std.ArrayList: fixups for the previous commit

* Move `computeBetterCapacity` to the bottom so that `pub` stuff shows
   up first.
 * Rename `computeBetterCapacity` to `growCapacity`. Every function
   implicitly computes something; that word is always redundant in a
   function name. "better" is vague. Better in what way? Instead we
   describe what is actually happening. "grow".
 * Improve doc comments to be very explicit about when element pointers
   are invalidated or not.
 * Rename `addManyAtIndex` to `addManyAt`. The parameter is named
   `index`; that is enough.
 * Extract some duplicated code into `addManyAtAssumeCapacity` and make
   it `pub`.
 * Since I audited every line of code for correctness, I changed the
   style to my personal preference.
 * Avoid a redundant `@memset` to `undefined` - memory allocation does
   that already.
 * Fixed comment giving the wrong reason for not calling
   `ensureTotalCapacity`.
This commit is contained in:
Andrew Kelley
2023-09-29 13:36:47 -07:00
parent 9d765b5ab5
commit 9013970861

View File

@@ -6,21 +6,6 @@ const mem = std.mem;
const math = std.math;
const Allocator = mem.Allocator;
/// Shared between managed and unmanaged versions of ArrayList. Called
/// when memory growth is necessary. Returns a capacity larger than minimum
/// that is better according to our growth policy.
fn computeBetterCapacity(
current_capacity: usize,
minimum_capacity: usize,
) usize {
var better_capacity = current_capacity;
while (true) {
better_capacity +|= better_capacity / 2 + 8;
if (better_capacity >= minimum_capacity)
return better_capacity;
}
}
/// A contiguous, growable list of items in memory.
/// This is a wrapper around an array of T values. Initialize with `init`.
///
@@ -177,91 +162,74 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
self.items[n] = item;
}
/// Resize the array, adding `count` new elements at position `index`, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements. The returned pointer
/// becomes invalid when the list is resized. Resizes list if self.capacity is not large enough.
pub fn addManyAtIndex(
self: *Self,
index: usize,
count: usize,
) Allocator.Error![]T {
/// Add `count` new elements at position `index`, which have
/// `undefined` values. Returns a slice pointing to the newly allocated
/// elements, which becomes invalid after various `ArrayList`
/// operations.
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accomodate the new elements.
pub fn addManyAt(self: *Self, index: usize, count: usize) Allocator.Error![]T {
const new_len = self.items.len + count;
const to_move = self.items[index..];
if (self.capacity >= new_len) {
//There is enough space
self.items.len = new_len;
mem.copyBackwards(
T,
self.items[index + count ..],
to_move,
);
const result = self.items[index..][0..count];
@memset(result, undefined);
return result;
} else {
const better_capacity = computeBetterCapacity(self.capacity, new_len);
if (self.capacity >= new_len)
return addManyAtAssumeCapacity(self, index, count);
// Here we avoid copying allocated but unused bytes by
// attempting a resize in place, and falling back to allocating
// a new buffer and doing our own copy. With a realloc() call,
// the allocator implementation would pointlessly copy our
// extra capacity.
const old_memory = self.allocatedSlice();
if (self.allocator.resize(old_memory, better_capacity)) {
self.capacity = better_capacity;
self.items.len = new_len;
mem.copyBackwards(
T,
self.items[index + count ..],
to_move,
);
const result = self.items[index..][0..count];
@memset(result, undefined);
return result;
} else {
// Need a new allocation. We don't call ensureTotalCapacity because there
// would be an unnecessary check if the capacity is enough (we already
// know it's not).
const new_memory = try self.allocator.alignedAlloc(
T,
alignment,
better_capacity,
);
@memcpy(
new_memory[0..index],
self.items[0..index],
);
// No need to mem.copyBackwards, as this is a new allocation.
@memcpy(
new_memory[index + count ..][0..to_move.len],
to_move,
);
self.allocator.free(old_memory);
self.items.ptr = new_memory.ptr;
self.items.len = new_len;
self.capacity = new_memory.len;
const result = new_memory[index..][0..count];
@memset(result, undefined);
return result;
}
// Here we avoid copying allocated but unused bytes by
// attempting a resize in place, and falling back to allocating
// a new buffer and doing our own copy. With a realloc() call,
// the allocator implementation would pointlessly copy our
// extra capacity.
const new_capacity = growCapacity(self.capacity, new_len);
const old_memory = self.allocatedSlice();
if (self.allocator.resize(old_memory, new_capacity)) {
self.capacity = new_capacity;
return addManyAtAssumeCapacity(self, index, count);
}
// Make a new allocation, avoiding `ensureTotalCapacity` in order
// to avoid extra memory copies.
const new_memory = try self.allocator.alignedAlloc(T, alignment, new_capacity);
const to_move = self.items[index..];
@memcpy(new_memory[0..index], self.items[0..index]);
@memcpy(new_memory[index + count ..][0..to_move.len], to_move);
self.allocator.free(old_memory);
self.items = new_memory[0..new_len];
self.capacity = new_memory.len;
// The inserted elements at `new_memory[index..][0..count]` have
// already been set to `undefined` by memory allocation.
return new_memory[index..][0..count];
}
/// Add `count` new elements at position `index`, which have
/// `undefined` values. Returns a slice pointing to the newly allocated
/// elements, which becomes invalid after various `ArrayList`
/// operations.
/// Asserts that there is enough capacity for the new elements.
/// Invalidates pre-existing pointers to elements at and after `index`, but
/// does not invalidate any before that.
pub fn addManyAtAssumeCapacity(self: *Self, index: usize, count: usize) []T {
const new_len = self.items.len + count;
assert(self.capacity >= new_len);
const to_move = self.items[index..];
self.items.len = new_len;
mem.copyBackwards(T, self.items[index + count ..], to_move);
const result = self.items[index..][0..count];
@memset(result, undefined);
return result;
}
/// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
/// This operation is O(N).
/// Invalidates pointers if additional memory is needed.
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accomodate the new elements.
pub fn insertSlice(
self: *Self,
index: usize,
items: []const T,
) Allocator.Error!void {
const dst = try self.addManyAtIndex(
index,
items.len,
);
const dst = try self.addManyAt(index, items.len);
@memcpy(dst, items);
}
@@ -462,7 +430,7 @@ pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
if (self.capacity >= new_capacity) return;
const better_capacity = computeBetterCapacity(self.capacity, new_capacity);
const better_capacity = growCapacity(self.capacity, new_capacity);
return self.ensureTotalCapacityPrecise(better_capacity);
}
@@ -750,10 +718,14 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
self.items[n] = item;
}
/// Resize the array, adding `count` new elements at position `index`, which have `undefined` values.
/// The return value is a slice pointing to the newly allocated elements. The returned pointer
/// becomes invalid when the list is resized. Resizes list if self.capacity is not large enough.
pub fn addManyAtIndex(
/// Add `count` new elements at position `index`, which have
/// `undefined` values. Returns a slice pointing to the newly allocated
/// elements, which becomes invalid after various `ArrayList`
/// operations.
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accomodate the new elements.
pub fn addManyAt(
self: *Self,
allocator: Allocator,
index: usize,
@@ -761,19 +733,39 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
) Allocator.Error![]T {
var managed = self.toManaged(allocator);
defer self.* = managed.moveToUnmanaged();
return managed.addManyAtIndex(index, count);
return managed.addManyAt(index, count);
}
/// Add `count` new elements at position `index`, which have
/// `undefined` values. Returns a slice pointing to the newly allocated
/// elements, which becomes invalid after various `ArrayList`
/// operations.
/// Asserts that there is enough capacity for the new elements.
/// Invalidates pre-existing pointers to elements at and after `index`, but
/// does not invalidate any before that.
pub fn addManyAtAssumeCapacity(self: *Self, index: usize, count: usize) []T {
const new_len = self.items.len + count;
assert(self.capacity >= new_len);
const to_move = self.items[index..];
self.items.len = new_len;
mem.copyBackwards(T, self.items[index + count ..], to_move);
const result = self.items[index..][0..count];
@memset(result, undefined);
return result;
}
/// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
/// This operation is O(N).
/// Invalidates pointers if additional memory is needed.
/// Invalidates pre-existing pointers to elements at and after `index`.
/// Invalidates all pre-existing element pointers if capacity must be
/// increased to accomodate the new elements.
pub fn insertSlice(
self: *Self,
allocator: Allocator,
index: usize,
items: []const T,
) Allocator.Error!void {
const dst = try self.addManyAtIndex(
const dst = try self.addManyAt(
allocator,
index,
items.len,
@@ -785,7 +777,13 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
/// Grows list if `len < new_items.len`.
/// Shrinks list if `len > new_items.len`
/// Invalidates pointers if this ArrayList is resized.
pub fn replaceRange(self: *Self, allocator: Allocator, start: usize, len: usize, new_items: []const T) Allocator.Error!void {
pub fn replaceRange(
self: *Self,
allocator: Allocator,
start: usize,
len: usize,
new_items: []const T,
) Allocator.Error!void {
var managed = self.toManaged(allocator);
defer self.* = managed.moveToUnmanaged();
try managed.replaceRange(start, len, new_items);
@@ -981,7 +979,7 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
pub fn ensureTotalCapacity(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void {
if (self.capacity >= new_capacity) return;
var better_capacity = computeBetterCapacity(self.capacity, new_capacity);
var better_capacity = growCapacity(self.capacity, new_capacity);
return self.ensureTotalCapacityPrecise(allocator, better_capacity);
}
@@ -1140,6 +1138,17 @@ pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) typ
};
}
/// Called when memory growth is necessary. Returns a capacity larger than
/// minimum that grows super-linearly.
fn growCapacity(current: usize, minimum: usize) usize {
var new = current;
while (true) {
new +|= new / 2 + 8;
if (new >= minimum)
return new;
}
}
test "std.ArrayList/ArrayListUnmanaged.init" {
{
var list = ArrayList(i32).init(testing.allocator);