Merge pull request #14744 from ziglang/std.io.poll

introduce std.io.poll
This commit is contained in:
Andrew Kelley
2023-03-01 18:08:43 -05:00
committed by GitHub
3 changed files with 280 additions and 184 deletions

View File

@@ -197,6 +197,19 @@ pub const ChildProcess = struct {
stderr: []u8,
};
fn fifoToOwnedArrayList(fifo: *std.io.PollFifo) std.ArrayList(u8) {
if (fifo.head > 0) {
std.mem.copy(u8, fifo.buf[0..fifo.count], fifo.buf[fifo.head .. fifo.head + fifo.count]);
}
const result = std.ArrayList(u8){
.items = fifo.buf[0..fifo.count],
.capacity = fifo.buf.len,
.allocator = fifo.allocator,
};
fifo.* = std.io.PollFifo.init(fifo.allocator);
return result;
}
/// Collect the output from the process's stdout and stderr. Will return once all output
/// has been collected. This does not mean that the process has ended. `wait` should still
/// be called to wait for and clean up the process.
@@ -210,195 +223,27 @@ pub const ChildProcess = struct {
) !void {
debug.assert(child.stdout_behavior == .Pipe);
debug.assert(child.stderr_behavior == .Pipe);
if (builtin.os.tag == .haiku) {
const stdout_in = child.stdout.?.reader();
const stderr_in = child.stderr.?.reader();
try stdout_in.readAllArrayList(stdout, max_output_bytes);
try stderr_in.readAllArrayList(stderr, max_output_bytes);
} else if (builtin.os.tag == .windows) {
try collectOutputWindows(child, stdout, stderr, max_output_bytes);
} else {
try collectOutputPosix(child, stdout, stderr, max_output_bytes);
}
}
// we could make this work with multiple allocators but YAGNI
if (stdout.allocator.ptr != stderr.allocator.ptr or
stdout.allocator.vtable != stderr.allocator.vtable)
@panic("ChildProcess.collectOutput only supports 1 allocator");
fn collectOutputPosix(
child: ChildProcess,
stdout: *std.ArrayList(u8),
stderr: *std.ArrayList(u8),
max_output_bytes: usize,
) !void {
var poll_fds = [_]os.pollfd{
.{ .fd = child.stdout.?.handle, .events = os.POLL.IN, .revents = undefined },
.{ .fd = child.stderr.?.handle, .events = os.POLL.IN, .revents = undefined },
};
var poller = std.io.poll(stdout.allocator, enum { stdout, stderr }, .{
.stdout = child.stdout.?,
.stderr = child.stderr.?,
});
defer poller.deinit();
var dead_fds: usize = 0;
// We ask for ensureTotalCapacity with this much extra space. This has more of an
// effect on small reads because once the reads start to get larger the amount
// of space an ArrayList will allocate grows exponentially.
const bump_amt = 512;
const err_mask = os.POLL.ERR | os.POLL.NVAL | os.POLL.HUP;
while (dead_fds < poll_fds.len) {
const events = try os.poll(&poll_fds, std.math.maxInt(i32));
if (events == 0) continue;
var remove_stdout = false;
var remove_stderr = false;
// Try reading whatever is available before checking the error
// conditions.
// It's still possible to read after a POLL.HUP is received, always
// check if there's some data waiting to be read first.
if (poll_fds[0].revents & os.POLL.IN != 0) {
// stdout is ready.
const new_capacity = std.math.min(stdout.items.len + bump_amt, max_output_bytes);
try stdout.ensureTotalCapacity(new_capacity);
const buf = stdout.unusedCapacitySlice();
if (buf.len == 0) return error.StdoutStreamTooLong;
const nread = try os.read(poll_fds[0].fd, buf);
stdout.items.len += nread;
// Remove the fd when the EOF condition is met.
remove_stdout = nread == 0;
} else {
remove_stdout = poll_fds[0].revents & err_mask != 0;
}
if (poll_fds[1].revents & os.POLL.IN != 0) {
// stderr is ready.
const new_capacity = std.math.min(stderr.items.len + bump_amt, max_output_bytes);
try stderr.ensureTotalCapacity(new_capacity);
const buf = stderr.unusedCapacitySlice();
if (buf.len == 0) return error.StderrStreamTooLong;
const nread = try os.read(poll_fds[1].fd, buf);
stderr.items.len += nread;
// Remove the fd when the EOF condition is met.
remove_stderr = nread == 0;
} else {
remove_stderr = poll_fds[1].revents & err_mask != 0;
}
// Exclude the fds that signaled an error.
if (remove_stdout) {
poll_fds[0].fd = -1;
dead_fds += 1;
}
if (remove_stderr) {
poll_fds[1].fd = -1;
dead_fds += 1;
}
}
}
const WindowsAsyncReadResult = enum {
pending,
closed,
full,
};
fn windowsAsyncRead(
handle: windows.HANDLE,
overlapped: *windows.OVERLAPPED,
buf: *std.ArrayList(u8),
bump_amt: usize,
max_output_bytes: usize,
) !WindowsAsyncReadResult {
while (true) {
const new_capacity = std.math.min(buf.items.len + bump_amt, max_output_bytes);
try buf.ensureTotalCapacity(new_capacity);
const next_buf = buf.unusedCapacitySlice();
if (next_buf.len == 0) return .full;
var read_bytes: u32 = undefined;
const read_result = windows.kernel32.ReadFile(handle, next_buf.ptr, math.cast(u32, next_buf.len) orelse maxInt(u32), &read_bytes, overlapped);
if (read_result == 0) return switch (windows.kernel32.GetLastError()) {
.IO_PENDING => .pending,
.BROKEN_PIPE => .closed,
else => |err| windows.unexpectedError(err),
};
buf.items.len += read_bytes;
}
}
fn collectOutputWindows(child: ChildProcess, stdout: *std.ArrayList(u8), stderr: *std.ArrayList(u8), max_output_bytes: usize) !void {
const bump_amt = 512;
const outs = [_]*std.ArrayList(u8){
stdout,
stderr,
};
const handles = [_]windows.HANDLE{
child.stdout.?.handle,
child.stderr.?.handle,
};
var overlapped = [_]windows.OVERLAPPED{
mem.zeroes(windows.OVERLAPPED),
mem.zeroes(windows.OVERLAPPED),
};
var wait_objects: [2]windows.HANDLE = undefined;
var wait_object_count: u2 = 0;
// we need to cancel all pending IO before returning so our OVERLAPPED values don't go out of scope
defer for (wait_objects[0..wait_object_count]) |o| {
_ = windows.kernel32.CancelIo(o);
};
// Windows Async IO requires an initial call to ReadFile before waiting on the handle
for ([_]u1{ 0, 1 }) |i| {
switch (try windowsAsyncRead(handles[i], &overlapped[i], outs[i], bump_amt, max_output_bytes)) {
.pending => {
wait_objects[wait_object_count] = handles[i];
wait_object_count += 1;
},
.closed => {}, // don't add to the wait_objects list
.full => return if (i == 0) error.StdoutStreamTooLong else error.StderrStreamTooLong,
}
while (try poller.poll()) {
if (poller.fifo(.stdout).count > max_output_bytes)
return error.StdoutStreamTooLong;
if (poller.fifo(.stderr).count > max_output_bytes)
return error.StderrStreamTooLong;
}
while (wait_object_count > 0) {
const status = windows.kernel32.WaitForMultipleObjects(wait_object_count, &wait_objects, 0, windows.INFINITE);
if (status == windows.WAIT_FAILED) {
switch (windows.kernel32.GetLastError()) {
else => |err| return windows.unexpectedError(err),
}
}
if (status < windows.WAIT_OBJECT_0 or status > windows.WAIT_OBJECT_0 + wait_object_count - 1)
unreachable;
const wait_idx = status - windows.WAIT_OBJECT_0;
// this extra `i` index is needed to map the wait handle back to the stdout or stderr
// values since the wait_idx can change which handle it corresponds with
const i: u1 = if (wait_objects[wait_idx] == handles[0]) 0 else 1;
// remove completed event from the wait list
wait_object_count -= 1;
if (wait_idx == 0)
wait_objects[0] = wait_objects[1];
var read_bytes: u32 = undefined;
if (windows.kernel32.GetOverlappedResult(handles[i], &overlapped[i], &read_bytes, 0) == 0) {
switch (windows.kernel32.GetLastError()) {
.BROKEN_PIPE => continue,
else => |err| return windows.unexpectedError(err),
}
}
outs[i].items.len += read_bytes;
switch (try windowsAsyncRead(handles[i], &overlapped[i], outs[i], bump_amt, max_output_bytes)) {
.pending => {
wait_objects[wait_object_count] = handles[i];
wait_object_count += 1;
},
.closed => {}, // don't add to the wait_objects list
.full => return if (i == 0) error.StdoutStreamTooLong else error.StderrStreamTooLong,
}
}
stdout.* = fifoToOwnedArrayList(poller.fifo(.stdout));
stderr.* = fifoToOwnedArrayList(poller.fifo(.stderr));
}
/// Spawns a child process, waits for it, collecting stdout and stderr, and then returns.

View File

@@ -423,6 +423,7 @@ pub fn GeneralPurposeAllocator(comptime config: Config) type {
}
} else struct {};
/// Returns true if there were leaks; false otherwise.
pub fn deinit(self: *Self) bool {
const leaks = if (config.safety) self.detectLeaks() else false;
if (config.retain_metadata) {

View File

@@ -168,6 +168,256 @@ test "null_writer" {
null_writer.writeAll("yay" ** 10) catch |err| switch (err) {};
}
pub fn poll(
allocator: std.mem.Allocator,
comptime StreamEnum: type,
files: PollFiles(StreamEnum),
) Poller(StreamEnum) {
const enum_fields = @typeInfo(StreamEnum).Enum.fields;
var result: Poller(StreamEnum) = undefined;
if (builtin.os.tag == .windows) result.windows = .{
.first_read_done = false,
.overlapped = [1]os.windows.OVERLAPPED{
mem.zeroes(os.windows.OVERLAPPED),
} ** enum_fields.len,
.active = .{
.count = 0,
.handles_buf = undefined,
.stream_map = undefined,
},
};
inline for (0..enum_fields.len) |i| {
result.fifos[i] = .{
.allocator = allocator,
.buf = &.{},
.head = 0,
.count = 0,
};
if (builtin.os.tag == .windows) {
result.windows.active.handles_buf[i] = @field(files, enum_fields[i].name).handle;
} else {
result.poll_fds[i] = .{
.fd = @field(files, enum_fields[i].name).handle,
.events = os.POLL.IN,
.revents = undefined,
};
}
}
return result;
}
pub const PollFifo = std.fifo.LinearFifo(u8, .Dynamic);
pub fn Poller(comptime StreamEnum: type) type {
return struct {
const enum_fields = @typeInfo(StreamEnum).Enum.fields;
const PollFd = if (builtin.os.tag == .windows) void else std.os.pollfd;
fifos: [enum_fields.len]PollFifo,
poll_fds: [enum_fields.len]PollFd,
windows: if (builtin.os.tag == .windows) struct {
first_read_done: bool,
overlapped: [enum_fields.len]os.windows.OVERLAPPED,
active: struct {
count: math.IntFittingRange(0, enum_fields.len),
handles_buf: [enum_fields.len]os.windows.HANDLE,
stream_map: [enum_fields.len]StreamEnum,
pub fn removeAt(self: *@This(), index: u32) void {
std.debug.assert(index < self.count);
for (index + 1..self.count) |i| {
self.handles_buf[i - 1] = self.handles_buf[i];
self.stream_map[i - 1] = self.stream_map[i];
}
self.count -= 1;
}
},
} else void,
const Self = @This();
pub fn deinit(self: *Self) void {
if (builtin.os.tag == .windows) {
// cancel any pending IO to prevent clobbering OVERLAPPED value
for (self.windows.active.handles_buf[0..self.windows.active.count]) |h| {
_ = os.windows.kernel32.CancelIo(h);
}
}
inline for (&self.fifos) |*q| q.deinit();
self.* = undefined;
}
pub fn poll(self: *Self) !bool {
if (builtin.os.tag == .windows) {
return pollWindows(self);
} else {
return pollPosix(self);
}
}
pub inline fn fifo(self: *Self, comptime which: StreamEnum) *PollFifo {
return &self.fifos[@enumToInt(which)];
}
fn pollWindows(self: *Self) !bool {
const bump_amt = 512;
if (!self.windows.first_read_done) {
// Windows Async IO requires an initial call to ReadFile before waiting on the handle
for (0..enum_fields.len) |i| {
const handle = self.windows.active.handles_buf[i];
switch (try windowsAsyncRead(
handle,
&self.windows.overlapped[i],
&self.fifos[i],
bump_amt,
)) {
.pending => {
self.windows.active.handles_buf[self.windows.active.count] = handle;
self.windows.active.stream_map[self.windows.active.count] = @intToEnum(StreamEnum, i);
self.windows.active.count += 1;
},
.closed => {}, // don't add to the wait_objects list
}
}
self.windows.first_read_done = true;
}
while (true) {
if (self.windows.active.count == 0) return false;
const status = os.windows.kernel32.WaitForMultipleObjects(
self.windows.active.count,
&self.windows.active.handles_buf,
0,
os.windows.INFINITE,
);
if (status == os.windows.WAIT_FAILED)
return os.windows.unexpectedError(os.windows.kernel32.GetLastError());
if (status < os.windows.WAIT_OBJECT_0 or status > os.windows.WAIT_OBJECT_0 + enum_fields.len - 1)
unreachable;
const active_idx = status - os.windows.WAIT_OBJECT_0;
const handle = self.windows.active.handles_buf[active_idx];
const stream_idx = @enumToInt(self.windows.active.stream_map[active_idx]);
var read_bytes: u32 = undefined;
if (0 == os.windows.kernel32.GetOverlappedResult(
handle,
&self.windows.overlapped[stream_idx],
&read_bytes,
0,
)) switch (os.windows.kernel32.GetLastError()) {
.BROKEN_PIPE => {
self.windows.active.removeAt(active_idx);
continue;
},
else => |err| return os.windows.unexpectedError(err),
};
self.fifos[stream_idx].update(read_bytes);
switch (try windowsAsyncRead(
handle,
&self.windows.overlapped[stream_idx],
&self.fifos[stream_idx],
bump_amt,
)) {
.pending => {},
.closed => self.windows.active.removeAt(active_idx),
}
return true;
}
}
fn pollPosix(self: *Self) !bool {
// We ask for ensureUnusedCapacity with this much extra space. This
// has more of an effect on small reads because once the reads
// start to get larger the amount of space an ArrayList will
// allocate grows exponentially.
const bump_amt = 512;
const err_mask = os.POLL.ERR | os.POLL.NVAL | os.POLL.HUP;
const events_len = try os.poll(&self.poll_fds, std.math.maxInt(i32));
if (events_len == 0) {
for (self.poll_fds) |poll_fd| {
if (poll_fd.fd != -1) return true;
} else return false;
}
var keep_polling = false;
inline for (&self.poll_fds, &self.fifos) |*poll_fd, *q| {
// Try reading whatever is available before checking the error
// conditions.
// It's still possible to read after a POLL.HUP is received,
// always check if there's some data waiting to be read first.
if (poll_fd.revents & os.POLL.IN != 0) {
const buf = try q.writableWithSize(bump_amt);
const amt = try os.read(poll_fd.fd, buf);
q.update(amt);
if (amt == 0) {
// Remove the fd when the EOF condition is met.
poll_fd.fd = -1;
} else {
keep_polling = true;
}
} else if (poll_fd.revents & err_mask != 0) {
// Exclude the fds that signaled an error.
poll_fd.fd = -1;
} else if (poll_fd.fd != -1) {
keep_polling = true;
}
}
return keep_polling;
}
};
}
fn windowsAsyncRead(
handle: os.windows.HANDLE,
overlapped: *os.windows.OVERLAPPED,
fifo: *PollFifo,
bump_amt: usize,
) !enum { pending, closed } {
while (true) {
const buf = try fifo.writableWithSize(bump_amt);
var read_bytes: u32 = undefined;
const read_result = os.windows.kernel32.ReadFile(handle, buf.ptr, math.cast(u32, buf.len) orelse math.maxInt(u32), &read_bytes, overlapped);
if (read_result == 0) return switch (os.windows.kernel32.GetLastError()) {
.IO_PENDING => .pending,
.BROKEN_PIPE => .closed,
else => |err| os.windows.unexpectedError(err),
};
fifo.update(read_bytes);
}
}
/// Given an enum, returns a struct with fields of that enum, each field
/// representing an I/O stream for polling.
pub fn PollFiles(comptime StreamEnum: type) type {
const enum_fields = @typeInfo(StreamEnum).Enum.fields;
var struct_fields: [enum_fields.len]std.builtin.Type.StructField = undefined;
for (&struct_fields, enum_fields) |*struct_field, enum_field| {
struct_field.* = .{
.name = enum_field.name,
.type = fs.File,
.default_value = null,
.is_comptime = false,
.alignment = @alignOf(fs.File),
};
}
return @Type(.{ .Struct = .{
.layout = .Auto,
.fields = &struct_fields,
.decls = &.{},
.is_tuple = false,
} });
}
test {
_ = @import("io/bit_reader.zig");
_ = @import("io/bit_writer.zig");