Merge remote-tracking branch 'origin/master' into ast-memory-layout

This commit is contained in:
Andrew Kelley
2021-02-24 15:08:23 -07:00
43 changed files with 620 additions and 164 deletions

View File

@@ -310,7 +310,7 @@ pub fn main() !void {
<p>
The two arguments passed to the <code>stdout.print()</code> function, <code>"Hello, {s}!\n"</code>
and <code>.{"world"}</code>, are evaluated at {#link|compile-time|comptime#}. The code sample is
purposely written to show how to perform {#link|string|String Literals and Character Literals#}
purposely written to show how to perform {#link|string|String Literals and Unicode Code Point Literals#}
substitution in the <code>print</code> function. The curly-braces inside of the first argument
are substituted with the compile-time known value inside of the second argument
(known as an {#link|anonymous struct literal|Anonymous Struct Literals#}). The <code>\n</code>
@@ -682,18 +682,31 @@ pub fn main() void {
</div>
{#see_also|Optionals|undefined#}
{#header_close#}
{#header_open|String Literals and Character Literals#}
{#header_open|String Literals and Unicode Code Point Literals#}
<p>
String literals are single-item constant {#link|Pointers#} to null-terminated UTF-8 encoded byte arrays.
String literals are single-item constant {#link|Pointers#} to null-terminated byte arrays.
The type of string literals encodes both the length, and the fact that they are null-terminated,
and thus they can be {#link|coerced|Type Coercion#} to both {#link|Slices#} and
{#link|Null-Terminated Pointers|Sentinel-Terminated Pointers#}.
Dereferencing string literals converts them to {#link|Arrays#}.
</p>
<p>
Character literals have type {#syntax#}comptime_int{#endsyntax#}, the same as
The encoding of a string in Zig is de-facto assumed to be UTF-8.
Because Zig source code is {#link|UTF-8 encoded|Source Encoding#}, any non-ASCII bytes appearing within a string literal
in source code carry their UTF-8 meaning into the content of the string in the Zig program;
the bytes are not modified by the compiler.
However, it is possible to embbed non-UTF-8 bytes into a string literal using <code>\xNN</code> notation.
</p>
<p>
Unicode code point literals have type {#syntax#}comptime_int{#endsyntax#}, the same as
{#link|Integer Literals#}. All {#link|Escape Sequences#} are valid in both string literals
and character literals.
and Unicode code point literals.
</p>
<p>
In many other programming languages, a Unicode code point literal is called a "character literal".
However, there is <a href="https://unicode.org/glossary">no precise technical definition of a "character"</a>
in recent versions of the Unicode specification (as of Unicode 13.0).
In Zig, a Unicode code point literal corresponds to the Unicode definition of a code point.
</p>
{#code_begin|test#}
const expect = @import("std").testing.expect;
@@ -709,6 +722,7 @@ test "string literals" {
expect('\u{1f4a9}' == 128169);
expect('💯' == 128175);
expect(mem.eql(u8, "hello", "h\x65llo"));
expect("\xff"[0] == 0xff); // non-UTF-8 strings are possible with \xNN notation.
}
{#code_end#}
{#see_also|Arrays|Zig Test|Source Encoding#}
@@ -749,11 +763,11 @@ test "string literals" {
</tr>
<tr>
<td><code>\xNN</code></td>
<td>hexadecimal 8-bit character code (2 digits)</td>
<td>hexadecimal 8-bit byte value (2 digits)</td>
</tr>
<tr>
<td><code>\u{NNNNNN}</code></td>
<td>hexadecimal Unicode character code UTF-8 encoded (1 or more digits)</td>
<td>hexadecimal Unicode code point UTF-8 encoded (1 or more digits)</td>
</tr>
</table>
</div>
@@ -7414,7 +7428,7 @@ test "main" {
This function returns a compile time constant pointer to null-terminated,
fixed-size array with length equal to the byte count of the file given by
{#syntax#}path{#endsyntax#}. The contents of the array are the contents of the file.
This is equivalent to a {#link|string literal|String Literals and Character Literals#}
This is equivalent to a {#link|string literal|String Literals and Unicode Code Point Literals#}
with the file contents.
</p>
<p>

View File

@@ -25,6 +25,13 @@ terminal: ?std.fs.File = undefined,
/// Whether the terminal supports ANSI escape codes.
supports_ansi_escape_codes: bool = false,
/// If the terminal is "dumb", don't print output.
/// This can be useful if you don't want to print all
/// the stages of code generation if there are a lot.
/// You should not use it if the user should see output
/// for example showing the user what tests run.
dont_print_on_dumb: bool = false,
root: Node = undefined,
/// Keeps track of how much time has passed since the beginning.
@@ -141,6 +148,9 @@ pub fn start(self: *Progress, name: []const u8, estimated_total_items: usize) !*
self.supports_ansi_escape_codes = true;
} else if (std.builtin.os.tag == .windows and stderr.isTty()) {
self.terminal = stderr;
} else if (std.builtin.os.tag != .windows) {
// we are in a "dumb" terminal like in acme or writing to a file
self.terminal = stderr;
}
self.root = Node{
.context = self,
@@ -178,6 +188,8 @@ pub fn refresh(self: *Progress) void {
}
fn refreshWithHeldLock(self: *Progress) void {
const is_dumb = !self.supports_ansi_escape_codes and !(std.builtin.os.tag == .windows);
if (is_dumb and self.dont_print_on_dumb) return;
const file = self.terminal orelse return;
const prev_columns_written = self.columns_written;
@@ -226,7 +238,11 @@ fn refreshWithHeldLock(self: *Progress) void {
if (windows.kernel32.SetConsoleCursorPosition(file.handle, cursor_pos) != windows.TRUE)
unreachable;
} else unreachable;
} else {
// we are in a "dumb" terminal like in acme or writing to a file
self.output_buffer[end] = '\n';
end += 1;
}
self.columns_written = 0;
}

View File

@@ -13,7 +13,7 @@ cond: Condition = .{},
//! It is OK to initialize this field to any value.
permits: usize = 0,
const RwLock = @This();
const Semaphore = @This();
const std = @import("../std.zig");
const Mutex = std.Thread.Mutex;
const Condition = std.Thread.Condition;

View File

@@ -543,7 +543,7 @@ pub const Builder = struct {
.Scalar => |s| {
const n = std.fmt.parseInt(T, s, 10) catch |err| switch (err) {
error.Overflow => {
warn("-D{s} value {} cannot fit into type {s}.\n\n", .{ name, s, @typeName(T) });
warn("-D{s} value {s} cannot fit into type {s}.\n\n", .{ name, s, @typeName(T) });
self.markInvalidUserInput();
return null;
},
@@ -1308,6 +1308,12 @@ const BuildOptionArtifactArg = struct {
artifact: *LibExeObjStep,
};
const BuildOptionWriteFileArg = struct {
name: []const u8,
write_file: *WriteFileStep,
basename: []const u8,
};
pub const LibExeObjStep = struct {
step: Step,
builder: *Builder,
@@ -1355,6 +1361,7 @@ pub const LibExeObjStep = struct {
packages: ArrayList(Pkg),
build_options_contents: std.ArrayList(u8),
build_options_artifact_args: std.ArrayList(BuildOptionArtifactArg),
build_options_write_file_args: std.ArrayList(BuildOptionWriteFileArg),
object_src: []const u8,
@@ -1515,6 +1522,7 @@ pub const LibExeObjStep = struct {
.object_src = undefined,
.build_options_contents = std.ArrayList(u8).init(builder.allocator),
.build_options_artifact_args = std.ArrayList(BuildOptionArtifactArg).init(builder.allocator),
.build_options_write_file_args = std.ArrayList(BuildOptionWriteFileArg).init(builder.allocator),
.c_std = Builder.CStd.C99,
.override_lib_dir = null,
.main_pkg_path = null,
@@ -2008,6 +2016,23 @@ pub const LibExeObjStep = struct {
self.step.dependOn(&artifact.step);
}
/// The value is the path in the cache dir.
/// Adds a dependency automatically.
/// basename refers to the basename of the WriteFileStep
pub fn addBuildOptionWriteFile(
self: *LibExeObjStep,
name: []const u8,
write_file: *WriteFileStep,
basename: []const u8,
) void {
self.build_options_write_file_args.append(.{
.name = name,
.write_file = write_file,
.basename = basename,
}) catch unreachable;
self.step.dependOn(&write_file.step);
}
pub fn addSystemIncludeDir(self: *LibExeObjStep, path: []const u8) void {
self.include_dirs.append(IncludeDir{ .RawPathSystem = self.builder.dupe(path) }) catch unreachable;
}
@@ -2228,11 +2253,27 @@ pub const LibExeObjStep = struct {
}
}
if (self.build_options_contents.items.len > 0 or self.build_options_artifact_args.items.len > 0) {
// Render build artifact options at the last minute, now that the path is known.
if (self.build_options_contents.items.len > 0 or
self.build_options_artifact_args.items.len > 0 or
self.build_options_write_file_args.items.len > 0)
{
// Render build artifact and write file options at the last minute, now that the path is known.
//
// Note that pathFromRoot uses resolve path, so this will have
// correct behavior even if getOutputPath is already absolute.
for (self.build_options_artifact_args.items) |item| {
const out = self.build_options_contents.writer();
out.print("pub const {s}: []const u8 = \"{}\";\n", .{ item.name, std.zig.fmtEscapes(item.artifact.getOutputPath()) }) catch unreachable;
self.addBuildOption(
[]const u8,
item.name,
self.builder.pathFromRoot(item.artifact.getOutputPath()),
);
}
for (self.build_options_write_file_args.items) |item| {
self.addBuildOption(
[]const u8,
item.name,
self.builder.pathFromRoot(item.write_file.getOutputPath(item.basename)),
);
}
const build_options_file = try fs.path.join(

View File

@@ -100,6 +100,8 @@ pub extern "c" fn pwrite(fd: fd_t, buf: [*]const u8, nbyte: usize, offset: u64)
pub extern "c" fn mmap(addr: ?*align(page_size) c_void, len: usize, prot: c_uint, flags: c_uint, fd: fd_t, offset: u64) *c_void;
pub extern "c" fn munmap(addr: *align(page_size) c_void, len: usize) c_int;
pub extern "c" fn mprotect(addr: *align(page_size) c_void, len: usize, prot: c_uint) c_int;
pub extern "c" fn link(oldpath: [*:0]const u8, newpath: [*:0]const u8, flags: c_int) c_int;
pub extern "c" fn linkat(oldfd: fd_t, oldpath: [*:0]const u8, newfd: fd_t, newpath: [*:0]const u8, flags: c_int) c_int;
pub extern "c" fn unlink(path: [*:0]const u8) c_int;
pub extern "c" fn unlinkat(dirfd: fd_t, path: [*:0]const u8, flags: c_uint) c_int;
pub extern "c" fn getcwd(buf: [*]u8, size: usize) ?[*]u8;

View File

@@ -207,7 +207,7 @@ pub const Ed25519 = struct {
test "ed25519 key pair creation" {
var seed: [32]u8 = undefined;
try fmt.hexToBytes(seed[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
_ = try fmt.hexToBytes(seed[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
const key_pair = try Ed25519.KeyPair.create(seed);
var buf: [256]u8 = undefined;
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{key_pair.secret_key}), "8052030376D47112BE7F73ED7A019293DD12AD910B654455798B4667D73DE1662D6F7455D97B4A3A10D7293909D1A4F2058CB9A370E43FA8154BB280DB839083");
@@ -216,7 +216,7 @@ test "ed25519 key pair creation" {
test "ed25519 signature" {
var seed: [32]u8 = undefined;
try fmt.hexToBytes(seed[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
_ = try fmt.hexToBytes(seed[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
const key_pair = try Ed25519.KeyPair.create(seed);
const sig = try Ed25519.sign("test", key_pair, null);
@@ -339,11 +339,11 @@ test "ed25519 test vectors" {
};
for (entries) |entry, i| {
var msg: [entry.msg_hex.len / 2]u8 = undefined;
try fmt.hexToBytes(&msg, entry.msg_hex);
_ = try fmt.hexToBytes(&msg, entry.msg_hex);
var public_key: [32]u8 = undefined;
try fmt.hexToBytes(&public_key, entry.public_key_hex);
_ = try fmt.hexToBytes(&public_key, entry.public_key_hex);
var sig: [64]u8 = undefined;
try fmt.hexToBytes(&sig, entry.sig_hex);
_ = try fmt.hexToBytes(&sig, entry.sig_hex);
if (entry.expected) |error_type| {
std.testing.expectError(error_type, Ed25519.verify(sig, &msg, public_key));
} else {

View File

@@ -173,7 +173,7 @@ test "ristretto255" {
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{p.toBytes()}), "E2F2AE0A6ABC4E71A884A961C500515F58E30B6AA582DD8DB6A65945E08D2D76");
var r: [Ristretto255.encoded_length]u8 = undefined;
try fmt.hexToBytes(r[0..], "6a493210f7499cd17fecb510ae0cea23a110e8d5b901f8acadd3095c73a3b919");
_ = try fmt.hexToBytes(r[0..], "6a493210f7499cd17fecb510ae0cea23a110e8d5b901f8acadd3095c73a3b919");
var q = try Ristretto255.fromBytes(r);
q = q.dbl().add(p);
std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{X}", .{q.toBytes()}), "E882B131016B52C1D3337080187CF768423EFCCBB517BB495AB812C4160FF44E");

View File

@@ -85,8 +85,8 @@ const htest = @import("../test.zig");
test "x25519 public key calculation from secret key" {
var sk: [32]u8 = undefined;
var pk_expected: [32]u8 = undefined;
try fmt.hexToBytes(sk[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
try fmt.hexToBytes(pk_expected[0..], "f1814f0e8ff1043d8a44d25babff3cedcae6c22c3edaa48f857ae70de2baae50");
_ = try fmt.hexToBytes(sk[0..], "8052030376d47112be7f73ed7a019293dd12ad910b654455798b4667d73de166");
_ = try fmt.hexToBytes(pk_expected[0..], "f1814f0e8ff1043d8a44d25babff3cedcae6c22c3edaa48f857ae70de2baae50");
const pk_calculated = try X25519.recoverPublicKey(sk);
std.testing.expectEqual(pk_calculated, pk_expected);
}

View File

@@ -122,11 +122,11 @@ test "expand 128-bit key" {
var exp: [16]u8 = undefined;
for (enc.key_schedule.round_keys) |round_key, i| {
try std.fmt.hexToBytes(&exp, exp_enc[i]);
_ = try std.fmt.hexToBytes(&exp, exp_enc[i]);
testing.expectEqualSlices(u8, &exp, &round_key.toBytes());
}
for (enc.key_schedule.round_keys) |round_key, i| {
try std.fmt.hexToBytes(&exp, exp_dec[i]);
_ = try std.fmt.hexToBytes(&exp, exp_dec[i]);
testing.expectEqualSlices(u8, &exp, &round_key.toBytes());
}
}
@@ -144,11 +144,11 @@ test "expand 256-bit key" {
var exp: [16]u8 = undefined;
for (enc.key_schedule.round_keys) |round_key, i| {
try std.fmt.hexToBytes(&exp, exp_enc[i]);
_ = try std.fmt.hexToBytes(&exp, exp_enc[i]);
testing.expectEqualSlices(u8, &exp, &round_key.toBytes());
}
for (dec.key_schedule.round_keys) |round_key, i| {
try std.fmt.hexToBytes(&exp, exp_dec[i]);
_ = try std.fmt.hexToBytes(&exp, exp_dec[i]);
testing.expectEqualSlices(u8, &exp, &round_key.toBytes());
}
}

View File

@@ -663,7 +663,7 @@ fn testBlake3(hasher: *Blake3, input_len: usize, expected_hex: [262]u8) void {
// Compare to expected value
var expected_bytes: [expected_hex.len / 2]u8 = undefined;
fmt.hexToBytes(expected_bytes[0..], expected_hex[0..]) catch unreachable;
_ = fmt.hexToBytes(expected_bytes[0..], expected_hex[0..]) catch unreachable;
testing.expectEqual(actual_bytes, expected_bytes);
// Restore initial state

View File

@@ -270,7 +270,7 @@ pub fn hash(out: []u8, in: []const u8, options: Hash.Options) void {
test "hash" {
// a test vector (30) from NIST KAT submission.
var msg: [58 / 2]u8 = undefined;
try std.fmt.hexToBytes(&msg, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C");
_ = try std.fmt.hexToBytes(&msg, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C");
var md: [32]u8 = undefined;
hash(&md, &msg, .{});
htest.assertEqual("1C9A03DC6A5DDC5444CFC6F4B154CFF5CF081633B2CEA4D7D0AE7CCFED5AAA44", &md);
@@ -278,7 +278,7 @@ test "hash" {
test "hash test vector 17" {
var msg: [32 / 2]u8 = undefined;
try std.fmt.hexToBytes(&msg, "000102030405060708090A0B0C0D0E0F");
_ = try std.fmt.hexToBytes(&msg, "000102030405060708090A0B0C0D0E0F");
var md: [32]u8 = undefined;
hash(&md, &msg, .{});
htest.assertEqual("404C130AF1B9023A7908200919F690FFBB756D5176E056FFDE320016A37C7282", &md);
@@ -286,7 +286,7 @@ test "hash test vector 17" {
test "hash test vector 33" {
var msg: [32]u8 = undefined;
try std.fmt.hexToBytes(&msg, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F");
_ = try std.fmt.hexToBytes(&msg, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F");
var md: [32]u8 = undefined;
hash(&md, &msg, .{});
htest.assertEqual("A8F4FA28708BDA7EFB4C1914CA4AFA9E475B82D588D36504F87DBB0ED9AB3C4B", &md);
@@ -436,9 +436,9 @@ pub const Aead = struct {
test "cipher" {
var key: [32]u8 = undefined;
try std.fmt.hexToBytes(&key, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F");
_ = try std.fmt.hexToBytes(&key, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F");
var nonce: [16]u8 = undefined;
try std.fmt.hexToBytes(&nonce, "000102030405060708090A0B0C0D0E0F");
_ = try std.fmt.hexToBytes(&nonce, "000102030405060708090A0B0C0D0E0F");
{ // test vector (1) from NIST KAT submission.
const ad: [0]u8 = undefined;
const pt: [0]u8 = undefined;
@@ -456,7 +456,7 @@ test "cipher" {
{ // test vector (34) from NIST KAT submission.
const ad: [0]u8 = undefined;
var pt: [2 / 2]u8 = undefined;
try std.fmt.hexToBytes(&pt, "00");
_ = try std.fmt.hexToBytes(&pt, "00");
var ct: [pt.len]u8 = undefined;
var tag: [16]u8 = undefined;
@@ -470,9 +470,9 @@ test "cipher" {
}
{ // test vector (106) from NIST KAT submission.
var ad: [12 / 2]u8 = undefined;
try std.fmt.hexToBytes(&ad, "000102030405");
_ = try std.fmt.hexToBytes(&ad, "000102030405");
var pt: [6 / 2]u8 = undefined;
try std.fmt.hexToBytes(&pt, "000102");
_ = try std.fmt.hexToBytes(&pt, "000102");
var ct: [pt.len]u8 = undefined;
var tag: [16]u8 = undefined;
@@ -486,9 +486,9 @@ test "cipher" {
}
{ // test vector (790) from NIST KAT submission.
var ad: [60 / 2]u8 = undefined;
try std.fmt.hexToBytes(&ad, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D");
_ = try std.fmt.hexToBytes(&ad, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D");
var pt: [46 / 2]u8 = undefined;
try std.fmt.hexToBytes(&pt, "000102030405060708090A0B0C0D0E0F10111213141516");
_ = try std.fmt.hexToBytes(&pt, "000102030405060708090A0B0C0D0E0F10111213141516");
var ct: [pt.len]u8 = undefined;
var tag: [16]u8 = undefined;
@@ -503,7 +503,7 @@ test "cipher" {
{ // test vector (1057) from NIST KAT submission.
const ad: [0]u8 = undefined;
var pt: [64 / 2]u8 = undefined;
try std.fmt.hexToBytes(&pt, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F");
_ = try std.fmt.hexToBytes(&pt, "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F");
var ct: [pt.len]u8 = undefined;
var tag: [16]u8 = undefined;

View File

@@ -440,13 +440,11 @@ pub const Loop = struct {
.overlapped = ResumeNode.overlapped_init,
},
};
var need_to_delete = false;
var need_to_delete = true;
defer if (need_to_delete) self.linuxRemoveFd(fd);
suspend {
if (self.linuxAddFd(fd, &resume_node.base, flags)) |_| {
need_to_delete = true;
} else |err| switch (err) {
self.linuxAddFd(fd, &resume_node.base, flags) catch |err| switch (err) {
error.FileDescriptorNotRegistered => unreachable,
error.OperationCausesCircularLoop => unreachable,
error.FileDescriptorIncompatibleWithEpoll => unreachable,
@@ -456,6 +454,7 @@ pub const Loop = struct {
error.UserResourceLimitReached,
error.Unexpected,
=> {
need_to_delete = false;
// Fall back to a blocking poll(). Ideally this codepath is never hit, since
// epoll should be just fine. But this is better than incorrect behavior.
var poll_flags: i16 = 0;
@@ -479,7 +478,7 @@ pub const Loop = struct {
};
resume @frame();
},
}
};
}
}

View File

@@ -44,6 +44,8 @@ pub fn LinearFifo(
count: usize,
const Self = @This();
pub const Reader = std.io.Reader(*Self, error{}, readFn);
pub const Writer = std.io.Writer(*Self, error{OutOfMemory}, appendWrite);
// Type of Self argument for slice operations.
// If buffer is inline (Static) then we need to ensure we haven't
@@ -153,7 +155,7 @@ pub fn LinearFifo(
var start = self.head + offset;
if (start >= self.buf.len) {
start -= self.buf.len;
return self.buf[start .. self.count - offset];
return self.buf[start .. start + (self.count - offset)];
} else {
const end = math.min(self.head + self.count, self.buf.len);
return self.buf[start..end];
@@ -228,7 +230,7 @@ pub fn LinearFifo(
return self.read(dest);
}
pub fn reader(self: *Self) std.io.Reader(*Self, error{}, readFn) {
pub fn reader(self: *Self) Reader {
return .{ .context = self };
}
@@ -318,7 +320,7 @@ pub fn LinearFifo(
return bytes.len;
}
pub fn writer(self: *Self) std.io.Writer(*Self, error{OutOfMemory}, appendWrite) {
pub fn writer(self: *Self) Writer {
return .{ .context = self };
}
@@ -427,6 +429,8 @@ test "LinearFifo(u8, .Dynamic)" {
fifo.writeAssumeCapacity("6<chars<11");
testing.expectEqualSlices(u8, "HELLO6<char", fifo.readableSlice(0));
testing.expectEqualSlices(u8, "s<11", fifo.readableSlice(11));
testing.expectEqualSlices(u8, "11", fifo.readableSlice(13));
testing.expectEqualSlices(u8, "", fifo.readableSlice(15));
fifo.discard(11);
testing.expectEqualSlices(u8, "s<11", fifo.readableSlice(0));
fifo.discard(4);

View File

@@ -524,7 +524,7 @@ pub fn formatType(
if (actual_fmt.len == 0)
@compileError("cannot format array ref without a specifier (i.e. {s} or {*})");
if (info.child == u8) {
if (comptime mem.indexOfScalar(u8, "sxXeEzZ", actual_fmt[0]) != null) {
if (comptime mem.indexOfScalar(u8, "sxXeE", actual_fmt[0]) != null) {
return formatText(value, actual_fmt, options, writer);
}
}
@@ -542,7 +542,7 @@ pub fn formatType(
return formatType(mem.span(value), actual_fmt, options, writer, max_depth);
}
if (ptr_info.child == u8) {
if (comptime mem.indexOfScalar(u8, "sxXeEzZ", actual_fmt[0]) != null) {
if (comptime mem.indexOfScalar(u8, "sxXeE", actual_fmt[0]) != null) {
return formatText(mem.span(value), actual_fmt, options, writer);
}
}
@@ -555,7 +555,7 @@ pub fn formatType(
return writer.writeAll("{ ... }");
}
if (ptr_info.child == u8) {
if (comptime mem.indexOfScalar(u8, "sxXeEzZ", actual_fmt[0]) != null) {
if (comptime mem.indexOfScalar(u8, "sxXeE", actual_fmt[0]) != null) {
return formatText(value, actual_fmt, options, writer);
}
}
@@ -576,7 +576,7 @@ pub fn formatType(
return writer.writeAll("{ ... }");
}
if (info.child == u8) {
if (comptime mem.indexOfScalar(u8, "sxXeEzZ", actual_fmt[0]) != null) {
if (comptime mem.indexOfScalar(u8, "sxXeE", actual_fmt[0]) != null) {
return formatText(&value, actual_fmt, options, writer);
}
}
@@ -658,8 +658,6 @@ pub fn formatIntValue(
} else {
@compileError("Cannot print integer that is larger than 8 bits as a ascii");
}
} else if (comptime std.mem.eql(u8, fmt, "Z")) {
@compileError("specifier 'Z' has been deprecated, wrap your argument in std.zig.fmtEscapes instead");
} else if (comptime std.mem.eql(u8, fmt, "u")) {
if (@typeInfo(@TypeOf(int_value)).Int.bits <= 21) {
return formatUnicodeCodepoint(@as(u21, int_value), options, writer);
@@ -735,10 +733,6 @@ pub fn formatText(
}
}
return;
} else if (comptime std.mem.eql(u8, fmt, "z")) {
@compileError("specifier 'z' has been deprecated, wrap your argument in std.zig.fmtId instead");
} else if (comptime std.mem.eql(u8, fmt, "Z")) {
@compileError("specifier 'Z' has been deprecated, wrap your argument in std.zig.fmtEscapes instead");
} else {
@compileError("Unsupported format string '" ++ fmt ++ "' for type '" ++ @typeName(@TypeOf(value)) ++ "'");
}
@@ -1988,23 +1982,34 @@ test "bytes.hex" {
pub const trim = @compileError("deprecated; use std.mem.trim with std.ascii.spaces instead");
pub const isWhiteSpace = @compileError("deprecated; use std.ascii.isSpace instead");
pub fn hexToBytes(out: []u8, input: []const u8) !void {
if (out.len * 2 < input.len)
/// Decodes the sequence of bytes represented by the specified string of
/// hexadecimal characters.
/// Returns a slice of the output buffer containing the decoded bytes.
pub fn hexToBytes(out: []u8, input: []const u8) ![]u8 {
// Expect 0 or n pairs of hexadecimal digits.
if (input.len & 1 != 0)
return error.InvalidLength;
if (out.len * 2 < input.len)
return error.NoSpaceLeft;
var in_i: usize = 0;
while (in_i != input.len) : (in_i += 2) {
while (in_i < input.len) : (in_i += 2) {
const hi = try charToDigit(input[in_i], 16);
const lo = try charToDigit(input[in_i + 1], 16);
out[in_i / 2] = (hi << 4) | lo;
}
return out[0 .. in_i / 2];
}
test "hexToBytes" {
const test_hex_str = "909A312BB12ED1F819B3521AC4C1E896F2160507FFC1C8381E3B07BB16BD1706";
var pb: [32]u8 = undefined;
try hexToBytes(pb[0..], test_hex_str);
try expectFmt(test_hex_str, "{X}", .{pb});
var buf: [32]u8 = undefined;
try expectFmt("90" ** 32, "{X}", .{try hexToBytes(&buf, "90" ** 32)});
try expectFmt("ABCD", "{X}", .{try hexToBytes(&buf, "ABCD")});
try expectFmt("", "{X}", .{try hexToBytes(&buf, "")});
std.testing.expectError(error.InvalidCharacter, hexToBytes(&buf, "012Z"));
std.testing.expectError(error.InvalidLength, hexToBytes(&buf, "AAA"));
std.testing.expectError(error.NoSpaceLeft, hexToBytes(buf[0..1], "ABAB"));
}
test "formatIntValue with comptime_int" {

View File

@@ -2186,7 +2186,7 @@ pub const Walker = struct {
var top = &self.stack.items[self.stack.items.len - 1];
const dirname_len = top.dirname_len;
if (try top.dir_it.next()) |base| {
self.name_buffer.shrinkAndFree(dirname_len);
self.name_buffer.shrinkRetainingCapacity(dirname_len);
try self.name_buffer.append(path.sep);
try self.name_buffer.appendSlice(base.name);
if (base.kind == .Directory) {

View File

@@ -587,6 +587,7 @@ pub const File = struct {
}
/// See https://github.com/ziglang/zig/issues/7699
/// See equivalent function: `std.net.Stream.writev`.
pub fn writev(self: File, iovecs: []const os.iovec_const) WriteError!usize {
if (is_windows) {
// TODO improve this to use WriteFileScatter
@@ -605,6 +606,7 @@ pub const File = struct {
/// The `iovecs` parameter is mutable because this function needs to mutate the fields in
/// order to handle partial writes from the underlying OS layer.
/// See https://github.com/ziglang/zig/issues/7699
/// See equivalent function: `std.net.Stream.writevAll`.
pub fn writevAll(self: File, iovecs: []os.iovec_const) WriteError!void {
if (iovecs.len == 0) return;

View File

@@ -111,7 +111,7 @@ pub fn Reader(
delimiter: u8,
max_size: usize,
) !void {
array_list.shrinkAndFree(0);
array_list.shrinkRetainingCapacity(0);
while (true) {
var byte: u8 = try self.readByte();

View File

@@ -2018,7 +2018,7 @@ pub const Parser = struct {
pub fn reset(p: *Parser) void {
p.state = .Simple;
p.stack.shrinkAndFree(0);
p.stack.shrinkRetainingCapacity(0);
}
pub fn parse(p: *Parser, input: []const u8) !ValueTree {

View File

@@ -607,7 +607,7 @@ pub const Mutable = struct {
/// it will have the same length as it had when the function was called.
pub fn gcd(rma: *Mutable, x: Const, y: Const, limbs_buffer: *std.ArrayList(Limb)) !void {
const prev_len = limbs_buffer.items.len;
defer limbs_buffer.shrinkAndFree(prev_len);
defer limbs_buffer.shrinkRetainingCapacity(prev_len);
const x_copy = if (rma.limbs.ptr == x.limbs.ptr) blk: {
const start = limbs_buffer.items.len;
try limbs_buffer.appendSlice(x.limbs);

View File

@@ -1205,13 +1205,13 @@ fn linuxLookupNameFromDnsSearch(
var tok_it = mem.tokenize(search, " \t");
while (tok_it.next()) |tok| {
canon.shrinkAndFree(canon_name.len + 1);
canon.shrinkRetainingCapacity(canon_name.len + 1);
try canon.appendSlice(tok);
try linuxLookupNameFromDns(addrs, canon, canon.items, family, rc, port);
if (addrs.items.len != 0) return;
}
canon.shrinkAndFree(canon_name.len);
canon.shrinkRetainingCapacity(canon_name.len);
return linuxLookupNameFromDns(addrs, canon, name, family, rc, port);
}
@@ -1621,6 +1621,9 @@ pub const Stream = struct {
}
}
/// TODO in evented I/O mode, this implementation incorrectly uses the event loop's
/// file system thread instead of non-blocking. It needs to be reworked to properly
/// use non-blocking I/O.
pub fn write(self: Stream, buffer: []const u8) WriteError!usize {
if (std.Target.current.os.tag == .windows) {
return os.windows.WriteFile(self.handle, buffer, null, io.default_mode);
@@ -1632,6 +1635,40 @@ pub const Stream = struct {
return os.write(self.handle, buffer);
}
}
/// See https://github.com/ziglang/zig/issues/7699
/// See equivalent function: `std.fs.File.writev`.
pub fn writev(self: Stream, iovecs: []const os.iovec_const) WriteError!usize {
if (std.io.is_async) {
// TODO improve to actually take advantage of writev syscall, if available.
if (iovecs.len == 0) return 0;
const first_buffer = iovecs[0].iov_base[0..iovecs[0].iov_len];
try self.write(first_buffer);
return first_buffer.len;
} else {
return os.writev(self.handle, iovecs);
}
}
/// The `iovecs` parameter is mutable because this function needs to mutate the fields in
/// order to handle partial writes from the underlying OS layer.
/// See https://github.com/ziglang/zig/issues/7699
/// See equivalent function: `std.fs.File.writevAll`.
pub fn writevAll(self: Stream, iovecs: []os.iovec_const) WriteError!void {
if (iovecs.len == 0) return;
var i: usize = 0;
while (true) {
var amt = try self.writev(iovecs[i..]);
while (amt >= iovecs[i].iov_len) {
amt -= iovecs[i].iov_len;
i += 1;
if (i >= iovecs.len) return;
}
iovecs[i].iov_base += amt;
iovecs[i].iov_len -= amt;
}
}
};
pub const StreamServer = struct {

View File

@@ -1634,6 +1634,92 @@ pub fn symlinkatZ(target_path: [*:0]const u8, newdirfd: fd_t, sym_link_path: [*:
}
}
pub const LinkError = UnexpectedError || error{
AccessDenied,
DiskQuota,
PathAlreadyExists,
FileSystem,
SymLinkLoop,
LinkQuotaExceeded,
NameTooLong,
FileNotFound,
SystemResources,
NoSpaceLeft,
ReadOnlyFileSystem,
NotSameFileSystem,
};
pub fn linkZ(oldpath: [*:0]const u8, newpath: [*:0]const u8, flags: i32) LinkError!void {
switch (errno(system.link(oldpath, newpath, flags))) {
0 => return,
EACCES => return error.AccessDenied,
EDQUOT => return error.DiskQuota,
EEXIST => return error.PathAlreadyExists,
EFAULT => unreachable,
EIO => return error.FileSystem,
ELOOP => return error.SymLinkLoop,
EMLINK => return error.LinkQuotaExceeded,
ENAMETOOLONG => return error.NameTooLong,
ENOENT => return error.FileNotFound,
ENOMEM => return error.SystemResources,
ENOSPC => return error.NoSpaceLeft,
EPERM => return error.AccessDenied,
EROFS => return error.ReadOnlyFileSystem,
EXDEV => return error.NotSameFileSystem,
EINVAL => unreachable,
else => |err| return unexpectedErrno(err),
}
}
pub fn link(oldpath: []const u8, newpath: []const u8, flags: i32) LinkError!void {
const old = try toPosixPath(oldpath);
const new = try toPosixPath(newpath);
return try linkZ(&old, &new, flags);
}
pub const LinkatError = LinkError || error{NotDir};
pub fn linkatZ(
olddir: fd_t,
oldpath: [*:0]const u8,
newdir: fd_t,
newpath: [*:0]const u8,
flags: i32,
) LinkatError!void {
switch (errno(system.linkat(olddir, oldpath, newdir, newpath, flags))) {
0 => return,
EACCES => return error.AccessDenied,
EDQUOT => return error.DiskQuota,
EEXIST => return error.PathAlreadyExists,
EFAULT => unreachable,
EIO => return error.FileSystem,
ELOOP => return error.SymLinkLoop,
EMLINK => return error.LinkQuotaExceeded,
ENAMETOOLONG => return error.NameTooLong,
ENOENT => return error.FileNotFound,
ENOMEM => return error.SystemResources,
ENOSPC => return error.NoSpaceLeft,
ENOTDIR => return error.NotDir,
EPERM => return error.AccessDenied,
EROFS => return error.ReadOnlyFileSystem,
EXDEV => return error.NotSameFileSystem,
EINVAL => unreachable,
else => |err| return unexpectedErrno(err),
}
}
pub fn linkat(
olddir: fd_t,
oldpath: []const u8,
newdir: fd_t,
newpath: []const u8,
flags: i32,
) LinkatError!void {
const old = try toPosixPath(oldpath);
const new = try toPosixPath(newpath);
return try linkatZ(olddir, &old, newdir, &new, flags);
}
pub const UnlinkError = error{
FileNotFound,

View File

@@ -412,6 +412,7 @@ pub const SYS = extern enum(usize) {
pidfd_getfd = 438,
faccessat2 = 439,
process_madvise = 440,
epoll_pwait2 = 441,
breakpoint = 0x0f0001,
cacheflush = 0x0f0002,

View File

@@ -313,6 +313,7 @@ pub const SYS = extern enum(usize) {
pidfd_getfd = 438,
faccessat2 = 439,
process_madvise = 440,
epoll_pwait2 = 441,
_,
};

View File

@@ -448,6 +448,7 @@ pub const SYS = extern enum(usize) {
pidfd_getfd = 438,
faccessat2 = 439,
process_madvise = 440,
epoll_pwait2 = 441,
_,
};

View File

@@ -430,6 +430,7 @@ pub const SYS = extern enum(usize) {
pidfd_getfd = Linux + 438,
faccessat2 = Linux + 439,
process_madvise = Linux + 440,
epoll_pwait2 = Linux + 441,
_,
};

View File

@@ -409,6 +409,7 @@ pub const SYS = extern enum(usize) {
pidfd_getfd = 438,
faccessat2 = 439,
process_madvise = 440,
epoll_pwait2 = 441,
_,
};

View File

@@ -310,6 +310,7 @@ pub const SYS = extern enum(usize) {
pidfd_getfd = 438,
faccessat2 = 439,
process_madvise = 440,
epoll_pwait2 = 441,
_,
};

View File

@@ -387,6 +387,7 @@ pub const SYS = extern enum(usize) {
pidfd_getfd = 438,
faccessat2 = 439,
process_madvise = 440,
epoll_pwait2 = 441,
_,
};

View File

@@ -375,6 +375,7 @@ pub const SYS = extern enum(usize) {
pidfd_getfd = 438,
faccessat2 = 439,
process_madvise = 440,
epoll_pwait2 = 441,
_,
};

View File

@@ -634,6 +634,37 @@ pub fn tgkill(tgid: pid_t, tid: pid_t, sig: i32) usize {
return syscall2(.tgkill, @bitCast(usize, @as(isize, tgid)), @bitCast(usize, @as(isize, tid)), @bitCast(usize, @as(isize, sig)));
}
pub fn link(oldpath: [*:0]const u8, newpath: [*:0]const u8, flags: i32) usize {
if (@hasField(SYS, "link")) {
return syscall3(
.link,
@ptrToInt(oldpath),
@ptrToInt(newpath),
@bitCast(usize, @as(isize, flags)),
);
} else {
return syscall5(
.linkat,
@bitCast(usize, @as(isize, AT_FDCWD)),
@ptrToInt(oldpath),
@bitCast(usize, @as(isize, AT_FDCWD)),
@ptrToInt(newpath),
@bitCast(usize, @as(isize, flags)),
);
}
}
pub fn linkat(oldfd: fd_t, oldpath: [*:0]const u8, newfd: fd_t, newpath: [*:0]const u8, flags: i32) usize {
return syscall5(
.linkat,
@bitCast(usize, @as(isize, oldfd)),
@ptrToInt(oldpath),
@bitCast(usize, @as(isize, newfd)),
@ptrToInt(newpath),
@bitCast(usize, @as(isize, flags)),
);
}
pub fn unlink(path: [*:0]const u8) usize {
if (@hasField(SYS, "unlink")) {
return syscall1(.unlink, @ptrToInt(path));

View File

@@ -189,6 +189,75 @@ fn testReadlink(target_path: []const u8, symlink_path: []const u8) !void {
expect(mem.eql(u8, target_path, given));
}
test "link with relative paths" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var cwd = fs.cwd();
cwd.deleteFile("example.txt") catch {};
cwd.deleteFile("new.txt") catch {};
try cwd.writeFile("example.txt", "example");
try os.link("example.txt", "new.txt", 0);
const efd = try cwd.openFile("example.txt", .{});
defer efd.close();
const nfd = try cwd.openFile("new.txt", .{});
defer nfd.close();
{
const estat = try os.fstat(efd.handle);
const nstat = try os.fstat(nfd.handle);
testing.expectEqual(estat.ino, nstat.ino);
testing.expectEqual(@as(usize, 2), nstat.nlink);
}
try os.unlink("new.txt");
{
const estat = try os.fstat(efd.handle);
testing.expectEqual(@as(usize, 1), estat.nlink);
}
try cwd.deleteFile("example.txt");
}
test "linkat with different directories" {
if (builtin.os.tag != .linux) return error.SkipZigTest;
var cwd = fs.cwd();
var tmp = tmpDir(.{});
cwd.deleteFile("example.txt") catch {};
tmp.dir.deleteFile("new.txt") catch {};
try cwd.writeFile("example.txt", "example");
try os.linkat(cwd.fd, "example.txt", tmp.dir.fd, "new.txt", 0);
const efd = try cwd.openFile("example.txt", .{});
defer efd.close();
const nfd = try tmp.dir.openFile("new.txt", .{});
{
defer nfd.close();
const estat = try os.fstat(efd.handle);
const nstat = try os.fstat(nfd.handle);
testing.expectEqual(estat.ino, nstat.ino);
testing.expectEqual(@as(usize, 2), nstat.nlink);
}
try os.unlinkat(tmp.dir.fd, "new.txt", 0);
{
const estat = try os.fstat(efd.handle);
testing.expectEqual(@as(usize, 1), estat.nlink);
}
try cwd.deleteFile("example.txt");
}
test "fstatat" {
// enable when `fstat` and `fstatat` are implemented on Windows
if (builtin.os.tag == .windows) return error.SkipZigTest;

View File

@@ -3,6 +3,8 @@
// This file is part of [zig](https://ziglang.org/), which is MIT licensed.
// The MIT license requires this copyright notice to be included in all copies
// and substantial portions of the software.
const std = @import("../std.zig");
/// A protocol is an interface identified by a GUID.
pub const protocols = @import("uefi/protocols.zig");
@@ -33,10 +35,10 @@ pub const Guid = extern struct {
self: @This(),
comptime f: []const u8,
options: std.fmt.FormatOptions,
out_stream: anytype,
) Errors!void {
writer: anytype,
) !void {
if (f.len == 0) {
return std.fmt.format(out_stream, "{x:0>8}-{x:0>4}-{x:0>4}-{x:0>2}{x:0>2}-{x:0>12}", .{
return std.fmt.format(writer, "{x:0>8}-{x:0>4}-{x:0>4}-{x:0>2}{x:0>2}-{x:0>12}", .{
self.time_low,
self.time_mid,
self.time_high_and_version,
@@ -48,6 +50,15 @@ pub const Guid = extern struct {
@compileError("Unknown format character: '" ++ f ++ "'");
}
}
pub fn eql(a: std.os.uefi.Guid, b: std.os.uefi.Guid) bool {
return a.time_low == b.time_low and
a.time_mid == b.time_mid and
a.time_high_and_version == b.time_high_and_version and
a.clock_seq_high_and_reserved == b.clock_seq_high_and_reserved and
a.clock_seq_low == b.clock_seq_low and
std.mem.eql(u8, &a.node, &b.node);
}
};
/// An EFI Handle represents a collection of related interfaces.

View File

@@ -253,6 +253,20 @@ pub fn section(val: Section) u8 {
return @enumToInt(val);
}
/// The kind of the type when importing or exporting to/from the host environment
/// https://webassembly.github.io/spec/core/syntax/modules.html
pub const ExternalKind = enum(u8) {
function,
table,
memory,
global,
};
/// Returns the integer value of a given `ExternalKind`
pub fn externalKind(val: ExternalKind) u8 {
return @enumToInt(val);
}
// types
pub const element_type: u8 = 0x70;
pub const function_type: u8 = 0x60;

View File

@@ -648,7 +648,7 @@ test "zig fmt: struct literal 1 element" {
);
}
test "zig fmt: struct literal 1 element comma" {
test "zig fmt: Unicode code point literal larger than u8" {
try testCanonical(
\\test {
\\ const x = X{

View File

@@ -1535,7 +1535,7 @@ test "tokenizer - unknown length pointer and then c pointer" {
});
}
test "tokenizer - char literal with hex escape" {
test "tokenizer - code point literal with hex escape" {
testTokenize(
\\'\x1b'
, &.{.char_literal});
@@ -1544,7 +1544,7 @@ test "tokenizer - char literal with hex escape" {
, &.{ .invalid, .invalid });
}
test "tokenizer - char literal with unicode escapes" {
test "tokenizer - code point literal with unicode escapes" {
// Valid unicode escapes
testTokenize(
\\'\u{3}'
@@ -1594,7 +1594,7 @@ test "tokenizer - char literal with unicode escapes" {
, &.{ .invalid, .integer_literal, .invalid });
}
test "tokenizer - char literal with unicode code point" {
test "tokenizer - code point literal with unicode code point" {
testTokenize(
\\'💩'
, &.{.char_literal});

View File

@@ -317,7 +317,7 @@ pub const Manifest = struct {
cache_hash_file.stat.size = fmt.parseInt(u64, size, 10) catch return error.InvalidFormat;
cache_hash_file.stat.inode = fmt.parseInt(fs.File.INode, inode, 10) catch return error.InvalidFormat;
cache_hash_file.stat.mtime = fmt.parseInt(i64, mtime_nsec_str, 10) catch return error.InvalidFormat;
std.fmt.hexToBytes(&cache_hash_file.bin_digest, digest_str) catch return error.InvalidFormat;
_ = std.fmt.hexToBytes(&cache_hash_file.bin_digest, digest_str) catch return error.InvalidFormat;
if (file_path.len == 0) {
return error.InvalidFormat;

View File

@@ -645,7 +645,7 @@ pub fn create(gpa: *Allocator, options: InitOptions) !*Compilation {
};
const darwin_options: DarwinOptions = if (build_options.have_llvm and comptime std.Target.current.isDarwin()) outer: {
const opts: DarwinOptions = if (use_lld and options.is_native_os and options.target.isDarwin()) inner: {
const opts: DarwinOptions = if (use_lld and std.builtin.os.tag == .macos and options.target.isDarwin()) inner: {
// TODO Revisit this targeting versions lower than macOS 11 when LLVM 12 is out.
// See https://github.com/ziglang/zig/issues/6996
const at_least_big_sur = options.target.os.getVersionRange().semver.min.major >= 11;
@@ -1538,7 +1538,9 @@ pub fn getCompileLogOutput(self: *Compilation) []const u8 {
}
pub fn performAllTheWork(self: *Compilation) error{ TimerUnsupported, OutOfMemory }!void {
var progress: std.Progress = .{};
// If the terminal is dumb, we dont want to show the user all the
// output.
var progress: std.Progress = .{ .dont_print_on_dumb = true };
var main_progress_node = try progress.start("", 0);
defer main_progress_node.end();
if (self.color == .off) progress.terminal = null;

View File

@@ -944,7 +944,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
/// Copies a value to a register without tracking the register. The register is not considered
/// allocated. A second call to `copyToTmpRegister` may return the same register.
/// This can have a side effect of spilling instructions to the stack to free up a register.
fn copyToTmpRegister(self: *Self, src: usize, mcv: MCValue) !Register {
fn copyToTmpRegister(self: *Self, src: usize, ty: Type, mcv: MCValue) !Register {
const reg = self.findUnusedReg() orelse b: {
// We'll take over the first register. Move the instruction that was previously
// there to a stack allocation.
@@ -961,7 +961,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
break :b reg;
};
try self.genSetReg(src, reg, mcv);
try self.genSetReg(src, ty, reg, mcv);
return reg;
}
@@ -988,7 +988,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
break :b reg;
};
try self.genSetReg(reg_owner.src, reg, mcv);
try self.genSetReg(reg_owner.src, reg_owner.ty, reg, mcv);
return MCValue{ .register = reg };
}
@@ -1356,13 +1356,13 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
// Load immediate into register if it doesn't fit
// as an operand
break :blk Instruction.Operand.fromU32(@intCast(u32, imm)) orelse
Instruction.Operand.reg(try self.copyToTmpRegister(src, op2), Instruction.Operand.Shift.none);
Instruction.Operand.reg(try self.copyToTmpRegister(src, Type.initTag(.u32), op2), Instruction.Operand.Shift.none);
},
.register => |reg| Instruction.Operand.reg(reg, Instruction.Operand.Shift.none),
.stack_offset,
.embedded_in_code,
.memory,
=> Instruction.Operand.reg(try self.copyToTmpRegister(src, op2), Instruction.Operand.Shift.none),
=> Instruction.Operand.reg(try self.copyToTmpRegister(src, Type.initTag(.u32), op2), Instruction.Operand.Shift.none),
};
switch (op) {
@@ -1448,7 +1448,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
switch (src_mcv) {
.immediate => |imm| {
if (imm > math.maxInt(u31)) {
src_mcv = MCValue{ .register = try self.copyToTmpRegister(src_inst.src, src_mcv) };
src_mcv = MCValue{ .register = try self.copyToTmpRegister(src_inst.src, Type.initTag(.u64), src_mcv) };
}
},
else => {},
@@ -1479,7 +1479,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
.register => |dst_reg| {
switch (src_mcv) {
.none => unreachable,
.undef => try self.genSetReg(src, dst_reg, .undef),
.undef => try self.genSetReg(src, dst_ty, dst_reg, .undef),
.dead, .unreach => unreachable,
.ptr_stack_offset => unreachable,
.ptr_embedded_in_code => unreachable,
@@ -1689,7 +1689,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
switch (mc_arg) {
.none => continue,
.register => |reg| {
try self.genSetReg(arg.src, reg, arg_mcv);
try self.genSetReg(arg.src, arg.ty, reg, arg_mcv);
// TODO interact with the register allocator to mark the instruction as moved.
},
.stack_offset => {
@@ -1758,7 +1758,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
else
unreachable;
try self.genSetReg(inst.base.src, .ra, .{ .memory = got_addr });
try self.genSetReg(inst.base.src, Type.initTag(.usize), .ra, .{ .memory = got_addr });
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), Instruction.jalr(.ra, 0, .ra).toU32());
} else if (func_value.castTag(.extern_fn)) |_| {
return self.fail(inst.base.src, "TODO implement calling extern functions", .{});
@@ -1831,7 +1831,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
.compare_flags_signed => unreachable,
.compare_flags_unsigned => unreachable,
.register => |reg| {
try self.genSetReg(arg.src, reg, arg_mcv);
try self.genSetReg(arg.src, arg.ty, reg, arg_mcv);
// TODO interact with the register allocator to mark the instruction as moved.
},
.stack_offset => {
@@ -1859,7 +1859,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
else
unreachable;
try self.genSetReg(inst.base.src, .lr, .{ .memory = got_addr });
try self.genSetReg(inst.base.src, Type.initTag(.usize), .lr, .{ .memory = got_addr });
// TODO: add Instruction.supportedOn
// function for ARM
@@ -1894,7 +1894,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
.compare_flags_signed => unreachable,
.compare_flags_unsigned => unreachable,
.register => |reg| {
try self.genSetReg(arg.src, reg, arg_mcv);
try self.genSetReg(arg.src, arg.ty, reg, arg_mcv);
// TODO interact with the register allocator to mark the instruction as moved.
},
.stack_offset => {
@@ -1922,7 +1922,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
else
unreachable;
try self.genSetReg(inst.base.src, .x30, .{ .memory = got_addr });
try self.genSetReg(inst.base.src, Type.initTag(.usize), .x30, .{ .memory = got_addr });
writeInt(u32, try self.code.addManyAsArray(4), Instruction.blr(.x30).toU32());
} else if (func_value.castTag(.extern_fn)) |_| {
@@ -1945,7 +1945,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
switch (mc_arg) {
.none => continue,
.register => |reg| {
try self.genSetReg(arg.src, reg, arg_mcv);
try self.genSetReg(arg.src, arg.ty, reg, arg_mcv);
// TODO interact with the register allocator to mark the instruction as moved.
},
.stack_offset => {
@@ -1978,12 +1978,12 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
const got_addr = got.addr + func.owner_decl.link.macho.offset_table_index * @sizeOf(u64);
switch (arch) {
.x86_64 => {
try self.genSetReg(inst.base.src, .rax, .{ .memory = got_addr });
try self.genSetReg(inst.base.src, Type.initTag(.u32), .rax, .{ .memory = got_addr });
// callq *%rax
self.code.appendSliceAssumeCapacity(&[2]u8{ 0xff, 0xd0 });
},
.aarch64 => {
try self.genSetReg(inst.base.src, .x30, .{ .memory = got_addr });
try self.genSetReg(inst.base.src, Type.initTag(.u32), .x30, .{ .memory = got_addr });
// blr x30
writeInt(u32, try self.code.addManyAsArray(4), Instruction.blr(.x30).toU32());
},
@@ -2584,7 +2584,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
const reg = parseRegName(reg_name) orelse
return self.fail(inst.base.src, "unrecognized register: '{s}'", .{reg_name});
const arg = try self.resolveInst(inst.args[i]);
try self.genSetReg(inst.base.src, reg, arg);
try self.genSetReg(inst.base.src, inst.args[i].ty, reg, arg);
}
if (mem.eql(u8, inst.asm_source, "svc #0")) {
@@ -2614,7 +2614,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
const reg = parseRegName(reg_name) orelse
return self.fail(inst.base.src, "unrecognized register: '{s}'", .{reg_name});
const arg = try self.resolveInst(inst.args[i]);
try self.genSetReg(inst.base.src, reg, arg);
try self.genSetReg(inst.base.src, inst.args[i].ty, reg, arg);
}
if (mem.eql(u8, inst.asm_source, "svc #0")) {
@@ -2646,7 +2646,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
const reg = parseRegName(reg_name) orelse
return self.fail(inst.base.src, "unrecognized register: '{s}'", .{reg_name});
const arg = try self.resolveInst(inst.args[i]);
try self.genSetReg(inst.base.src, reg, arg);
try self.genSetReg(inst.base.src, inst.args[i].ty, reg, arg);
}
if (mem.eql(u8, inst.asm_source, "ecall")) {
@@ -2676,7 +2676,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
const reg = parseRegName(reg_name) orelse
return self.fail(inst.base.src, "unrecognized register: '{s}'", .{reg_name});
const arg = try self.resolveInst(inst.args[i]);
try self.genSetReg(inst.base.src, reg, arg);
try self.genSetReg(inst.base.src, inst.args[i].ty, reg, arg);
}
if (mem.eql(u8, inst.asm_source, "syscall")) {
@@ -2738,7 +2738,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
fn setRegOrMem(self: *Self, src: usize, ty: Type, loc: MCValue, val: MCValue) !void {
switch (loc) {
.none => return,
.register => |reg| return self.genSetReg(src, reg, val),
.register => |reg| return self.genSetReg(src, ty, reg, val),
.stack_offset => |off| return self.genSetStack(src, ty, off, val),
.memory => {
return self.fail(src, "TODO implement setRegOrMem for memory", .{});
@@ -2773,7 +2773,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
return self.fail(src, "TODO implement set stack variable with compare flags value (signed)", .{});
},
.immediate => {
const reg = try self.copyToTmpRegister(src, mcv);
const reg = try self.copyToTmpRegister(src, ty, mcv);
return self.genSetStack(src, ty, stack_offset, MCValue{ .register = reg });
},
.embedded_in_code => |code_offset| {
@@ -2787,7 +2787,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
1, 4 => {
const offset = if (math.cast(u12, adj_off)) |imm| blk: {
break :blk Instruction.Offset.imm(imm);
} else |_| Instruction.Offset.reg(try self.copyToTmpRegister(src, MCValue{ .immediate = adj_off }), 0);
} else |_| Instruction.Offset.reg(try self.copyToTmpRegister(src, Type.initTag(.u32), MCValue{ .immediate = adj_off }), 0);
const str = switch (abi_size) {
1 => Instruction.strb,
4 => Instruction.str,
@@ -2802,7 +2802,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
2 => {
const offset = if (adj_off <= math.maxInt(u8)) blk: {
break :blk Instruction.ExtraLoadStoreOffset.imm(@intCast(u8, adj_off));
} else Instruction.ExtraLoadStoreOffset.reg(try self.copyToTmpRegister(src, MCValue{ .immediate = adj_off }));
} else Instruction.ExtraLoadStoreOffset.reg(try self.copyToTmpRegister(src, Type.initTag(.u32), MCValue{ .immediate = adj_off }));
writeInt(u32, try self.code.addManyAsArray(4), Instruction.strh(.al, reg, .fp, .{
.offset = offset,
@@ -2819,7 +2819,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
if (stack_offset == off)
return; // Copy stack variable to itself; nothing to do.
const reg = try self.copyToTmpRegister(src, mcv);
const reg = try self.copyToTmpRegister(src, ty, mcv);
return self.genSetStack(src, ty, stack_offset, MCValue{ .register = reg });
},
},
@@ -2908,7 +2908,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
if (stack_offset == off)
return; // Copy stack variable to itself; nothing to do.
const reg = try self.copyToTmpRegister(src, mcv);
const reg = try self.copyToTmpRegister(src, ty, mcv);
return self.genSetStack(src, ty, stack_offset, MCValue{ .register = reg });
},
},
@@ -2936,7 +2936,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
return self.fail(src, "TODO implement set stack variable with compare flags value (signed)", .{});
},
.immediate => {
const reg = try self.copyToTmpRegister(src, mcv);
const reg = try self.copyToTmpRegister(src, ty, mcv);
return self.genSetStack(src, ty, stack_offset, MCValue{ .register = reg });
},
.embedded_in_code => |code_offset| {
@@ -2951,7 +2951,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
const offset = if (math.cast(i9, adj_off)) |imm|
Instruction.LoadStoreOffset.imm_post_index(-imm)
else |_|
Instruction.LoadStoreOffset.reg(try self.copyToTmpRegister(src, MCValue{ .immediate = adj_off }));
Instruction.LoadStoreOffset.reg(try self.copyToTmpRegister(src, Type.initTag(.u64), MCValue{ .immediate = adj_off }));
const rn: Register = switch (arch) {
.aarch64, .aarch64_be => .x29,
.aarch64_32 => .w29,
@@ -2972,7 +2972,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
if (stack_offset == off)
return; // Copy stack variable to itself; nothing to do.
const reg = try self.copyToTmpRegister(src, mcv);
const reg = try self.copyToTmpRegister(src, ty, mcv);
return self.genSetStack(src, ty, stack_offset, MCValue{ .register = reg });
},
},
@@ -2980,7 +2980,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
}
}
fn genSetReg(self: *Self, src: usize, reg: Register, mcv: MCValue) InnerError!void {
fn genSetReg(self: *Self, src: usize, ty: Type, reg: Register, mcv: MCValue) InnerError!void {
switch (arch) {
.arm, .armeb => switch (mcv) {
.dead => unreachable,
@@ -2991,7 +2991,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
if (!self.wantSafety())
return; // The already existing value will do just fine.
// Write the debug undefined value.
return self.genSetReg(src, reg, .{ .immediate = 0xaaaaaaaa });
return self.genSetReg(src, ty, reg, .{ .immediate = 0xaaaaaaaa });
},
.compare_flags_unsigned,
.compare_flags_signed,
@@ -3056,21 +3056,19 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
.memory => |addr| {
// The value is in memory at a hard-coded address.
// If the type is a pointer, it means the pointer address is at this memory location.
try self.genSetReg(src, reg, .{ .immediate = addr });
try self.genSetReg(src, ty, reg, .{ .immediate = addr });
writeInt(u32, try self.code.addManyAsArray(4), Instruction.ldr(.al, reg, reg, .{ .offset = Instruction.Offset.none }).toU32());
},
.stack_offset => |unadjusted_off| {
// TODO: maybe addressing from sp instead of fp
// TODO: supply type information to genSetReg as we do to genSetStack
// const abi_size = ty.abiSize(self.target.*);
const abi_size = 4;
const abi_size = ty.abiSize(self.target.*);
const adj_off = unadjusted_off + abi_size;
switch (abi_size) {
1, 4 => {
const offset = if (adj_off <= math.maxInt(u12)) blk: {
break :blk Instruction.Offset.imm(@intCast(u12, adj_off));
} else Instruction.Offset.reg(try self.copyToTmpRegister(src, MCValue{ .immediate = adj_off }), 0);
} else Instruction.Offset.reg(try self.copyToTmpRegister(src, Type.initTag(.u32), MCValue{ .immediate = adj_off }), 0);
const ldr = switch (abi_size) {
1 => Instruction.ldrb,
4 => Instruction.ldr,
@@ -3085,7 +3083,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
2 => {
const offset = if (adj_off <= math.maxInt(u8)) blk: {
break :blk Instruction.ExtraLoadStoreOffset.imm(@intCast(u8, adj_off));
} else Instruction.ExtraLoadStoreOffset.reg(try self.copyToTmpRegister(src, MCValue{ .immediate = adj_off }));
} else Instruction.ExtraLoadStoreOffset.reg(try self.copyToTmpRegister(src, Type.initTag(.u32), MCValue{ .immediate = adj_off }));
writeInt(u32, try self.code.addManyAsArray(4), Instruction.ldrh(.al, reg, .fp, .{
.offset = offset,
@@ -3107,8 +3105,8 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
return; // The already existing value will do just fine.
// Write the debug undefined value.
switch (reg.size()) {
32 => return self.genSetReg(src, reg, .{ .immediate = 0xaaaaaaaa }),
64 => return self.genSetReg(src, reg, .{ .immediate = 0xaaaaaaaaaaaaaaaa }),
32 => return self.genSetReg(src, ty, reg, .{ .immediate = 0xaaaaaaaa }),
64 => return self.genSetReg(src, ty, reg, .{ .immediate = 0xaaaaaaaaaaaaaaaa }),
else => unreachable, // unexpected register size
}
},
@@ -3221,7 +3219,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
} else {
// The value is in memory at a hard-coded address.
// If the type is a pointer, it means the pointer address is at this memory location.
try self.genSetReg(src, reg, .{ .immediate = addr });
try self.genSetReg(src, Type.initTag(.usize), reg, .{ .immediate = addr });
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), Instruction.ldr(reg, .{ .register = .{ .rn = reg } }).toU32());
}
},
@@ -3236,7 +3234,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
if (!self.wantSafety())
return; // The already existing value will do just fine.
// Write the debug undefined value.
return self.genSetReg(src, reg, .{ .immediate = 0xaaaaaaaaaaaaaaaa });
return self.genSetReg(src, ty, reg, .{ .immediate = 0xaaaaaaaaaaaaaaaa });
},
.immediate => |unsigned_x| {
const x = @bitCast(i64, unsigned_x);
@@ -3261,7 +3259,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
.memory => |addr| {
// The value is in memory at a hard-coded address.
// If the type is a pointer, it means the pointer address is at this memory location.
try self.genSetReg(src, reg, .{ .immediate = addr });
try self.genSetReg(src, ty, reg, .{ .immediate = addr });
mem.writeIntLittle(u32, try self.code.addManyAsArray(4), Instruction.ld(reg, 0, reg).toU32());
// LOAD imm=[i12 offset = 0], rs1 =
@@ -3280,10 +3278,10 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
return; // The already existing value will do just fine.
// Write the debug undefined value.
switch (reg.size()) {
8 => return self.genSetReg(src, reg, .{ .immediate = 0xaa }),
16 => return self.genSetReg(src, reg, .{ .immediate = 0xaaaa }),
32 => return self.genSetReg(src, reg, .{ .immediate = 0xaaaaaaaa }),
64 => return self.genSetReg(src, reg, .{ .immediate = 0xaaaaaaaaaaaaaaaa }),
8 => return self.genSetReg(src, ty, reg, .{ .immediate = 0xaa }),
16 => return self.genSetReg(src, ty, reg, .{ .immediate = 0xaaaa }),
32 => return self.genSetReg(src, ty, reg, .{ .immediate = 0xaaaaaaaa }),
64 => return self.genSetReg(src, ty, reg, .{ .immediate = 0xaaaaaaaaaaaaaaaa }),
else => unreachable,
}
},
@@ -3497,7 +3495,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
assert(id3 != 4 and id3 != 5);
// Rather than duplicate the logic used for the move, we just use a self-call with a new MCValue.
try self.genSetReg(src, reg, MCValue{ .immediate = x });
try self.genSetReg(src, ty, reg, MCValue{ .immediate = x });
// Now, the register contains the address of the value to load into it
// Currently, we're only allowing 64-bit registers, so we need the `REX.W 8B /r` variant.
@@ -3596,7 +3594,7 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
// This immediate is unsigned.
const U = std.meta.Int(.unsigned, ti.bits - @boolToInt(ti.signedness == .signed));
if (imm >= math.maxInt(U)) {
return MCValue{ .register = try self.copyToTmpRegister(inst.src, mcv) };
return MCValue{ .register = try self.copyToTmpRegister(inst.src, Type.initTag(.usize), mcv) };
}
},
else => {},
@@ -3710,17 +3708,22 @@ fn Function(comptime arch: std.Target.Cpu.Arch) type {
for (param_types) |ty, i| {
switch (ty.zigTypeTag()) {
.Bool, .Int => {
const param_size = @intCast(u32, ty.abiSize(self.target.*));
if (next_int_reg >= c_abi_int_param_regs.len) {
result.args[i] = .{ .stack_offset = next_stack_offset };
next_stack_offset += param_size;
if (!ty.hasCodeGenBits()) {
assert(cc != .C);
result.args[i] = .{ .none = {} };
} else {
const aliased_reg = registerAlias(
c_abi_int_param_regs[next_int_reg],
param_size,
);
result.args[i] = .{ .register = aliased_reg };
next_int_reg += 1;
const param_size = @intCast(u32, ty.abiSize(self.target.*));
if (next_int_reg >= c_abi_int_param_regs.len) {
result.args[i] = .{ .stack_offset = next_stack_offset };
next_stack_offset += param_size;
} else {
const aliased_reg = registerAlias(
c_abi_int_param_regs[next_int_reg],
param_size,
);
result.args[i] = .{ .register = aliased_reg };
next_int_reg += 1;
}
}
},
else => return self.fail(src, "TODO implement function parameters of type {s}", .{@tagName(ty.zigTypeTag())}),

View File

@@ -161,15 +161,19 @@ pub const Context = struct {
pub fn gen(self: *Context) InnerError!void {
assert(self.code.items.len == 0);
try self.genFunctype();
const writer = self.code.writer();
// Reserve space to write the size after generating the code as well as space for locals count
try self.code.resize(10);
// Write instructions
// TODO: check for and handle death of instructions
const tv = self.decl.typed_value.most_recent.typed_value;
const mod_fn = tv.val.castTag(.function).?.data;
const mod_fn = blk: {
if (tv.val.castTag(.function)) |func| break :blk func.data;
if (tv.val.castTag(.extern_fn)) |ext_fn| return; // don't need codegen for extern functions
return self.fail(self.decl.src(), "TODO: Wasm codegen for decl type '{s}'", .{tv.ty.tag()});
};
// Reserve space to write the size after generating the code as well as space for locals count
try self.code.resize(10);
try self.genBody(mod_fn.body);
// finally, write our local types at the 'offset' position
@@ -189,6 +193,7 @@ pub const Context = struct {
}
}
const writer = self.code.writer();
try writer.writeByte(wasm.opcode(.end));
// Fill in the size of the generated code to the reserved space at the
@@ -239,9 +244,16 @@ pub const Context = struct {
fn genCall(self: *Context, inst: *Inst.Call) InnerError!WValue {
const func_inst = inst.func.castTag(.constant).?;
const func = func_inst.val.castTag(.function).?.data;
const target = func.owner_decl;
const target_ty = target.typed_value.most_recent.typed_value.ty;
const func_val = inst.func.value().?;
const target = blk: {
if (func_val.castTag(.function)) |func| {
break :blk func.data.owner_decl;
} else if (func_val.castTag(.extern_fn)) |ext_fn| {
break :blk ext_fn.data;
}
return self.fail(inst.base.src, "Expected a function, but instead found type '{s}'", .{func_val.tag()});
};
for (inst.args) |arg| {
const arg_val = self.resolveInst(arg);
@@ -495,7 +507,7 @@ pub const Context = struct {
}
fn genBr(self: *Context, br: *Inst.Br) InnerError!WValue {
// of operand has codegen bits we should break with a value
// if operand has codegen bits we should break with a value
if (br.operand.ty.hasCodeGenBits()) {
const operand = self.resolveInst(br.operand);
try self.emitWValue(operand);

View File

@@ -33,9 +33,18 @@ base: link.File,
/// List of all function Decls to be written to the output file. The index of
/// each Decl in this list at the time of writing the binary is used as the
/// function index.
/// function index. In the event where ext_funcs' size is not 0, the index of
/// each function is added on top of the ext_funcs' length.
/// TODO: can/should we access some data structure in Module directly?
funcs: std.ArrayListUnmanaged(*Module.Decl) = .{},
/// List of all extern function Decls to be written to the `import` section of the
/// wasm binary. The positin in the list defines the function index
ext_funcs: std.ArrayListUnmanaged(*Module.Decl) = .{},
/// When importing objects from the host environment, a name must be supplied.
/// LLVM uses "env" by default when none is given. This would be a good default for Zig
/// to support existing code.
/// TODO: Allow setting this through a flag?
host_name: []const u8 = "env",
pub fn openPath(allocator: *Allocator, sub_path: []const u8, options: link.Options) !*Wasm {
assert(options.object_format == .wasm);
@@ -76,7 +85,13 @@ pub fn deinit(self: *Wasm) void {
decl.fn_link.wasm.?.code.deinit(self.base.allocator);
decl.fn_link.wasm.?.idx_refs.deinit(self.base.allocator);
}
for (self.ext_funcs.items) |decl| {
decl.fn_link.wasm.?.functype.deinit(self.base.allocator);
decl.fn_link.wasm.?.code.deinit(self.base.allocator);
decl.fn_link.wasm.?.idx_refs.deinit(self.base.allocator);
}
self.funcs.deinit(self.base.allocator);
self.ext_funcs.deinit(self.base.allocator);
}
// Generate code for the Decl, storing it in memory to be later written to
@@ -85,8 +100,6 @@ pub fn updateDecl(self: *Wasm, module: *Module, decl: *Module.Decl) !void {
const typed_value = decl.typed_value.most_recent.typed_value;
if (typed_value.ty.zigTypeTag() != .Fn)
return error.TODOImplementNonFnDeclsForWasm;
if (typed_value.val.tag() == .extern_fn)
return error.TODOImplementExternFnDeclsForWasm;
if (decl.fn_link.wasm) |*fn_data| {
fn_data.functype.items.len = 0;
@@ -94,7 +107,12 @@ pub fn updateDecl(self: *Wasm, module: *Module, decl: *Module.Decl) !void {
fn_data.idx_refs.items.len = 0;
} else {
decl.fn_link.wasm = .{};
try self.funcs.append(self.base.allocator, decl);
// dependent on function type, appends it to the correct list
switch (decl.typed_value.most_recent.typed_value.val.tag()) {
.function => try self.funcs.append(self.base.allocator, decl),
.extern_fn => try self.ext_funcs.append(self.base.allocator, decl),
else => return error.TODOImplementNonFnDeclsForWasm,
}
}
const fn_data = &decl.fn_link.wasm.?;
@@ -143,7 +161,12 @@ pub fn updateDeclExports(
pub fn freeDecl(self: *Wasm, decl: *Module.Decl) void {
// TODO: remove this assert when non-function Decls are implemented
assert(decl.typed_value.most_recent.typed_value.ty.zigTypeTag() == .Fn);
_ = self.funcs.swapRemove(self.getFuncidx(decl).?);
const func_idx = self.getFuncidx(decl).?;
switch (decl.typed_value.most_recent.typed_value.val.tag()) {
.function => _ = self.funcs.swapRemove(func_idx),
.extern_fn => _ = self.ext_funcs.swapRemove(func_idx),
else => unreachable,
}
decl.fn_link.wasm.?.functype.deinit(self.base.allocator);
decl.fn_link.wasm.?.code.deinit(self.base.allocator);
decl.fn_link.wasm.?.idx_refs.deinit(self.base.allocator);
@@ -172,15 +195,46 @@ pub fn flushModule(self: *Wasm, comp: *Compilation) !void {
// Type section
{
const header_offset = try reserveVecSectionHeader(file);
for (self.funcs.items) |decl| {
try file.writeAll(decl.fn_link.wasm.?.functype.items);
}
// extern functions are defined in the wasm binary first through the `import`
// section, so define their func types first
for (self.ext_funcs.items) |decl| try file.writeAll(decl.fn_link.wasm.?.functype.items);
for (self.funcs.items) |decl| try file.writeAll(decl.fn_link.wasm.?.functype.items);
try writeVecSectionHeader(
file,
header_offset,
.type,
@intCast(u32, (try file.getPos()) - header_offset - header_size),
@intCast(u32, self.funcs.items.len),
@intCast(u32, self.ext_funcs.items.len + self.funcs.items.len),
);
}
// Import section
{
// TODO: implement non-functions imports
const header_offset = try reserveVecSectionHeader(file);
const writer = file.writer();
for (self.ext_funcs.items) |decl, typeidx| {
try leb.writeULEB128(writer, @intCast(u32, self.host_name.len));
try writer.writeAll(self.host_name);
// wasm requires the length of the import name with no null-termination
const decl_len = mem.len(decl.name);
try leb.writeULEB128(writer, @intCast(u32, decl_len));
try writer.writeAll(decl.name[0..decl_len]);
// emit kind and the function type
try writer.writeByte(wasm.externalKind(.function));
try leb.writeULEB128(writer, @intCast(u32, typeidx));
}
try writeVecSectionHeader(
file,
header_offset,
.import,
@intCast(u32, (try file.getPos()) - header_offset - header_size),
@intCast(u32, self.ext_funcs.items.len),
);
}
@@ -188,7 +242,11 @@ pub fn flushModule(self: *Wasm, comp: *Compilation) !void {
{
const header_offset = try reserveVecSectionHeader(file);
const writer = file.writer();
for (self.funcs.items) |_, typeidx| try leb.writeULEB128(writer, @intCast(u32, typeidx));
for (self.funcs.items) |_, typeidx| {
const func_idx = @intCast(u32, self.getFuncIdxOffset() + typeidx);
try leb.writeULEB128(writer, func_idx);
}
try writeVecSectionHeader(
file,
header_offset,
@@ -212,7 +270,7 @@ pub fn flushModule(self: *Wasm, comp: *Compilation) !void {
switch (exprt.exported_decl.typed_value.most_recent.typed_value.ty.zigTypeTag()) {
.Fn => {
// Type of the export
try writer.writeByte(0x00);
try writer.writeByte(wasm.externalKind(.function));
// Exported function index
try leb.writeULEB128(writer, self.getFuncidx(exprt.exported_decl).?);
},
@@ -523,13 +581,31 @@ fn linkWithLLD(self: *Wasm, comp: *Compilation) !void {
}
/// Get the current index of a given Decl in the function list
/// TODO: we could maintain a hash map to potentially make this
/// This will correctly provide the index, regardless whether the function is extern or not
/// TODO: we could maintain a hash map to potentially make this simpler
fn getFuncidx(self: Wasm, decl: *Module.Decl) ?u32 {
return for (self.funcs.items) |func, idx| {
if (func == decl) break @intCast(u32, idx);
var offset: u32 = 0;
const slice = switch (decl.typed_value.most_recent.typed_value.val.tag()) {
.function => blk: {
// when the target is a regular function, we have to calculate
// the offset of where the index starts
offset += self.getFuncIdxOffset();
break :blk self.funcs.items;
},
.extern_fn => self.ext_funcs.items,
else => return null,
};
return for (slice) |func, idx| {
if (func == decl) break @intCast(u32, offset + idx);
} else null;
}
/// Based on the size of `ext_funcs` returns the
/// offset of the function indices
fn getFuncIdxOffset(self: Wasm) u32 {
return @intCast(u32, self.ext_funcs.items.len);
}
fn reserveVecSectionHeader(file: fs.File) !u64 {
// section id + fixed leb contents size + fixed leb vector length
const header_size = 1 + 5 + 5;

View File

@@ -278,7 +278,9 @@ export fn stage2_attach_segfault_handler() void {
// ABI warning
export fn stage2_progress_create() *std.Progress {
const ptr = std.heap.c_allocator.create(std.Progress) catch @panic("out of memory");
ptr.* = std.Progress{};
// If the terminal is dumb, we dont want to show the user all the
// output.
ptr.* = std.Progress{ .dont_print_on_dumb = true };
return ptr;
}

View File

@@ -1447,7 +1447,7 @@ void tokenize(Buf *buf, Tokenization *out) {
tokenize_error(&t, "unterminated string");
break;
} else if (t.cur_tok->id == TokenIdCharLiteral) {
tokenize_error(&t, "unterminated character literal");
tokenize_error(&t, "unterminated Unicode code point literal");
break;
} else {
zig_unreachable();
@@ -1456,7 +1456,7 @@ void tokenize(Buf *buf, Tokenization *out) {
case TokenizeStateCharLiteral:
case TokenizeStateCharLiteralEnd:
case TokenizeStateCharLiteralUnicode:
tokenize_error(&t, "unterminated character literal");
tokenize_error(&t, "unterminated Unicode code point literal");
break;
case TokenizeStateSymbol:
case TokenizeStateZero:

View File

@@ -1397,4 +1397,26 @@ pub fn addCases(ctx: *TestContext) !void {
"",
);
}
{
var case = ctx.exe("passing u0 to function", linux_x64);
case.addCompareOutput(
\\export fn _start() noreturn {
\\ doNothing(0);
\\ exit();
\\}
\\fn doNothing(arg: u0) void {}
\\fn exit() noreturn {
\\ asm volatile ("syscall"
\\ :
\\ : [number] "{rax}" (231),
\\ [arg1] "{rdi}" (0)
\\ : "rcx", "r11", "memory"
\\ );
\\ unreachable;
\\}
,
"",
);
}
}