czech->g[v], czech->m);
czech_traverse(czech, visited, neighbor);
}
}
static int czech_gen_edges(mph_t *mph)
{
uint32 e;
czech_mph_data_t *czech = (czech_mph_data_t *)mph->data;
int cycles = 0;
DEBUGP("Generating edges for %u vertices\n", czech->n);
graph_clear_edges(czech->graph);
mph->key_source->rewind(mph->key_source->data);
for (e = 0; e < mph->key_source->nkeys; ++e)
{
uint32 h1, h2;
uint32 keylen;
char *key;
mph->key_source->read(mph->key_source->data, &key, &keylen);
h1 = hash(czech->hashes[0], key, keylen) % czech->n;
h2 = hash(czech->hashes[1], key, keylen) % czech->n;
if (h1 == h2) if (++h2 >= czech->n) h2 = 0;
if (h1 == h2)
{
if (mph->verbosity) fprintf(stderr, "Self loop for key %e\n", e);
mph->key_source->dispose(mph->key_source->data, key, keylen);
return 0;
}
DEBUGP("Adding edge: %u -> %u for key %s\n", h1, h2, key);
mph->key_source->dispose(mph->key_source->data, key, keylen);
graph_add_edge(czech->graph, h1, h2);
}
cycles = graph_is_cyclic(czech->graph);
if (mph->verbosity && cycles) fprintf(stderr, "Cyclic graph generated\n");
DEBUGP("Looking for cycles: %u\n", cycles);
return ! cycles;
}
int czech_mphf_dump(mphf_t *mphf, FILE *fd)
{
char *buf = NULL;
uint32 buflen;
uint32 nbuflen;
uint32 i;
uint32 two = htonl(2); //number of hash functions
czech_mphf_data_t *data = (czech_mphf_data_t *)mphf->data;
uint32 nn, nm;
__mphf_dump(mphf, fd);
fwrite(&two, sizeof(uint32), 1, fd);
hash_state_dump(data->hashes[0], &buf, &buflen);
DEBUGP("Dumping hash state with %u bytes to disk\n", buflen);
nbuflen = htonl(buflen);
fwrite(&nbuflen, sizeof(uint32), 1, fd);
fwrite(buf, buflen, 1, fd);
free(buf);
hash_state_dump(data->hashes[1], &buf, &buflen);
DEBUGP("Dumping hash state with %u bytes to disk\n", buflen);
nbuflen = htonl(buflen);
fwrite(&nbuflen, sizeof(uint32), 1, fd);
fwrite(buf, buflen, 1, fd);
free(buf);
nn = htonl(data->n);
fwrite(&nn, sizeof(uint32), 1, fd);
nm = htonl(data->m);
fwrite(&nm, sizeof(uint32), 1, fd);
for (i = 0; i < data->n; ++i)
{
uint32 ng = htonl(data->g[i]);
fwrite(&ng, sizeof(uint32), 1, fd);
}
#ifdef DEBUG
fprintf(stderr, "G: ");
for (i = 0; i < data->n; ++i) fprintf(stderr, "%u ", data->g[i]);
fprintf(stderr, "\n");
#endif
return 1;
}
void czech_mphf_load(FILE *f, mphf_t *mphf)
{
uint32 nhashes;
char fbuf[BUFSIZ];
char *buf = NULL;
uint32 buflen;
uint32 i;
hash_state_t *state;
czech_mphf_data_t *czech = (czech_mphf_data_t *)malloc(sizeof(czech_mphf_data_t));
DEBUGP("Loading czech mphf\n");
mphf->data = czech;
fread(&nhashes, sizeof(uint32), 1, f);
nhashes = ntohl(nhashes);
czech->hashes = (hash_state_t **)malloc(sizeof(hash_state_t *)*(nhashes + 1));
czech->hashes[nhashes] = NULL;
DEBUGP("Reading %u hashes\n", nhashes);
for (i = 0; i < nhashes; ++i)
{
hash_state_t *state = NULL;
fread(&buflen, sizeof(uint32), 1, f);
buflen = ntohl(buflen);
DEBUGP("Hash state has %u bytes\n", buflen);
buf = (char *)malloc(buflen);
fread(buf, buflen, 1, f);
state = hash_state_load(buf, buflen);
czech->hashes[i] = state;
free(buf);
}
DEBUGP("Reading m and n\n");
fread(&(czech->n), sizeof(uint32), 1, f);
czech->n = ntohl(czech->n);
fread(&(czech->m), sizeof(uint32), 1, f);
czech->m = ntohl(czech->m);
czech->g = (uint32 *)malloc(sizeof(uint32)*czech->n);
fread(czech->g, czech->n*sizeof(uint32), 1, f);
for (i = 0; i < czech->n; ++i) czech->g[i] = ntohl(czech->g[i]);
#ifdef DEBUG
fprintf(stderr, "G: ");
for (i = 0; i < czech->n; ++i) fprintf(stderr, "%u ", czech->g[i]);
fprintf(stderr, "\n");
#endif
return;
}
uint32 czech_mphf_search(mphf_t *mphf, const char *key, uint32 keylen)
{
czech_mphf_data_t *czech = mphf->data;
uint32 h1 = hash(czech->hashes[0], key, keylen) % czech->n;
uint32 h2 = hash(czech->hashes[1], key, keylen) % czech->n;
DEBUGP("key: %s h1: %u h2: %u\n", key, h1, h2);
if (h1 == h2 && ++h2 > czech->n) h2 = 0;
DEBUGP("key: %s g[h1]: %u g[h2]: %u edges: %u\n", key, czech->g[h1], czech->g[h2], czech->m);
return (czech->g[h1] + czech->g[h2]) % czech->m;
}
void czech_mphf_destroy(mphf_t *mphf)
{
czech_mphf_data_t *data = (czech_mphf_data_t *)mphf->data;
free(data->g);
hash_state_destroy(data->hashes[0]);
hash_state_destroy(data->hashes[1]);
free(data->hashes);
free(data);
free(mphf);
}

18
src/czech.h Normal file
View File

@ -0,0 +1,18 @@
#ifndef __CZECH_H__
#define __CZECH_H__
#include "graph.h"
#include "cmph.h"
typedef struct __czech_mphf_data_t czech_mphf_data_t;
typedef struct __czech_mph_data_t czech_mph_data_t;
mph_t *czech_mph_new(key_source_t *key_source);
void czech_mph_set_hashfuncs(mph_t *mph, CMPH_HASH *hashfuncs);
void czech_mph_destroy(mph_t *mph);
mphf_t *czech_mph_create(mph_t *mph, float c);
void czech_mphf_load(FILE *f, mphf_t *mphf);
int czech_mphf_dump(mphf_t *mphf, FILE *f);
uint32 czech_mphf_search(mphf_t *mphf, const char *key, uint32 keylen);
#endif

24
src/czech_structs.h Normal file
View File

@ -0,0 +1,24 @@
#ifndef __CZECH_STRUCTS_H__
#define __CZECH_STRUCTS_H__
#include "hash_state.h"
struct __czech_mphf_data_t
{
uint32 m; //edges (words) count
uint32 n; //vertex count
uint32 *g;
hash_state_t **hashes;
};
struct __czech_mph_data_t
{
CMPH_HASH hashfuncs[2];
uint32 m; //edges (words) count
uint32 n; //vertex count
graph_t *graph;
uint32 *g;
hash_state_t **hashes;
};
#endif

15
src/debug.h Normal file
View File

@ -0,0 +1,15 @@
#ifndef __MY_DEBUGC__
#define __MY_DEBUGC__
#ifdef __cplusplus
#include <cstdio>
#else
#include <stdio.h>
#endif
#ifdef DEBUG
#define DEBUGP(args...) do { fprintf(stderr, "%s:%d ", __FILE__, __LINE__); fprintf(stderr, ## args); } while(0)
#else
#define DEBUGP(args...)
#endif
#endif

42
src/djb2_hash.c Normal file
View File

@ -0,0 +1,42 @@
#include "djb2_hash.h"
#include <stdlib.h>
djb2_state_t *djb2_state_new()
{
djb2_state_t *state = (djb2_state_t *)malloc(sizeof(djb2_state_t));
state->hashfunc = HASH_DJB2;
return state;
}
void djb2_state_destroy(djb2_state_t *state)
{
free(state);
}
uint32 djb2_hash(djb2_state_t *state, const char *k, uint32 keylen)
{
register unsigned int hash = 5381;
const unsigned char *ptr = k;
int i = 0;
while (i < keylen)
{
hash = hash*33 ^ *ptr;
++ptr, ++i;
}
return hash;
}
void djb2_state_dump(djb2_state_t *state, char **buf, uint32 *buflen)
{
*buf = NULL;
*buflen = 0;
return;
}
djb2_state_t *djb2_state_load(const char *buf, uint32 buflen)
{
djb2_state_t *state = (djb2_state_t *)malloc(sizeof(djb2_state_t));
state->hashfunc = HASH_DJB2;
return state;
}

17
src/djb2_hash.h Normal file
View File

@ -0,0 +1,17 @@
#ifndef __DJB2_HASH_H__
#define __DJB2_HASH_H__
#include "hash.h"
typedef struct __djb2_state_t
{
CMPH_HASH hashfunc;
} djb2_state_t;
djb2_state_t *djb2_state_new();
uint32 djb2_hash(djb2_state_t *state, const char *k, uint32 keylen);
void djb2_state_dump(djb2_state_t *state, char **buf, uint32 *buflen);
djb2_state_t *djb2_state_load(const char *buf, uint32 buflen);
void djb2_state_destroy(djb2_state_t *state);
#endif

46
src/fnv_hash.c Normal file
View File

@ -0,0 +1,46 @@
#include "fnv_hash.h"
#include <stdlib.h>
fnv_state_t *fnv_state_new()
{
fnv_state_t *state = (fnv_state_t *)malloc(sizeof(fnv_state_t));
state->hashfunc = HASH_FNV;
return state;
}
void fnv_state_destroy(fnv_state_t *state)
{
free(state);
}
uint32 fnv_hash(fnv_state_t *state, const char *k, uint32 keylen)
{
const unsigned char *bp = (const unsigned char *)k;
const unsigned char *be = bp + keylen;
static unsigned int hval = 0;
while (bp < be)
{
//hval *= 0x01000193; good for non-gcc compiler
hval += (hval << 1) + (hval << 4) + (hval << 7) + (hval << 8) + (hval << 24); //good for gcc
hval ^= *bp++;
}
return hval;
}
void fnv_state_dump(fnv_state_t *state, char **buf, uint32 *buflen)
{
*buf = NULL;
*buflen = 0;
return;
}
fnv_state_t *fnv_state_load(const char *buf, uint32 buflen)
{
fnv_state_t *state = (fnv_state_t *)malloc(sizeof(fnv_state_t));
state->hashfunc = HASH_FNV;
return state;
}

17
src/fnv_hash.h Normal file
View File

@ -0,0 +1,17 @@
#ifndef __FNV_HASH_H__
#define __FNV_HASH_H__
#include "hash.h"
typedef struct __fnv_state_t
{
CMPH_HASH hashfunc;
} fnv_state_t;
fnv_state_t *fnv_state_new();
uint32 fnv_hash(fnv_state_t *state, const char *k, uint32 keylen);
void fnv_state_dump(fnv_state_t *state, char **buf, uint32 *buflen);
fnv_state_t *fnv_state_load(const char *buf, uint32 buflen);
void fnv_state_destroy(fnv_state_t *state);
#endif

329
src/graph.c Normal file
View File

@ -0,0 +1,329 @@
#include "graph.h"
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <assert.h>
#include <string.h>
#include "vstack.h"
//#define DEBUG
#include "debug.h"
#define abs_edge(e, i) (e % g->nedges + i * g->nedges)
struct __graph_t
{
uint32 nnodes;
uint32 nedges;
uint32 *edges;
uint32 *first;
uint32 *next;
uint8 *critical_nodes; /* included -- Fabiano*/
uint32 ncritical_nodes; /* included -- Fabiano*/
uint32 cedges;
int shrinking;
};
static uint32 EMPTY = UINT_MAX;
graph_t *graph_new(uint32 nnodes, uint32 nedges)
{
graph_t *graph = (graph_t *)malloc(sizeof(graph_t));
if (!graph) return NULL;
graph->edges = (uint32 *)malloc(sizeof(uint32) * 2 * nedges);
graph->next = (uint32 *)malloc(sizeof(uint32) * 2 * nedges);
graph->first = (uint32 *)malloc(sizeof(uint32) * nnodes);
graph->critical_nodes = NULL; /* included -- Fabiano*/
graph->ncritical_nodes = 0; /* included -- Fabiano*/
graph->nnodes = nnodes;
graph->nedges = nedges;
graph_clear_edges(graph);
return graph;
}
void graph_destroy(graph_t *graph)
{
DEBUGP("Destroying graph\n");
free(graph->edges);
free(graph->first);
free(graph->next);
free(graph->critical_nodes); /* included -- Fabiano*/
free(graph);
return;
}
void graph_print(graph_t *g)
{
uint32 i, e;
for (i = 0; i < g->nnodes; ++i)
{
DEBUGP("Printing edges connected to %u\n", i);
e = g->first[i];
if (e != EMPTY)
{
printf("%u -> %u\n", g->edges[abs_edge(e, 0)], g->edges[abs_edge(e, 1)]);
while ((e = g->next[e]) != EMPTY)
{
printf("%u -> %u\n", g->edges[abs_edge(e, 0)], g->edges[abs_edge(e, 1)]);
}
}
}
return;
}
void graph_add_edge(graph_t *g, uint32 v1, uint32 v2)
{
uint32 e = g->cedges;
assert(v1 < g->nnodes);
assert(v2 < g->nnodes);
assert(e < g->nedges);
assert(!g->shrinking);
g->next[e] = g->first[v1];
g->first[v1] = e;
g->edges[e] = v2;
g->next[e + g->nedges] = g->first[v2];
g->first[v2] = e + g->nedges;
g->edges[e + g->nedges] = v1;
++(g->cedges);
}
static int check_edge(graph_t *g, uint32 e, uint32 v1, uint32 v2)
{
DEBUGP("Checking edge %u %u looking for %u %u\n", g->edges[abs_edge(e, 0)], g->edges[abs_edge(e, 1)], v1, v2);
if (g->edges[abs_edge(e, 0)] == v1 && g->edges[abs_edge(e, 1)] == v2) return 1;
if (g->edges[abs_edge(e, 0)] == v2 && g->edges[abs_edge(e, 1)] == v1) return 1;
return 0;
}
uint32 graph_edge_id(graph_t *g, uint32 v1, uint32 v2)
{
uint32 e;
e = g->first[v1];
assert(e != EMPTY);
if (check_edge(g, e, v1, v2)) return abs_edge(e, 0);
do
{
e = g->next[e];
assert(e != EMPTY);
}
while (!check_edge(g, e, v1, v2));
return abs_edge(e, 0);
}
static void del_edge_point(graph_t *g, uint32 v1, uint32 v2)
{
uint32 e, prev;
DEBUGP("Deleting edge point %u %u\n", v1, v2);
e = g->first[v1];
if (check_edge(g, e, v1, v2))
{
g->first[v1] = g->next[e];
//g->edges[e] = EMPTY;
DEBUGP("Deleted\n");
return;
}
DEBUGP("Checking linked list\n");
do
{
prev = e;
e = g->next[e];
assert(e != EMPTY);
}
while (!check_edge(g, e, v1, v2));
g->next[prev] = g->next[e];
//g->edges[e] = EMPTY;
DEBUGP("Deleted\n");
}
void graph_del_edge(graph_t *g, uint32 v1, uint32 v2)
{
g->shrinking = 1;
del_edge_point(g, v1, v2);
del_edge_point(g, v2, v1);
}
void graph_clear_edges(graph_t *g)
{
uint32 i;
for (i = 0; i < g->nnodes; ++i) g->first[i] = EMPTY;
for (i = 0; i < g->nedges*2; ++i)
{
g->edges[i] = EMPTY;
g->next[i] = EMPTY;
}
g->cedges = 0;
g->shrinking = 0;
}
static int find_degree1_edge(graph_t *g, uint32 v, char *deleted, uint32 *e)
{
uint32 edge = g->first[v];
char found = 0;
DEBUGP("Checking degree of vertex %u\n", v);
if (edge == EMPTY) return 0;
else if (!deleted[abs_edge(edge, 0)])
{
found = 1;
*e = edge;
}
while(1)
{
edge = g->next[edge];
if (edge == EMPTY) break;
if (deleted[abs_edge(edge, 0)]) continue;
if (found) return 0;
DEBUGP("Found first edge\n");
*e = edge;
found = 1;
}
return found;
}
static void cyclic_del_edge(graph_t *g, uint32 v, char *deleted)
{
uint32 e;
char degree1;
uint32 v1 = v;
uint32 v2 = 0;
degree1 = find_degree1_edge(g, v1, deleted, &e);
if (!degree1) return;
while(1)
{
DEBUGP("Deleting edge %u (%u->%u)\n", e, g->edges[abs_edge(e, 0)], g->edges[abs_edge(e, 1)]);
deleted[abs_edge(e, 0)] = 1;
v2 = g->edges[abs_edge(e, 0)];
if (v2 == v1) v2 = g->edges[abs_edge(e, 1)];
DEBUGP("Checking if second endpoint %u has degree 1\n", v2);
degree1 = find_degree1_edge(g, v2, deleted, &e);
if (degree1)
{
DEBUGP("Inspecting vertex %u\n", v2);
v1 = v2;
}
else break;
}
}
int graph_is_cyclic(graph_t *g)
{
uint32 i;
uint32 v;
char *deleted = (char *)malloc(g->nedges*sizeof(char));
memset(deleted, 0, g->nedges);
DEBUGP("Looking for cycles in graph with %u vertices and %u edges\n", g->nnodes, g->nedges);
for (v = 0; v < g->nnodes; ++v)
{
cyclic_del_edge(g, v, deleted);
}
for (i = 0; i < g->nedges; ++i)
{
if (!(deleted[i]))
{
DEBUGP("Edge %u %u->%u was not deleted\n", i, g->edges[i], g->edges[i + g->nedges]);
free(deleted);
return 1;
}
}
free(deleted);
return 0;
}
uint8 graph_node_is_critical(graph_t * g, uint32 v) /* included -- Fabiano */
{
return g->critical_nodes[v];
}
void graph_obtain_critical_nodes(graph_t *g) /* included -- Fabiano*/
{
uint32 i;
uint32 v;
char *deleted = (char *)malloc(g->nedges*sizeof(char));
memset(deleted, 0, g->nedges);
/* g->critical_nodes = (uint8 *)malloc((size_t)(ceil(g->nnodes*sizeof(uint8)/8.))); */
g->critical_nodes = (uint8 *)malloc(g->nnodes*sizeof(uint8));
g->ncritical_nodes = 0;
DEBUGP("Looking for the 2-core in graph with %u vertices and %u edges\n", g->nnodes, g->nedges);
for (v = 0; v < g->nnodes; ++v)
{
cyclic_del_edge(g, v, deleted);
}
for (i = 0; i < g->nedges; ++i)
{
if (!(deleted[i]))
{
DEBUGP("Edge %u %u->%u belongs to the 2-core\n", i, g->edges[i], g->edges[i + g->nedges]);
if(!(g->critical_nodes[g->edges[i]]))
{
g->ncritical_nodes ++;
g->critical_nodes[g->edges[i]] = 1;
}
if(!(g->critical_nodes[g->edges[i + g->nedges]]))
{
g->ncritical_nodes ++;
g->critical_nodes[g->edges[i + g->nedges]] = 1;
}
}
}
free(deleted);
}
uint8 graph_contains_edge(graph_t *g, uint32 v1, uint32 v2) /* included -- Fabiano*/
{
uint32 e;
e = g->first[v1];
if(e == EMPTY) return 0;
if (check_edge(g, e, v1, v2)) return 1;
do
{
e = g->next[e];
if(e == EMPTY) return 0;
}
while (!check_edge(g, e, v1, v2));
return 1;
}
uint32 graph_vertex_id(graph_t *g, uint32 e, uint32 id) /* included -- Fabiano*/
{
return (g->edges[e + id*g->nedges]);
}
uint32 graph_ncritical_nodes(graph_t *g) /* included -- Fabiano*/
{
return g->ncritical_nodes;
}
graph_iterator_t graph_neighbors_it(graph_t *g, uint32 v)
{
graph_iterator_t it;
it.vertex = v;
it.edge = g->first[v];
return it;
}
uint32 graph_next_neighbor(graph_t *g, graph_iterator_t* it)
{
uint32 ret;
if(it->edge == EMPTY) return GRAPH_NO_NEIGHBOR;
if (g->edges[it->edge] == it->vertex) ret = g->edges[it->edge + g->nedges];
else ret = g->edges[it->edge];
it->edge = g->next[it->edge];
return ret;
}

39
src/graph.h Normal file
View File

@ -0,0 +1,39 @@
#ifndef _CMPH_GRAPH_H__
#define _CMPH_GRAPH_H__
#include <limits.h>
#include "cmph_types.h"
#define GRAPH_NO_NEIGHBOR UINT_MAX
typedef struct __graph_t graph_t;
typedef struct __graph_iterator_t graph_iterator_t;
struct __graph_iterator_t
{
uint32 vertex;
uint32 edge;
};
graph_t *graph_new(uint32 nnodes, uint32 nedges);
void graph_destroy(graph_t *graph);
void graph_add_edge(graph_t *g, uint32 v1, uint32 v2);
//void graph_del_edge(graph_t *g, uint32 v1, uint32 v2);
void graph_clear_edges(graph_t *g);
uint32 graph_edge_id(graph_t *g, uint32 v1, uint32 v2);
graph_iterator_t graph_neighbors_it(graph_t *g, uint32 v);
uint32 graph_next_neighbor(graph_t *g, graph_iterator_t* it);
void graph_obtain_critical_nodes(graph_t *g); /* included -- Fabiano*/
uint8 graph_node_is_critical(graph_t * g, uint32 v); /* included -- Fabiano */
uint32 graph_ncritical_nodes(graph_t *g); /* included -- Fabiano*/
uint32 graph_vertex_id(graph_t *g, uint32 e, uint32 id); /* included -- Fabiano*/
int graph_is_cyclic(graph_t *g);
void graph_print(graph_t *);
#endif

139
src/hash.c Normal file
View File

@ -0,0 +1,139 @@
#include "hash_state.h"
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <string.h>
//#define DEBUG
#include "debug.h"
const char *hash_names[] = { "jenkins", "djb2", "sdbm", "fnv", "glib", "pjw", NULL };
hash_state_t *hash_state_new(CMPH_HASH hashfunc, uint32 hashsize)
{
hash_state_t *state = NULL;
switch (hashfunc)
{
case HASH_JENKINS:
DEBUGP("Jenkins function - %u\n", hashsize);
state = (hash_state_t *)jenkins_state_new(hashsize);
DEBUGP("Jenkins function created\n");
break;
case HASH_DJB2:
state = (hash_state_t *)djb2_state_new();
break;
case HASH_SDBM:
state = (hash_state_t *)sdbm_state_new();
break;
case HASH_FNV:
state = (hash_state_t *)fnv_state_new();
break;
default:
assert(0);
}
state->hashfunc = hashfunc;
return state;
}
uint32 hash(hash_state_t *state, const char *key, uint32 keylen)
{
switch (state->hashfunc)
{
case HASH_JENKINS:
return jenkins_hash((jenkins_state_t *)state, key, keylen);
case HASH_DJB2:
return djb2_hash((djb2_state_t *)state, key, keylen);
case HASH_SDBM:
return sdbm_hash((sdbm_state_t *)state, key, keylen);
case HASH_FNV:
return fnv_hash((fnv_state_t *)state, key, keylen);
default:
assert(0);
}
assert(0);
return 0;
}
void hash_state_dump(hash_state_t *state, char **buf, uint32 *buflen)
{
char *algobuf;
switch (state->hashfunc)
{
case HASH_JENKINS:
jenkins_state_dump((jenkins_state_t *)state, &algobuf, buflen);
if (*buflen == UINT_MAX) return;
break;
case HASH_DJB2:
djb2_state_dump((djb2_state_t *)state, &algobuf, buflen);
if (*buflen == UINT_MAX) return;
break;
case HASH_SDBM:
sdbm_state_dump((sdbm_state_t *)state, &algobuf, buflen);
if (*buflen == UINT_MAX) return;
break;
case HASH_FNV:
fnv_state_dump((fnv_state_t *)state, &algobuf, buflen);
if (*buflen == UINT_MAX) return;
break;
default:
assert(0);
}
*buf = malloc(strlen(hash_names[state->hashfunc]) + 1 + *buflen);
memcpy(*buf, hash_names[state->hashfunc], strlen(hash_names[state->hashfunc]) + 1);
DEBUGP("Algobuf is %u\n", *(uint32 *)algobuf);
memcpy(*buf + strlen(hash_names[state->hashfunc]) + 1, algobuf, *buflen);
*buflen = strlen(hash_names[state->hashfunc]) + 1 + *buflen;
free(algobuf);
return;
}
hash_state_t *hash_state_load(const char *buf, uint32 buflen)
{
uint32 i;
uint32 offset;
CMPH_HASH hashfunc = HASH_COUNT;
for (i = 0; i < HASH_COUNT; ++i)
{
if (strcmp(buf, hash_names[i]) == 0)
{
hashfunc = i;
break;
}
}
if (hashfunc == HASH_COUNT) return NULL;
offset = strlen(hash_names[hashfunc]) + 1;
switch (hashfunc)
{
case HASH_JENKINS:
return (hash_state_t *)jenkins_state_load(buf + offset, buflen - offset);
case HASH_DJB2:
return (hash_state_t *)djb2_state_load(buf + offset, buflen - offset);
case HASH_SDBM:
return (hash_state_t *)sdbm_state_load(buf + offset, buflen - offset);
case HASH_FNV:
return (hash_state_t *)fnv_state_load(buf + offset, buflen - offset);
default:
return NULL;
}
return NULL;
}
void hash_state_destroy(hash_state_t *state)
{
switch (state->hashfunc)
{
case HASH_JENKINS:
jenkins_state_destroy((jenkins_state_t *)state);
break;
case HASH_DJB2:
djb2_state_destroy((djb2_state_t *)state);
break;
case HASH_SDBM:
sdbm_state_destroy((sdbm_state_t *)state);
break;
case HASH_FNV:
fnv_state_destroy((fnv_state_t *)state);
break;
default:
assert(0);
}
return;
}

14
src/hash.h Normal file
View File

@ -0,0 +1,14 @@
#ifndef __CMPH_HASH_H__
#define __CMPH_HASH_H__
#include "cmph_types.h"
typedef union __hash_state_t hash_state_t;
hash_state_t *hash_state_new(CMPH_HASH, uint32 hashsize);
uint32 hash(hash_state_t *state, const char *key, uint32 keylen);
void hash_state_dump(hash_state_t *state, char **buf, uint32 *buflen);
hash_state_t *hash_state_load(const char *buf, uint32 buflen);
void hash_state_destroy(hash_state_t *state);
#endif

18
src/hash_state.h Normal file
View File

@ -0,0 +1,18 @@
#ifndef __HASH_STATE_H__
#define __HASH_STATE_H__
#include "hash.h"
#include "jenkins_hash.h"
#include "djb2_hash.h"
#include "sdbm_hash.h"
#include "fnv_hash.h"
union __hash_state_t
{
CMPH_HASH hashfunc;
jenkins_state_t jenkins;
djb2_state_t djb2;
sdbm_state_t sdbm;
fnv_state_t fnv;
};
#endif

191
src/jenkins_hash.c Normal file
View File

@ -0,0 +1,191 @@
#include "jenkins_hash.h"
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include <string.h>
#include <netinet/in.h>
//#define DEBUG
#include "debug.h"
#define hashsize(n) ((uint32)1<<(n))
#define hashmask(n) (hashsize(n)-1)
//#define NM2 /* Define this if you do not want power of 2 table sizes*/
/*
--------------------------------------------------------------------
mix -- mix 3 32-bit values reversibly.
For every delta with one or two bits set, and the deltas of all three
high bits or all three low bits, whether the original value of a,b,c
is almost all zero or is uniformly distributed,
* If mix() is run forward or backward, at least 32 bits in a,b,c
have at least 1/4 probability of changing.
* If mix() is run forward, every bit of c will change between 1/3 and
2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
mix() was built out of 36 single-cycle latency instructions in a
structure that could supported 2x parallelism, like so:
a -= b;
a -= c; x = (c>>13);
b -= c; a ^= x;
b -= a; x = (a<<8);
c -= a; b ^= x;
c -= b; x = (b>>13);
...
Unfortunately, superscalar Pentiums and Sparcs can't take advantage
of that parallelism. They've also turned some of those single-cycle
latency instructions into multi-cycle latency instructions. Still,
this is the fastest good hash I could find. There were about 2^^68
to choose from. I only looked at a billion or so.
--------------------------------------------------------------------
*/
#define mix(a,b,c) \
{ \
a -= b; a -= c; a ^= (c>>13); \
b -= c; b -= a; b ^= (a<<8); \
c -= a; c -= b; c ^= (b>>13); \
a -= b; a -= c; a ^= (c>>12); \
b -= c; b -= a; b ^= (a<<16); \
c -= a; c -= b; c ^= (b>>5); \
a -= b; a -= c; a ^= (c>>3); \
b -= c; b -= a; b ^= (a<<10); \
c -= a; c -= b; c ^= (b>>15); \
}
/*
--------------------------------------------------------------------
hash() -- hash a variable-length key into a 32-bit value
k : the key (the unaligned variable-length array of bytes)
len : the length of the key, counting by bytes
initval : can be any 4-byte value
Returns a 32-bit value. Every bit of the key affects every bit of
the return value. Every 1-bit and 2-bit delta achieves avalanche.
About 6*len+35 instructions.
The best hash table sizes are powers of 2. There is no need to do
mod a prime (mod is sooo slow!). If you need less than 32 bits,
use a bitmask. For example, if you need only 10 bits, do
h = (h & hashmask(10));
In which case, the hash table should have hashsize(10) elements.
If you are hashing n strings (uint8 **)k, do it like this:
for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
code any way you wish, private, educational, or commercial. It's free.
See http://burtleburtle.net/bob/hash/evahash.html
Use for hash table lookup, or anything where one collision in 2^^32 is
acceptable. Do NOT use for cryptographic purposes.
--------------------------------------------------------------------
*/
jenkins_state_t *jenkins_state_new(uint32 size) //size of hash table
{
jenkins_state_t *state = (jenkins_state_t *)malloc(sizeof(jenkins_state_t));
DEBUGP("Initializing jenkins hash\n");
state->seed = rand() % size;
state->nbits = ceil(log(size)/M_LOG2E);
state->size = size;
DEBUGP("Initialized jenkins with size %u, nbits %u and seed %u\n", size, state->nbits, state->seed);
return state;
}
void jenkins_state_destroy(jenkins_state_t *state)
{
free(state);
}
uint32 jenkins_hash(jenkins_state_t *state, const char *k, uint32 keylen)
{
uint32 a, b, c;
uint32 len, length;
/* Set up the internal state */
length = keylen;
len = length;
a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
c = state->seed; /* the previous hash value - seed in our case */
/*---------------------------------------- handle most of the key */
while (len >= 12)
{
a += (k[0] +((uint32)k[1]<<8) +((uint32)k[2]<<16) +((uint32)k[3]<<24));
b += (k[4] +((uint32)k[5]<<8) +((uint32)k[6]<<16) +((uint32)k[7]<<24));
c += (k[8] +((uint32)k[9]<<8) +((uint32)k[10]<<16)+((uint32)k[11]<<24));
mix(a,b,c);
k += 12; len -= 12;
}
/*------------------------------------- handle the last 11 bytes */
c += length;
switch(len) /* all the case statements fall through */
{
case 11:
c +=((uint32)k[10]<<24);
case 10:
c +=((uint32)k[9]<<16);
case 9 :
c +=((uint32)k[8]<<8);
/* the first byte of c is reserved for the length */
case 8 :
b +=((uint32)k[7]<<24);
case 7 :
b +=((uint32)k[6]<<16);
case 6 :
b +=((uint32)k[5]<<8);
case 5 :
b +=k[4];
case 4 :
a +=((uint32)k[3]<<24);
case 3 :
a +=((uint32)k[2]<<16);
case 2 :
a +=((uint32)k[1]<<8);
case 1 :
a +=k[0];
/* case 0: nothing left to add */
}
mix(a,b,c);
/*-------------------------------------------- report the result */
//c = (c & hashmask(state->size));
//c = (c >= state->size) ? c ^ state->size: c;
//state->last_hash = c; Do not update last_hash because we use a fixed
//seed
return c;
}
void jenkins_state_dump(jenkins_state_t *state, char **buf, uint32 *buflen)
{
uint32 nseed = htonl(state->seed);
uint32 nnbits = htonl(state->nbits);
uint32 nsize = htonl(state->size);
*buflen = sizeof(uint32)*3;
*buf = malloc(*buflen);
if (!*buf)
{
*buflen = UINT_MAX;
return;
}
memcpy(*buf, &nseed, sizeof(uint32));
memcpy(*buf + sizeof(uint32), &nnbits, sizeof(uint32));
memcpy(*buf + sizeof(uint32)*2, &nsize, sizeof(uint32));
DEBUGP("Dumped jenkins state with seed %u\n", state->seed);
return;
}
jenkins_state_t *jenkins_state_load(const char *buf, uint32 buflen)
{
jenkins_state_t *state = (jenkins_state_t *)malloc(sizeof(jenkins_state_t));
state->seed = ntohl(*(uint32 *)buf);
state->nbits = ntohl(*(((uint32 *)buf) + 1));
state->size = ntohl(*(((uint32 *)buf) + 2));
state->hashfunc = HASH_JENKINS;
DEBUGP("Loaded jenkins state with seed %u\n", state->seed);
return state;
}

20
src/jenkins_hash.h Normal file
View File

@ -0,0 +1,20 @@
#ifndef __JEKINS_HASH_H__
#define __JEKINS_HASH_H__
#include "hash.h"
typedef struct __jenkins_state_t
{
CMPH_HASH hashfunc;
uint32 seed;
uint32 nbits;
uint32 size;
} jenkins_state_t;
jenkins_state_t *jenkins_state_new(uint32 size); //size of hash table
uint32 jenkins_hash(jenkins_state_t *state, const char *k, uint32 keylen);
void jenkins_state_dump(jenkins_state_t *state, char **buf, uint32 *buflen);
jenkins_state_t *jenkins_state_load(const char *buf, uint32 buflen);
void jenkins_state_destroy(jenkins_state_t *state);
#endif

282
src/main.c Normal file
View File

@ -0,0 +1,282 @@
#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <time.h>
#include <limits.h>
#include <assert.h>
#include "cmph.h"
#include "hash.h"
#include "../config.h"
void usage(const char *prg)
{
fprintf(stderr, "usage: %s [-v] [-h] [-V] [-g [-s seed] ] [-m file.mph] [-a algorithm] keysfile\n", prg);
}
void usage_long(const char *prg)
{
uint32 i;
fprintf(stderr, "usage: %s [-v] [-h] [-V] [-g [-s seed] ] [-m file.mph] [-a algorithm] keysfile\n", prg);
fprintf(stderr, "Minimum perfect hashing tool\n\n");
fprintf(stderr, " -h\t print this help message\n");
fprintf(stderr, " -a\t algorithm - valid values are\n");
for (i = 0; i < MPH_COUNT; ++i) fprintf(stderr, " \t * %s\n", mph_names[i]);
fprintf(stderr, " -f\t hash function (may be used multiple times) - valid values are\n");
for (i = 0; i < HASH_COUNT; ++i) fprintf(stderr, " \t * %s\n", hash_names[i]);
fprintf(stderr, " -V\t print version number and exit\n");
fprintf(stderr, " -v\t increase verbosity (may be used multiple times)\n");
fprintf(stderr, " -g\t generation mode\n");
fprintf(stderr, " -s\t random seed\n");
fprintf(stderr, " -m\t minimum perfect hash function file \n");
fprintf(stderr, " keysfile\t line separated file with keys\n");
}
static int key_read(void *data, char **key, uint32 *keylen)
{
FILE *fd = (FILE *)data;
*key = NULL;
*keylen = 0;
while(1)
{
char buf[BUFSIZ];
char *c = fgets(buf, BUFSIZ, fd);
if (c == NULL) return -1;
if (feof(fd)) return -1;
*key = (char *)realloc(*key, *keylen + strlen(buf) + 1);
memcpy(*key + *keylen, buf, strlen(buf));
*keylen += strlen(buf);
if (buf[strlen(buf) - 1] != '\n') continue;
break;
}
if ((*keylen) && (*key)[*keylen - 1] == '\n')
{
(*key)[(*keylen) - 1] = 0;
--(*keylen);
}
return *keylen;
}
static void key_dispose(void *data, char *key, uint32 keylen)
{
free(key);
}
static void key_rewind(void *data)
{
FILE *fd = (FILE *)data;
rewind(fd);
}
static uint32 count_keys(FILE *fd)
{
uint32 count = 0;
rewind(fd);
while(1)
{
char buf[BUFSIZ];
char *c = fgets(buf, BUFSIZ, fd);
if (feof(fd)) break;
if (buf[strlen(buf) - 1] != '\n') continue;
++count;
}
rewind(fd);
return count;
}
int main(int argc, char **argv)
{
char verbosity = 0;
char generate = 0;
char *mphf_file = NULL;
FILE *mphf_fd = stdout;
const char *keys_file = NULL;
FILE *keys_fd;
uint32 seed = UINT_MAX;
CMPH_HASH *hashes = NULL;
uint32 nhashes = 0;
uint32 i;
MPH_ALGO mph_algo = MPH_CZECH;
mph_t *mph = NULL;
mphf_t *mphf = NULL;
key_source_t source;
while (1)
{
char c = getopt(argc, argv, "hVva:f:gm:s:");
if (c == -1) break;
switch (c)
{
case 's':
{
char *cptr;
seed = strtoul(optarg, &cptr, 10);
if(*cptr != 0) {
fprintf(stderr, "Invalid seed %s\n", optarg);
exit(1);
}
}
break;
case 'g':
generate = 1;
break;
case 'm':
mphf_file = strdup(optarg);
break;
case 'v':
++verbosity;
break;
case 'V':
printf("%s\n", VERSION);
return 0;
case 'h':
usage_long(argv[0]);
return 0;
case 'a':
{
char valid = 0;
for (i = 0; i < MPH_COUNT; ++i)
{
if (strcmp(mph_names[i], optarg) == 0)
{
mph_algo = i;
valid = 1;
break;
}
}
if (!valid)
{
fprintf(stderr, "Invalid mph algorithm: %s\n", optarg);
return -1;
}
}
break;
case 'f':
{
char valid = 0;
for (i = 0; i < HASH_COUNT; ++i)
{
if (strcmp(hash_names[i], optarg) == 0)
{
hashes = (CMPH_HASH *)realloc(hashes, sizeof(CMPH_HASH) * ( nhashes + 2 ));
hashes[nhashes] = i;
hashes[nhashes + 1] = HASH_COUNT;
++nhashes;
valid = 1;
break;
}
}
if (!valid)
{
fprintf(stderr, "Invalid hash function: %s\n", optarg);
return -1;
}
}
break;
default:
usage(argv[0]);
return 1;
}
}
if (optind != argc - 1)
{
usage(argv[0]);
return 1;
}
keys_file = argv[optind];
if (seed == UINT_MAX) seed = time(NULL);
srand(seed);
if (mphf_file == NULL)
{
mphf_file = (char *)malloc(strlen(keys_file) + 5);
memcpy(mphf_file, keys_file, strlen(keys_file));
memcpy(mphf_file + strlen(keys_file), ".mph\0", 5);
}
keys_fd = fopen(keys_file, "r");
if (keys_fd == NULL)
{
fprintf(stderr, "Unable to open file %s: %s\n", keys_file, strerror(errno));
return -1;
}
source.data = (void *)keys_fd;
source.nkeys = count_keys(keys_fd);
source.read = key_read;
source.dispose = key_dispose;
source.rewind = key_rewind;
if (generate)
{
//Create mphf
mph = mph_new(mph_algo, &source);
if (nhashes) mph_set_hashfuncs(mph, hashes);
mph_set_verbosity(mph, verbosity);
mphf = mph_create(mph);
if (mphf == NULL)
{
fprintf(stderr, "Unable to create minimum perfect hashing function\n");
mph_destroy(mph);
free(mphf_file);
return -1;
}
mphf_fd = fopen(mphf_file, "w");
if (mphf_fd == NULL)
{
fprintf(stderr, "Unable to open output file %s: %s\n", mphf_file, strerror(errno));
free(mphf_file);
return -1;
}
mphf_dump(mphf, mphf_fd);
mphf_destroy(mphf);
fclose(mphf_fd);
}
else
{
uint8 * hashtable = NULL;
mphf_fd = fopen(mphf_file, "r");
if (mphf_fd == NULL)
{
fprintf(stderr, "Unable to open input file %s: %s\n", mphf_file, strerror(errno));
free(mphf_file);
return -1;
}
mphf = mphf_load(mphf_fd);
fclose(mphf_fd);
if (!mphf)
{
fprintf(stderr, "Unable to parser input file %s\n", mphf_file);
free(mphf_file);
return -1;
}
hashtable = (uint8*)malloc(source.nkeys*sizeof(uint8));
memset(hashtable, 0, source.nkeys);
//check all keys
for (i = 0; i < source.nkeys; ++i)
{
uint32 h;
char *buf;
uint32 buflen = 0;
source.read(source.data, &buf, &buflen);
h = mphf_search(mphf, buf, buflen);
if(hashtable[h])fprintf(stderr, "collision: %u\n",h);
assert(hashtable[h]==0);
hashtable[h] = 1;
if (verbosity)
{
printf("%s -> %u\n", buf, h);
}
source.dispose(source.data, buf, buflen);
}
mphf_destroy(mphf);
free(hashtable);
}
fclose(keys_fd);
free(mphf_file);
return 0;
}

42
src/sdbm_hash.c Normal file
View File

@ -0,0 +1,42 @@
#include "sdbm_hash.h"
#include <stdlib.h>
sdbm_state_t *sdbm_state_new()
{
sdbm_state_t *state = (sdbm_state_t *)malloc(sizeof(sdbm_state_t));
state->hashfunc = HASH_SDBM;
return state;
}
void sdbm_state_destroy(sdbm_state_t *state)
{
free(state);
}
uint32 sdbm_hash(sdbm_state_t *state, const char *k, uint32 keylen)
{
register unsigned int hash = 0;
const unsigned char *ptr = k;
int i = 0;
while(i < keylen) {
hash = *ptr + (hash << 6) + (hash << 16) - hash;
++ptr, ++i;
}
return hash;
}
void sdbm_state_dump(sdbm_state_t *state, char **buf, uint32 *buflen)
{
*buf = NULL;
*buflen = 0;
return;
}
sdbm_state_t *sdbm_state_load(const char *buf, uint32 buflen)
{
sdbm_state_t *state = (sdbm_state_t *)malloc(sizeof(sdbm_state_t));
state->hashfunc = HASH_SDBM;
return state;
}

17
src/sdbm_hash.h Normal file
View File

@ -0,0 +1,17 @@
#ifndef __SDBM_HASH_H__
#define __SDBM_HASH_H__
#include "hash.h"
typedef struct __sdbm_state_t
{
CMPH_HASH hashfunc;
} sdbm_state_t;
sdbm_state_t *sdbm_state_new();
uint32 sdbm_hash(sdbm_state_t *state, const char *k, uint32 keylen);
void sdbm_state_dump(sdbm_state_t *state, char **buf, uint32 *buflen);
sdbm_state_t *sdbm_state_load(const char *buf, uint32 buflen);
void sdbm_state_destroy(sdbm_state_t *state);
#endif

49
src/vqueue.c Normal file
View File

@ -0,0 +1,49 @@
#include "vqueue.h"
#include <stdio.h>
#include <assert.h>
struct __vqueue_t
{
uint32 * values;
uint32 beg, end, capacity;
};
vqueue_t * vqueue_new(uint32 capacity)
{
vqueue_t *q = (vqueue_t *)malloc(sizeof(vqueue_t));
assert(q);
q->values = (uint32 *)calloc(capacity+1, sizeof(uint32));
q->beg = q->end = 0;
q->capacity = capacity+1;
return q;
}
uint8 vqueue_is_empty(vqueue_t * q)
{
return (q->beg == q->end);
}
void vqueue_insert(vqueue_t * q, uint32 val)
{
assert((q->end + 1)%q->capacity != q->beg); // Is queue full?
q->end = (q->end + 1)%q->capacity;
q->values[q->end] = val;
}
uint32 vqueue_remove(vqueue_t * q)
{
assert(!vqueue_is_empty(q)); // Is queue empty?
q->beg = (q->beg + 1)%q->capacity;
return q->values[q->beg];
}
void vqueue_print(vqueue_t * q)
{
uint32 i;
for (i = q->beg; i != q->end; i = (i + 1)%q->capacity)
fprintf(stderr, "%u\n", q->values[(i + 1)%q->capacity]);
}
void vqueue_destroy(vqueue_t *q)
{
free(q->values); q->values = NULL;
}

18
src/vqueue.h Normal file
View File

@ -0,0 +1,18 @@
#ifndef __CMPH_VQUEUE_H__
#define __CMPH_VQUEUE_H__
#include "cmph_types.h"
typedef struct __vqueue_t vqueue_t;
vqueue_t * vqueue_new(uint32 capacity);
uint8 vqueue_is_empty(vqueue_t * q);
void vqueue_insert(vqueue_t * q, uint32 val);
uint32 vqueue_remove(vqueue_t * q);
void vqueue_print(vqueue_t * q);
void vqueue_destroy(vqueue_t * q);
#endif

79
src/vstack.c Normal file
View File

@ -0,0 +1,79 @@
#include "vstack.h"
#include <stdlib.h>
#include <assert.h>
//#define DEBUG
#include "debug.h"
struct __vstack_t
{
uint32 pointer;
uint32 *values;
uint32 capacity;
};
vstack_t *vstack_new()
{
vstack_t *stack = (vstack_t *)malloc(sizeof(vstack_t));
assert(stack);
stack->pointer = 0;
stack->values = NULL;
stack->capacity = 0;
return stack;
}
void vstack_destroy(vstack_t *stack)
{
assert(stack);
free(stack->values);
free(stack);
}
void vstack_push(vstack_t *stack, uint32 val)
{
assert(stack);
vstack_reserve(stack, stack->pointer + 1);
stack->values[stack->pointer] = val;
++(stack->pointer);
}
void vstack_pop(vstack_t *stack)
{
assert(stack);
assert(stack->pointer > 0);
--(stack->pointer);
}
uint32 vstack_top(vstack_t *stack)
{
assert(stack);
assert(stack->pointer > 0);
return stack->values[(stack->pointer - 1)];
}
int vstack_empty(vstack_t *stack)
{
assert(stack);
return stack->pointer == 0;
}
uint32 vstack_size(vstack_t *stack)
{
return stack->pointer;
}
void vstack_reserve(vstack_t *stack, uint32 size)
{
assert(stack);
if (stack->capacity < size)
{
uint32 new_capacity = stack->capacity + 1;
DEBUGP("Increasing current capacity %u to %u\n", stack->capacity, size);
while (new_capacity < size)
{
new_capacity *= 2;
}
stack->values = (uint32 *)realloc(stack->values, sizeof(uint32)*new_capacity);
assert(stack->values);
stack->capacity = new_capacity;
DEBUGP("Increased\n");
}
}

18
src/vstack.h Normal file
View File

@ -0,0 +1,18 @@
#ifndef __CMPH_VSTACK_H__
#define __CMPH_VSTACK_H__
#include "cmph_types.h"
typedef struct __vstack_t vstack_t;
vstack_t *vstack_new();
void vstack_destroy(vstack_t *stack);
void vstack_push(vstack_t *stack, uint32 val);
uint32 vstack_top(vstack_t *stack);
void vstack_pop(vstack_t *stack);
int vstack_empty(vstack_t *stack);
uint32 vstack_size(vstack_t *stack);
void vstack_reserve(vstack_t *stack, uint32 size);
#endif

4
tests/Makefile.am Normal file
View File

@ -0,0 +1,4 @@
noinst_PROGRAMS = graph_tests
graph_tests_SOURCES = graph_tests.c
graph_tests_LDADD = ../src/libcmph.la

67
tests/graph_tests.c Normal file
View File

@ -0,0 +1,67 @@
#include "../src/graph.h"
#define DEBUG
#include "../src/debug.h"
int main(int argc, char **argv)
{
graph_iterator_t it;
uint32 i, neighbor;
graph_t *g = graph_new(5, 10);
fprintf(stderr, "Building random graph\n");
for (i = 0; i < 10; ++i)
{
uint32 v1 = i % 5;
uint32 v2 = (i*2) % 5;
if (v1 == v2) continue;
graph_add_edge(g, v1, v2);
DEBUGP("Added edge %u %u\n", v1, v2);
}
graph_print(g);
graph_del_edge(g, 4, 3);
graph_print(g);
graph_clear_edges(g);
graph_print(g);
graph_destroy(g);
fprintf(stderr, "Building cyclic graph\n");
g = graph_new(4, 5);
graph_add_edge(g, 0, 3);
graph_add_edge(g, 0, 1);
graph_add_edge(g, 1, 2);
graph_add_edge(g, 2, 0);
if (!graph_is_cyclic(g))
{
return 1;
}
graph_destroy(g);
fprintf(stderr, "Building non-cyclic graph\n");
g = graph_new(5, 4);
graph_add_edge(g, 0, 1);
graph_add_edge(g, 1, 2);
graph_add_edge(g, 2, 3);
graph_add_edge(g, 3, 4);
if (graph_is_cyclic(g))
{
return 1;
}
fprintf(stderr, "Checking neighbors iterator\n");
it = graph_neighbors_it(g, 1);
neighbor = graph_next_neighbor(g, &it);
DEBUGP("Neighbor is %u\n", neighbor);
if (neighbor != 0 && neighbor != 2) return 1;
neighbor = graph_next_neighbor(g, &it);
DEBUGP("Neighbor is %u\n", neighbor);
if (neighbor != 0 && neighbor != 2) return 1;
neighbor = graph_next_neighbor(g, &it);
DEBUGP("Neighbor is %u\n", neighbor);
if (neighbor != GRAPH_NO_NEIGHBOR) return 1;
graph_destroy(g);
return 0;
}