Merge remote-tracking branch 'upstream/master' into arm-support-improvement

This commit is contained in:
Robin Voetter
2019-08-30 13:02:28 +02:00
18 changed files with 852 additions and 213 deletions

View File

@@ -55,7 +55,7 @@ brew install cmake llvm@8
brew outdated llvm@8 || brew upgrade llvm@8
mkdir build
cd build
cmake .. -DCMAKE_PREFIX_PATH=/usr/local/Cellar/llvm/8.0.0_1
cmake .. -DCMAKE_PREFIX_PATH=$(brew --prefix llvm)
make install
```

View File

@@ -36,6 +36,7 @@ struct IrInstruction;
struct IrInstructionCast;
struct IrInstructionAllocaGen;
struct IrInstructionCallGen;
struct IrInstructionAwaitGen;
struct IrBasicBlock;
struct ScopeDecls;
struct ZigWindowsSDK;
@@ -308,10 +309,12 @@ struct ConstGlobalRefs {
enum LazyValueId {
LazyValueIdInvalid,
LazyValueIdAlignOf,
LazyValueIdSizeOf,
LazyValueIdPtrType,
LazyValueIdOptType,
LazyValueIdSliceType,
LazyValueIdFnType,
LazyValueIdErrUnionType,
};
struct LazyValue {
@@ -325,6 +328,13 @@ struct LazyValueAlignOf {
IrInstruction *target_type;
};
struct LazyValueSizeOf {
LazyValue base;
IrAnalyze *ira;
IrInstruction *target_type;
};
struct LazyValueSliceType {
LazyValue base;
@@ -372,6 +382,14 @@ struct LazyValueFnType {
bool is_generic;
};
struct LazyValueErrUnionType {
LazyValue base;
IrAnalyze *ira;
IrInstruction *err_set_type;
IrInstruction *payload_type;
};
struct ConstExprValue {
ZigType *type;
ConstValSpecial special;
@@ -1205,6 +1223,7 @@ struct ZigTypeStruct {
HashMap<Buf *, TypeStructField *, buf_hash, buf_eql_buf> fields_by_name;
RootStruct *root_struct;
uint32_t *host_int_bytes; // available for packed structs, indexed by gen_index
size_t llvm_full_type_queue_index;
uint32_t src_field_count;
uint32_t gen_field_count;
@@ -1468,6 +1487,7 @@ struct ZigFn {
AstNode **param_source_nodes;
Buf **param_names;
IrInstruction *err_code_spill;
AstNode *assumed_non_async;
AstNode *fn_no_inline_set_node;
AstNode *fn_static_eval_set_node;
@@ -1485,6 +1505,7 @@ struct ZigFn {
ZigList<GlobalExport> export_list;
ZigList<IrInstructionCallGen *> call_list;
ZigList<IrInstructionAwaitGen *> await_list;
LLVMValueRef valgrind_client_request_array;
@@ -1852,6 +1873,7 @@ struct CodeGen {
ZigList<ErrorTableEntry *> errors_by_index;
ZigList<CacheHash *> caches_to_release;
size_t largest_err_name_len;
ZigList<ZigType *> type_resolve_stack;
ZigPackage *std_package;
ZigPackage *panic_package;
@@ -3698,6 +3720,7 @@ struct IrInstructionAwaitGen {
IrInstruction *frame;
IrInstruction *result_loc;
ZigFn *target_fn;
};
struct IrInstructionResume {

View File

@@ -31,6 +31,7 @@ static void analyze_fn_body(CodeGen *g, ZigFn *fn_table_entry);
static void resolve_llvm_types(CodeGen *g, ZigType *type, ResolveStatus wanted_resolve_status);
static void preview_use_decl(CodeGen *g, TldUsingNamespace *using_namespace, ScopeDecls *dest_decls_scope);
static void resolve_use_decl(CodeGen *g, TldUsingNamespace *tld_using_namespace, ScopeDecls *dest_decls_scope);
static void analyze_fn_async(CodeGen *g, ZigFn *fn, bool resolve_frame);
// nullptr means not analyzed yet; this one means currently being analyzed
static const AstNode *inferred_async_checking = reinterpret_cast<AstNode *>(0x1);
@@ -973,7 +974,7 @@ ConstExprValue *analyze_const_value(CodeGen *g, Scope *scope, AstNode *node, Zig
nullptr, nullptr, node, type_name, nullptr, nullptr, undef);
}
static Error type_val_resolve_zero_bits(CodeGen *g, ConstExprValue *type_val, ZigType *parent_type,
Error type_val_resolve_zero_bits(CodeGen *g, ConstExprValue *type_val, ZigType *parent_type,
ConstExprValue *parent_type_val, bool *is_zero_bits)
{
Error err;
@@ -997,6 +998,7 @@ static Error type_val_resolve_zero_bits(CodeGen *g, ConstExprValue *type_val, Zi
switch (type_val->data.x_lazy->id) {
case LazyValueIdInvalid:
case LazyValueIdAlignOf:
case LazyValueIdSizeOf:
zig_unreachable();
case LazyValueIdPtrType: {
LazyValuePtrType *lazy_ptr_type = reinterpret_cast<LazyValuePtrType *>(type_val->data.x_lazy);
@@ -1015,6 +1017,7 @@ static Error type_val_resolve_zero_bits(CodeGen *g, ConstExprValue *type_val, Zi
}
case LazyValueIdOptType:
case LazyValueIdSliceType:
case LazyValueIdErrUnionType:
*is_zero_bits = false;
return ErrorNone;
case LazyValueIdFnType: {
@@ -1035,11 +1038,13 @@ Error type_val_resolve_is_opaque_type(CodeGen *g, ConstExprValue *type_val, bool
switch (type_val->data.x_lazy->id) {
case LazyValueIdInvalid:
case LazyValueIdAlignOf:
case LazyValueIdSizeOf:
zig_unreachable();
case LazyValueIdSliceType:
case LazyValueIdPtrType:
case LazyValueIdFnType:
case LazyValueIdOptType:
case LazyValueIdErrUnionType:
*is_opaque_type = false;
return ErrorNone;
}
@@ -1053,6 +1058,7 @@ static ReqCompTime type_val_resolve_requires_comptime(CodeGen *g, ConstExprValue
switch (type_val->data.x_lazy->id) {
case LazyValueIdInvalid:
case LazyValueIdAlignOf:
case LazyValueIdSizeOf:
zig_unreachable();
case LazyValueIdSliceType: {
LazyValueSliceType *lazy_slice_type = reinterpret_cast<LazyValueSliceType *>(type_val->data.x_lazy);
@@ -1094,18 +1100,21 @@ static ReqCompTime type_val_resolve_requires_comptime(CodeGen *g, ConstExprValue
}
return ReqCompTimeNo;
}
case LazyValueIdErrUnionType: {
LazyValueErrUnionType *lazy_err_union_type =
reinterpret_cast<LazyValueErrUnionType *>(type_val->data.x_lazy);
return type_val_resolve_requires_comptime(g, &lazy_err_union_type->payload_type->value);
}
}
zig_unreachable();
}
static Error type_val_resolve_abi_size(CodeGen *g, AstNode *source_node, ConstExprValue *type_val,
Error type_val_resolve_abi_size(CodeGen *g, AstNode *source_node, ConstExprValue *type_val,
size_t *abi_size, size_t *size_in_bits)
{
Error err;
if (type_val->data.x_lazy->id == LazyValueIdOptType) {
if ((err = ir_resolve_lazy(g, source_node, type_val)))
return err;
}
start_over:
if (type_val->special != ConstValSpecialLazy) {
assert(type_val->special == ConstValSpecialStatic);
ZigType *ty = type_val->data.x_type;
@@ -1118,18 +1127,51 @@ static Error type_val_resolve_abi_size(CodeGen *g, AstNode *source_node, ConstEx
switch (type_val->data.x_lazy->id) {
case LazyValueIdInvalid:
case LazyValueIdAlignOf:
case LazyValueIdSizeOf:
zig_unreachable();
case LazyValueIdSliceType:
*abi_size = g->builtin_types.entry_usize->abi_size * 2;
*size_in_bits = g->builtin_types.entry_usize->size_in_bits * 2;
case LazyValueIdSliceType: {
LazyValueSliceType *lazy_slice_type = reinterpret_cast<LazyValueSliceType *>(type_val->data.x_lazy);
bool is_zero_bits;
if ((err = type_val_resolve_zero_bits(g, &lazy_slice_type->elem_type->value, nullptr,
nullptr, &is_zero_bits)))
{
return err;
}
if (is_zero_bits) {
*abi_size = g->builtin_types.entry_usize->abi_size;
*size_in_bits = g->builtin_types.entry_usize->size_in_bits;
} else {
*abi_size = g->builtin_types.entry_usize->abi_size * 2;
*size_in_bits = g->builtin_types.entry_usize->size_in_bits * 2;
}
return ErrorNone;
case LazyValueIdPtrType:
}
case LazyValueIdPtrType: {
LazyValuePtrType *lazy_ptr_type = reinterpret_cast<LazyValuePtrType *>(type_val->data.x_lazy);
bool is_zero_bits;
if ((err = type_val_resolve_zero_bits(g, &lazy_ptr_type->elem_type->value, nullptr,
nullptr, &is_zero_bits)))
{
return err;
}
if (is_zero_bits) {
*abi_size = 0;
*size_in_bits = 0;
} else {
*abi_size = g->builtin_types.entry_usize->abi_size;
*size_in_bits = g->builtin_types.entry_usize->size_in_bits;
}
return ErrorNone;
}
case LazyValueIdFnType:
*abi_size = g->builtin_types.entry_usize->abi_size;
*size_in_bits = g->builtin_types.entry_usize->size_in_bits;
return ErrorNone;
case LazyValueIdOptType:
zig_unreachable();
case LazyValueIdErrUnionType:
if ((err = ir_resolve_lazy(g, source_node, type_val)))
return err;
goto start_over;
}
zig_unreachable();
}
@@ -1151,6 +1193,7 @@ Error type_val_resolve_abi_align(CodeGen *g, ConstExprValue *type_val, uint32_t
switch (type_val->data.x_lazy->id) {
case LazyValueIdInvalid:
case LazyValueIdAlignOf:
case LazyValueIdSizeOf:
zig_unreachable();
case LazyValueIdSliceType:
case LazyValueIdPtrType:
@@ -1161,6 +1204,19 @@ Error type_val_resolve_abi_align(CodeGen *g, ConstExprValue *type_val, uint32_t
LazyValueOptType *lazy_opt_type = reinterpret_cast<LazyValueOptType *>(type_val->data.x_lazy);
return type_val_resolve_abi_align(g, &lazy_opt_type->payload_type->value, abi_align);
}
case LazyValueIdErrUnionType: {
LazyValueErrUnionType *lazy_err_union_type =
reinterpret_cast<LazyValueErrUnionType *>(type_val->data.x_lazy);
uint32_t payload_abi_align;
if ((err = type_val_resolve_abi_align(g, &lazy_err_union_type->payload_type->value,
&payload_abi_align)))
{
return err;
}
*abi_align = (payload_abi_align > g->err_tag_type->abi_align) ?
payload_abi_align : g->err_tag_type->abi_align;
return ErrorNone;
}
}
zig_unreachable();
}
@@ -1172,6 +1228,7 @@ static OnePossibleValue type_val_resolve_has_one_possible_value(CodeGen *g, Cons
switch (type_val->data.x_lazy->id) {
case LazyValueIdInvalid:
case LazyValueIdAlignOf:
case LazyValueIdSizeOf:
zig_unreachable();
case LazyValueIdSliceType: // it has the len field
case LazyValueIdOptType: // it has the optional bit
@@ -1189,6 +1246,18 @@ static OnePossibleValue type_val_resolve_has_one_possible_value(CodeGen *g, Cons
return OnePossibleValueNo;
}
}
case LazyValueIdErrUnionType: {
LazyValueErrUnionType *lazy_err_union_type =
reinterpret_cast<LazyValueErrUnionType *>(type_val->data.x_lazy);
switch (type_val_resolve_has_one_possible_value(g, &lazy_err_union_type->err_set_type->value)) {
case OnePossibleValueInvalid:
return OnePossibleValueInvalid;
case OnePossibleValueNo:
return OnePossibleValueNo;
case OnePossibleValueYes:
return type_val_resolve_has_one_possible_value(g, &lazy_err_union_type->payload_type->value);
}
}
}
zig_unreachable();
}
@@ -4105,8 +4174,14 @@ static void add_async_error_notes(CodeGen *g, ErrorMsg *msg, ZigFn *fn) {
assert(fn->inferred_async_node != inferred_async_checking);
assert(fn->inferred_async_node != inferred_async_none);
if (fn->inferred_async_fn != nullptr) {
ErrorMsg *new_msg = add_error_note(g, msg, fn->inferred_async_node,
buf_sprintf("async function call here"));
ErrorMsg *new_msg;
if (fn->inferred_async_node->type == NodeTypeAwaitExpr) {
new_msg = add_error_note(g, msg, fn->inferred_async_node,
buf_create_from_str("await here is a suspend point"));
} else {
new_msg = add_error_note(g, msg, fn->inferred_async_node,
buf_sprintf("async function call here"));
}
return add_async_error_notes(g, new_msg, fn->inferred_async_fn);
} else if (fn->inferred_async_node->type == NodeTypeFnProto) {
add_error_note(g, msg, fn->inferred_async_node,
@@ -4116,7 +4191,7 @@ static void add_async_error_notes(CodeGen *g, ErrorMsg *msg, ZigFn *fn) {
buf_sprintf("suspends here"));
} else if (fn->inferred_async_node->type == NodeTypeAwaitExpr) {
add_error_note(g, msg, fn->inferred_async_node,
buf_sprintf("await is a suspend point"));
buf_sprintf("await here is a suspend point"));
} else if (fn->inferred_async_node->type == NodeTypeFnCallExpr &&
fn->inferred_async_node->data.fn_call_expr.is_builtin)
{
@@ -4128,6 +4203,64 @@ static void add_async_error_notes(CodeGen *g, ErrorMsg *msg, ZigFn *fn) {
}
}
// ErrorNone - not async
// ErrorIsAsync - yes async
// ErrorSemanticAnalyzeFail - compile error emitted result is invalid
static Error analyze_callee_async(CodeGen *g, ZigFn *fn, ZigFn *callee, AstNode *call_node,
bool must_not_be_async)
{
if (callee->type_entry->data.fn.fn_type_id.cc != CallingConventionUnspecified)
return ErrorNone;
if (callee->anal_state == FnAnalStateReady) {
analyze_fn_body(g, callee);
if (callee->anal_state == FnAnalStateInvalid) {
return ErrorSemanticAnalyzeFail;
}
}
bool callee_is_async;
if (callee->anal_state == FnAnalStateComplete) {
analyze_fn_async(g, callee, true);
if (callee->anal_state == FnAnalStateInvalid) {
return ErrorSemanticAnalyzeFail;
}
callee_is_async = fn_is_async(callee);
} else {
// If it's already been determined, use that value. Otherwise
// assume non-async, emit an error later if it turned out to be async.
if (callee->inferred_async_node == nullptr ||
callee->inferred_async_node == inferred_async_checking)
{
callee->assumed_non_async = call_node;
callee_is_async = false;
} else {
callee_is_async = callee->inferred_async_node != inferred_async_none;
}
}
if (callee_is_async) {
fn->inferred_async_node = call_node;
fn->inferred_async_fn = callee;
if (must_not_be_async) {
ErrorMsg *msg = add_node_error(g, fn->proto_node,
buf_sprintf("function with calling convention '%s' cannot be async",
calling_convention_name(fn->type_entry->data.fn.fn_type_id.cc)));
add_async_error_notes(g, msg, fn);
return ErrorSemanticAnalyzeFail;
}
if (fn->assumed_non_async != nullptr) {
ErrorMsg *msg = add_node_error(g, fn->proto_node,
buf_sprintf("unable to infer whether '%s' should be async",
buf_ptr(&fn->symbol_name)));
add_error_note(g, msg, fn->assumed_non_async,
buf_sprintf("assumed to be non-async here"));
add_async_error_notes(g, msg, fn);
fn->anal_state = FnAnalStateInvalid;
return ErrorSemanticAnalyzeFail;
}
return ErrorIsAsync;
}
return ErrorNone;
}
// This function resolves functions being inferred async.
static void analyze_fn_async(CodeGen *g, ZigFn *fn, bool resolve_frame) {
if (fn->inferred_async_node == inferred_async_checking) {
@@ -4154,42 +4287,40 @@ static void analyze_fn_async(CodeGen *g, ZigFn *fn, bool resolve_frame) {
for (size_t i = 0; i < fn->call_list.length; i += 1) {
IrInstructionCallGen *call = fn->call_list.at(i);
ZigFn *callee = call->fn_entry;
if (callee == nullptr) {
if (call->fn_entry == nullptr) {
// TODO function pointer call here, could be anything
continue;
}
if (callee->type_entry->data.fn.fn_type_id.cc != CallingConventionUnspecified)
continue;
if (callee->anal_state == FnAnalStateReady) {
analyze_fn_body(g, callee);
if (callee->anal_state == FnAnalStateInvalid) {
switch (analyze_callee_async(g, fn, call->fn_entry, call->base.source_node, must_not_be_async)) {
case ErrorSemanticAnalyzeFail:
fn->anal_state = FnAnalStateInvalid;
return;
}
case ErrorNone:
continue;
case ErrorIsAsync:
if (resolve_frame) {
resolve_async_fn_frame(g, fn);
}
return;
default:
zig_unreachable();
}
assert(callee->anal_state == FnAnalStateComplete);
analyze_fn_async(g, callee, true);
if (callee->anal_state == FnAnalStateInvalid) {
fn->anal_state = FnAnalStateInvalid;
return;
}
if (fn_is_async(callee)) {
fn->inferred_async_node = call->base.source_node;
fn->inferred_async_fn = callee;
if (must_not_be_async) {
ErrorMsg *msg = add_node_error(g, fn->proto_node,
buf_sprintf("function with calling convention '%s' cannot be async",
calling_convention_name(fn->type_entry->data.fn.fn_type_id.cc)));
add_async_error_notes(g, msg, fn);
}
for (size_t i = 0; i < fn->await_list.length; i += 1) {
IrInstructionAwaitGen *await = fn->await_list.at(i);
switch (analyze_callee_async(g, fn, await->target_fn, await->base.source_node, must_not_be_async)) {
case ErrorSemanticAnalyzeFail:
fn->anal_state = FnAnalStateInvalid;
return;
}
if (resolve_frame) {
resolve_async_fn_frame(g, fn);
}
return;
case ErrorNone:
continue;
case ErrorIsAsync:
if (resolve_frame) {
resolve_async_fn_frame(g, fn);
}
return;
default:
zig_unreachable();
}
}
fn->inferred_async_node = inferred_async_none;
@@ -4447,6 +4578,8 @@ void semantic_analyze(CodeGen *g) {
ZigFn *fn = g->fn_defs.at(g->fn_defs_index);
g->trace_err = nullptr;
analyze_fn_async(g, fn, true);
if (fn->anal_state == FnAnalStateInvalid)
continue;
if (fn_is_async(fn) && fn->non_async_node != nullptr) {
ErrorMsg *msg = add_node_error(g, fn->proto_node,
buf_sprintf("'%s' cannot be async", buf_ptr(&fn->symbol_name)));
@@ -5599,6 +5732,11 @@ static Error resolve_async_frame(CodeGen *g, ZigType *frame_type) {
return ErrorSemanticAnalyzeFail;
}
analyze_fn_async(g, callee, true);
if (callee->inferred_async_node == inferred_async_checking) {
assert(g->errors.length != 0);
frame_type->data.frame.locals_struct = g->builtin_types.entry_invalid;
return ErrorSemanticAnalyzeFail;
}
if (!fn_is_async(callee))
continue;
@@ -7238,7 +7376,13 @@ static void resolve_llvm_types_struct(CodeGen *g, ZigType *struct_type, ResolveS
di_scope, di_file, line);
struct_type->data.structure.resolve_status = ResolveStatusLLVMFwdDecl;
if (ResolveStatusLLVMFwdDecl >= wanted_resolve_status) return;
if (ResolveStatusLLVMFwdDecl >= wanted_resolve_status) {
struct_type->data.structure.llvm_full_type_queue_index = g->type_resolve_stack.length;
g->type_resolve_stack.append(struct_type);
return;
} else {
struct_type->data.structure.llvm_full_type_queue_index = SIZE_MAX;
}
}
size_t field_count = struct_type->data.structure.src_field_count;
@@ -7442,6 +7586,13 @@ static void resolve_llvm_types_struct(CodeGen *g, ZigType *struct_type, ResolveS
ZigLLVMReplaceTemporary(g->dbuilder, struct_type->llvm_di_type, replacement_di_type);
struct_type->llvm_di_type = replacement_di_type;
struct_type->data.structure.resolve_status = ResolveStatusLLVMFull;
if (struct_type->data.structure.llvm_full_type_queue_index != SIZE_MAX) {
ZigType *last = g->type_resolve_stack.last();
assert(last->id == ZigTypeIdStruct);
last->data.structure.llvm_full_type_queue_index = struct_type->data.structure.llvm_full_type_queue_index;
g->type_resolve_stack.swap_remove(struct_type->data.structure.llvm_full_type_queue_index);
struct_type->data.structure.llvm_full_type_queue_index = SIZE_MAX;
}
}
static void resolve_llvm_types_enum(CodeGen *g, ZigType *enum_type, ResolveStatus wanted_resolve_status) {

View File

@@ -247,6 +247,10 @@ void resolve_llvm_types_fn(CodeGen *g, ZigFn *fn);
bool fn_is_async(ZigFn *fn);
Error type_val_resolve_abi_align(CodeGen *g, ConstExprValue *type_val, uint32_t *abi_align);
Error type_val_resolve_abi_size(CodeGen *g, AstNode *source_node, ConstExprValue *type_val,
size_t *abi_size, size_t *size_in_bits);
Error type_val_resolve_zero_bits(CodeGen *g, ConstExprValue *type_val, ZigType *parent_type,
ConstExprValue *parent_type_val, bool *is_zero_bits);
ZigType *resolve_union_field_type(CodeGen *g, TypeUnionField *union_field);
ZigType *resolve_struct_field_type(CodeGen *g, TypeStructField *struct_field);

View File

@@ -3052,8 +3052,10 @@ static LLVMValueRef ir_render_ptr_of_array_to_slice(CodeGen *g, IrExecutable *ex
IrInstructionPtrOfArrayToSlice *instruction)
{
ZigType *actual_type = instruction->operand->value.type;
LLVMValueRef expr_val = ir_llvm_value(g, instruction->operand);
assert(expr_val);
ZigType *slice_type = instruction->base.value.type;
ZigType *slice_ptr_type = slice_type->data.structure.fields[slice_ptr_index].type_entry;
size_t ptr_index = slice_type->data.structure.fields[slice_ptr_index].gen_index;
size_t len_index = slice_type->data.structure.fields[slice_len_index].gen_index;
LLVMValueRef result_loc = ir_llvm_value(g, instruction->result_loc);
@@ -3061,15 +3063,21 @@ static LLVMValueRef ir_render_ptr_of_array_to_slice(CodeGen *g, IrExecutable *ex
ZigType *array_type = actual_type->data.pointer.child_type;
assert(array_type->id == ZigTypeIdArray);
LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, result_loc, slice_ptr_index, "");
LLVMValueRef indices[] = {
LLVMConstNull(g->builtin_types.entry_usize->llvm_type),
LLVMConstInt(g->builtin_types.entry_usize->llvm_type, 0, false),
};
LLVMValueRef slice_start_ptr = LLVMBuildInBoundsGEP(g->builder, expr_val, indices, 2, "");
gen_store_untyped(g, slice_start_ptr, ptr_field_ptr, 0, false);
if (type_has_bits(actual_type)) {
LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, result_loc, ptr_index, "");
LLVMValueRef indices[] = {
LLVMConstNull(g->builtin_types.entry_usize->llvm_type),
LLVMConstInt(g->builtin_types.entry_usize->llvm_type, 0, false),
};
LLVMValueRef expr_val = ir_llvm_value(g, instruction->operand);
LLVMValueRef slice_start_ptr = LLVMBuildInBoundsGEP(g->builder, expr_val, indices, 2, "");
gen_store_untyped(g, slice_start_ptr, ptr_field_ptr, 0, false);
} else if (ir_want_runtime_safety(g, &instruction->base)) {
LLVMValueRef ptr_field_ptr = LLVMBuildStructGEP(g->builder, result_loc, ptr_index, "");
gen_undef_init(g, slice_ptr_type->abi_align, slice_ptr_type, ptr_field_ptr);
}
LLVMValueRef len_field_ptr = LLVMBuildStructGEP(g->builder, result_loc, slice_len_index, "");
LLVMValueRef len_field_ptr = LLVMBuildStructGEP(g->builder, result_loc, len_index, "");
LLVMValueRef len_value = LLVMConstInt(g->builtin_types.entry_usize->llvm_type,
array_type->data.array.len, false);
gen_store_untyped(g, len_value, len_field_ptr, 0, false);
@@ -3916,7 +3924,7 @@ static LLVMValueRef ir_render_call(CodeGen *g, IrExecutable *executable, IrInstr
LLVMBuildStore(g->builder, awaiter_init_val, awaiter_ptr);
if (ret_has_bits) {
LLVMValueRef ret_ptr = LLVMBuildStructGEP(g->builder, frame_result_loc, frame_ret_start + 2, "");
ret_ptr = LLVMBuildStructGEP(g->builder, frame_result_loc, frame_ret_start + 2, "");
LLVMValueRef ret_ptr_ptr = LLVMBuildStructGEP(g->builder, frame_result_loc, frame_ret_start, "");
LLVMBuildStore(g->builder, ret_ptr, ret_ptr_ptr);
@@ -4059,6 +4067,9 @@ static LLVMValueRef ir_render_call(CodeGen *g, IrExecutable *executable, IrInstr
LLVMValueRef store_instr = LLVMBuildStore(g->builder, result, result_loc);
LLVMSetAlignment(store_instr, get_ptr_align(g, instruction->result_loc->value.type));
return result_loc;
} else if (!callee_is_async && instruction->is_async) {
LLVMBuildStore(g->builder, result, ret_ptr);
return result_loc;
} else {
return result;
}
@@ -5490,6 +5501,44 @@ static LLVMValueRef ir_render_suspend_finish(CodeGen *g, IrExecutable *executabl
return nullptr;
}
static LLVMValueRef gen_await_early_return(CodeGen *g, IrInstruction *source_instr,
LLVMValueRef target_frame_ptr, ZigType *result_type, ZigType *ptr_result_type,
LLVMValueRef result_loc, bool non_async)
{
LLVMTypeRef usize_type_ref = g->builtin_types.entry_usize->llvm_type;
LLVMValueRef their_result_ptr = nullptr;
if (type_has_bits(result_type) && (non_async || result_loc != nullptr)) {
LLVMValueRef their_result_ptr_ptr = LLVMBuildStructGEP(g->builder, target_frame_ptr, frame_ret_start, "");
their_result_ptr = LLVMBuildLoad(g->builder, their_result_ptr_ptr, "");
if (result_loc != nullptr) {
LLVMTypeRef ptr_u8 = LLVMPointerType(LLVMInt8Type(), 0);
LLVMValueRef dest_ptr_casted = LLVMBuildBitCast(g->builder, result_loc, ptr_u8, "");
LLVMValueRef src_ptr_casted = LLVMBuildBitCast(g->builder, their_result_ptr, ptr_u8, "");
bool is_volatile = false;
uint32_t abi_align = get_abi_alignment(g, result_type);
LLVMValueRef byte_count_val = LLVMConstInt(usize_type_ref, type_size(g, result_type), false);
ZigLLVMBuildMemCpy(g->builder,
dest_ptr_casted, abi_align,
src_ptr_casted, abi_align, byte_count_val, is_volatile);
}
}
if (codegen_fn_has_err_ret_tracing_arg(g, result_type)) {
LLVMValueRef their_trace_ptr_ptr = LLVMBuildStructGEP(g->builder, target_frame_ptr,
frame_index_trace_arg(g, result_type), "");
LLVMValueRef src_trace_ptr = LLVMBuildLoad(g->builder, their_trace_ptr_ptr, "");
LLVMValueRef dest_trace_ptr = get_cur_err_ret_trace_val(g, source_instr->scope);
LLVMValueRef args[] = { dest_trace_ptr, src_trace_ptr };
ZigLLVMBuildCall(g->builder, get_merge_err_ret_traces_fn_val(g), args, 2,
get_llvm_cc(g, CallingConventionUnspecified), ZigLLVM_FnInlineAuto, "");
}
if (non_async && type_has_bits(result_type)) {
LLVMValueRef result_ptr = (result_loc == nullptr) ? their_result_ptr : result_loc;
return get_handle_value(g, result_ptr, result_type, ptr_result_type);
} else {
return nullptr;
}
}
static LLVMValueRef ir_render_await(CodeGen *g, IrExecutable *executable, IrInstructionAwaitGen *instruction) {
LLVMTypeRef usize_type_ref = g->builtin_types.entry_usize->llvm_type;
LLVMValueRef zero = LLVMConstNull(usize_type_ref);
@@ -5497,6 +5546,14 @@ static LLVMValueRef ir_render_await(CodeGen *g, IrExecutable *executable, IrInst
ZigType *result_type = instruction->base.value.type;
ZigType *ptr_result_type = get_pointer_to_type(g, result_type, true);
LLVMValueRef result_loc = (instruction->result_loc == nullptr) ?
nullptr : ir_llvm_value(g, instruction->result_loc);
if (instruction->target_fn != nullptr && !fn_is_async(instruction->target_fn)) {
return gen_await_early_return(g, &instruction->base, target_frame_ptr, result_type,
ptr_result_type, result_loc, true);
}
// Prepare to be suspended
LLVMBasicBlockRef resume_bb = gen_suspend_begin(g, "AwaitResume");
LLVMBasicBlockRef end_bb = LLVMAppendBasicBlock(g->cur_fn_val, "AwaitEnd");
@@ -5504,9 +5561,8 @@ static LLVMValueRef ir_render_await(CodeGen *g, IrExecutable *executable, IrInst
// At this point resuming the function will continue from resume_bb.
// This code is as if it is running inside the suspend block.
// supply the awaiter return pointer
LLVMValueRef result_loc = (instruction->result_loc == nullptr) ?
nullptr : ir_llvm_value(g, instruction->result_loc);
if (type_has_bits(result_type)) {
LLVMValueRef awaiter_ret_ptr_ptr = LLVMBuildStructGEP(g->builder, target_frame_ptr, frame_ret_start + 1, "");
if (result_loc == nullptr) {
@@ -5554,28 +5610,8 @@ static LLVMValueRef ir_render_await(CodeGen *g, IrExecutable *executable, IrInst
// Early return: The async function has already completed. We must copy the result and
// the error return trace if applicable.
LLVMPositionBuilderAtEnd(g->builder, early_return_block);
if (type_has_bits(result_type) && result_loc != nullptr) {
LLVMValueRef their_result_ptr_ptr = LLVMBuildStructGEP(g->builder, target_frame_ptr, frame_ret_start, "");
LLVMValueRef their_result_ptr = LLVMBuildLoad(g->builder, their_result_ptr_ptr, "");
LLVMTypeRef ptr_u8 = LLVMPointerType(LLVMInt8Type(), 0);
LLVMValueRef dest_ptr_casted = LLVMBuildBitCast(g->builder, result_loc, ptr_u8, "");
LLVMValueRef src_ptr_casted = LLVMBuildBitCast(g->builder, their_result_ptr, ptr_u8, "");
bool is_volatile = false;
uint32_t abi_align = get_abi_alignment(g, result_type);
LLVMValueRef byte_count_val = LLVMConstInt(usize_type_ref, type_size(g, result_type), false);
ZigLLVMBuildMemCpy(g->builder,
dest_ptr_casted, abi_align,
src_ptr_casted, abi_align, byte_count_val, is_volatile);
}
if (codegen_fn_has_err_ret_tracing_arg(g, result_type)) {
LLVMValueRef their_trace_ptr_ptr = LLVMBuildStructGEP(g->builder, target_frame_ptr,
frame_index_trace_arg(g, result_type), "");
LLVMValueRef src_trace_ptr = LLVMBuildLoad(g->builder, their_trace_ptr_ptr, "");
LLVMValueRef dest_trace_ptr = get_cur_err_ret_trace_val(g, instruction->base.scope);
LLVMValueRef args[] = { dest_trace_ptr, src_trace_ptr };
ZigLLVMBuildCall(g->builder, get_merge_err_ret_traces_fn_val(g), args, 2,
get_llvm_cc(g, CallingConventionUnspecified), ZigLLVM_FnInlineAuto, "");
}
gen_await_early_return(g, &instruction->base, target_frame_ptr, result_type, ptr_result_type,
result_loc, false);
LLVMBuildBr(g->builder, end_bb);
LLVMPositionBuilderAtEnd(g->builder, resume_bb);
@@ -6837,6 +6873,7 @@ static void set_global_tls(CodeGen *g, ZigVar *var, LLVMValueRef global_value) {
}
static void do_code_gen(CodeGen *g) {
Error err;
assert(!g->errors.length);
generate_error_name_table(g);
@@ -6850,6 +6887,8 @@ static void do_code_gen(CodeGen *g) {
// Generate debug info for it but that's it.
ConstExprValue *const_val = var->const_value;
assert(const_val->special != ConstValSpecialRuntime);
if ((err = ir_resolve_lazy(g, var->decl_node, const_val)))
zig_unreachable();
if (const_val->type != var->var_type) {
zig_panic("TODO debug info for var with ptr casted value");
}
@@ -6867,6 +6906,8 @@ static void do_code_gen(CodeGen *g) {
// Generate debug info for it but that's it.
ConstExprValue *const_val = var->const_value;
assert(const_val->special != ConstValSpecialRuntime);
if ((err = ir_resolve_lazy(g, var->decl_node, const_val)))
zig_unreachable();
if (const_val->type != var->var_type) {
zig_panic("TODO debug info for var with ptr casted value");
}
@@ -7200,6 +7241,12 @@ static void do_code_gen(CodeGen *g) {
LLVMSetModuleInlineAsm(g->module, buf_ptr(&g->global_asm));
}
while (g->type_resolve_stack.length != 0) {
ZigType *ty = g->type_resolve_stack.last();
if (type_resolve(g, ty, ResolveStatusLLVMFull))
zig_unreachable();
}
ZigLLVMDIBuilderFinalize(g->dbuilder);
if (g->verbose_llvm_ir) {

View File

@@ -55,6 +55,8 @@ const char *err_str(Error err) {
case ErrorBrokenPipe: return "broken pipe";
case ErrorNoSpaceLeft: return "no space left";
case ErrorNoCCompilerInstalled: return "no C compiler installed";
case ErrorNotLazy: return "not lazy";
case ErrorIsAsync: return "is async";
}
return "(invalid error)";
}

View File

@@ -3268,7 +3268,7 @@ static IrInstruction *ir_build_await_src(IrBuilder *irb, Scope *scope, AstNode *
return &instruction->base;
}
static IrInstruction *ir_build_await_gen(IrAnalyze *ira, IrInstruction *source_instruction,
static IrInstructionAwaitGen *ir_build_await_gen(IrAnalyze *ira, IrInstruction *source_instruction,
IrInstruction *frame, ZigType *result_type, IrInstruction *result_loc)
{
IrInstructionAwaitGen *instruction = ir_build_instruction<IrInstructionAwaitGen>(&ira->new_irb,
@@ -3280,7 +3280,7 @@ static IrInstruction *ir_build_await_gen(IrAnalyze *ira, IrInstruction *source_i
ir_ref_instruction(frame, ira->new_irb.current_basic_block);
if (result_loc != nullptr) ir_ref_instruction(result_loc, ira->new_irb.current_basic_block);
return &instruction->base;
return instruction;
}
static IrInstruction *ir_build_resume(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *frame) {
@@ -10640,7 +10640,9 @@ static void ir_finish_bb(IrAnalyze *ira) {
static IrInstruction *ir_unreach_error(IrAnalyze *ira) {
ira->old_bb_index = SIZE_MAX;
assert(ira->new_irb.exec->first_err_trace_msg != nullptr);
if (ira->new_irb.exec->first_err_trace_msg == nullptr) {
ira->new_irb.exec->first_err_trace_msg = ira->codegen->trace_err;
}
return ira->codegen->unreach_instruction;
}
@@ -12932,7 +12934,52 @@ static bool optional_value_is_null(ConstExprValue *val) {
}
}
// Returns ErrorNotLazy when the value cannot be determined
static Error lazy_cmp_zero(AstNode *source_node, ConstExprValue *val, Cmp *result) {
Error err;
switch (val->special) {
case ConstValSpecialRuntime:
case ConstValSpecialUndef:
return ErrorNotLazy;
case ConstValSpecialStatic:
switch (val->type->id) {
case ZigTypeIdComptimeInt:
case ZigTypeIdInt:
*result = bigint_cmp_zero(&val->data.x_bigint);
return ErrorNone;
default:
return ErrorNotLazy;
}
case ConstValSpecialLazy:
switch (val->data.x_lazy->id) {
case LazyValueIdInvalid:
zig_unreachable();
case LazyValueIdAlignOf:
*result = CmpGT;
return ErrorNone;
case LazyValueIdSizeOf: {
LazyValueSizeOf *lazy_size_of = reinterpret_cast<LazyValueSizeOf *>(val->data.x_lazy);
IrAnalyze *ira = lazy_size_of->ira;
bool is_zero_bits;
if ((err = type_val_resolve_zero_bits(ira->codegen, &lazy_size_of->target_type->value,
nullptr, nullptr, &is_zero_bits)))
{
return err;
}
*result = is_zero_bits ? CmpEQ : CmpGT;
return ErrorNone;
}
default:
return ErrorNotLazy;
}
}
zig_unreachable();
}
static IrInstruction *ir_analyze_bin_op_cmp(IrAnalyze *ira, IrInstructionBinOp *bin_op_instruction) {
Error err;
IrInstruction *op1 = bin_op_instruction->op1->child;
if (type_is_invalid(op1->value.type))
return ira->codegen->invalid_instruction;
@@ -13182,6 +13229,50 @@ static IrInstruction *ir_analyze_bin_op_cmp(IrAnalyze *ira, IrInstructionBinOp *
}
if (one_possible_value || (instr_is_comptime(casted_op1) && instr_is_comptime(casted_op2))) {
{
// Before resolving the values, we special case comparisons against zero. These can often be done
// without resolving lazy values, preventing potential dependency loops.
Cmp op1_cmp_zero;
if ((err = lazy_cmp_zero(bin_op_instruction->base.source_node, &casted_op1->value, &op1_cmp_zero))) {
if (err == ErrorNotLazy) goto never_mind_just_calculate_it_normally;
return ira->codegen->invalid_instruction;
}
Cmp op2_cmp_zero;
if ((err = lazy_cmp_zero(bin_op_instruction->base.source_node, &casted_op2->value, &op2_cmp_zero))) {
if (err == ErrorNotLazy) goto never_mind_just_calculate_it_normally;
return ira->codegen->invalid_instruction;
}
bool can_cmp_zero = false;
Cmp cmp_result;
if (op1_cmp_zero == CmpEQ && op2_cmp_zero == CmpEQ) {
can_cmp_zero = true;
cmp_result = CmpEQ;
} else if (op1_cmp_zero == CmpGT && op2_cmp_zero == CmpEQ) {
can_cmp_zero = true;
cmp_result = CmpGT;
} else if (op1_cmp_zero == CmpEQ && op2_cmp_zero == CmpGT) {
can_cmp_zero = true;
cmp_result = CmpLT;
} else if (op1_cmp_zero == CmpLT && op2_cmp_zero == CmpEQ) {
can_cmp_zero = true;
cmp_result = CmpLT;
} else if (op1_cmp_zero == CmpEQ && op2_cmp_zero == CmpLT) {
can_cmp_zero = true;
cmp_result = CmpGT;
} else if (op1_cmp_zero == CmpLT && op2_cmp_zero == CmpGT) {
can_cmp_zero = true;
cmp_result = CmpLT;
} else if (op1_cmp_zero == CmpGT && op2_cmp_zero == CmpLT) {
can_cmp_zero = true;
cmp_result = CmpGT;
}
if (can_cmp_zero) {
bool answer = resolve_cmp_op_id(op_id, cmp_result);
return ir_const_bool(ira, &bin_op_instruction->base, answer);
}
}
never_mind_just_calculate_it_normally:
ConstExprValue *op1_val = one_possible_value ? &casted_op1->value : ir_resolve_const(ira, casted_op1, UndefBad);
if (op1_val == nullptr)
return ira->codegen->invalid_instruction;
@@ -14626,28 +14717,23 @@ static IrInstruction *ir_analyze_instruction_error_return_trace(IrAnalyze *ira,
static IrInstruction *ir_analyze_instruction_error_union(IrAnalyze *ira,
IrInstructionErrorUnion *instruction)
{
Error err;
IrInstruction *result = ir_const(ira, &instruction->base, ira->codegen->builtin_types.entry_type);
result->value.special = ConstValSpecialLazy;
ZigType *err_set_type = ir_resolve_type(ira, instruction->err_set->child);
if (type_is_invalid(err_set_type))
LazyValueErrUnionType *lazy_err_union_type = allocate<LazyValueErrUnionType>(1);
lazy_err_union_type->ira = ira;
result->value.data.x_lazy = &lazy_err_union_type->base;
lazy_err_union_type->base.id = LazyValueIdErrUnionType;
lazy_err_union_type->err_set_type = instruction->err_set->child;
if (ir_resolve_type_lazy(ira, lazy_err_union_type->err_set_type) == nullptr)
return ira->codegen->invalid_instruction;
ZigType *payload_type = ir_resolve_type(ira, instruction->payload->child);
if (type_is_invalid(payload_type))
lazy_err_union_type->payload_type = instruction->payload->child;
if (ir_resolve_type_lazy(ira, lazy_err_union_type->payload_type) == nullptr)
return ira->codegen->invalid_instruction;
if (err_set_type->id != ZigTypeIdErrorSet) {
ir_add_error(ira, instruction->err_set->child,
buf_sprintf("expected error set type, found type '%s'",
buf_ptr(&err_set_type->name)));
return ira->codegen->invalid_instruction;
}
if ((err = type_resolve(ira->codegen, payload_type, ResolveStatusSizeKnown)))
return ira->codegen->invalid_instruction;
ZigType *result_type = get_error_union_type(ira->codegen, err_set_type, payload_type);
return ir_const_type(ira, &instruction->base, result_type);
return result;
}
static IrInstruction *ir_analyze_alloca(IrAnalyze *ira, IrInstruction *source_inst, ZigType *var_type,
@@ -16815,12 +16901,6 @@ static IrInstruction *ir_analyze_instruction_elem_ptr(IrAnalyze *ira, IrInstruct
return ira->codegen->invalid_instruction;
bool safety_check_on = elem_ptr_instruction->safety_check_on;
if ((err = type_resolve(ira->codegen, return_type->data.pointer.child_type, ResolveStatusSizeKnown)))
return ira->codegen->invalid_instruction;
uint64_t elem_size = type_size(ira->codegen, return_type->data.pointer.child_type);
uint64_t abi_align = get_abi_alignment(ira->codegen, return_type->data.pointer.child_type);
uint64_t ptr_align = get_ptr_align(ira->codegen, return_type);
if (instr_is_comptime(casted_elem_index)) {
uint64_t index = bigint_as_u64(&casted_elem_index->value.data.x_bigint);
if (array_type->id == ZigTypeIdArray) {
@@ -16834,8 +16914,16 @@ static IrInstruction *ir_analyze_instruction_elem_ptr(IrAnalyze *ira, IrInstruct
safety_check_on = false;
}
{
if (return_type->data.pointer.explicit_alignment != 0) {
// figure out the largest alignment possible
if ((err = type_resolve(ira->codegen, return_type->data.pointer.child_type, ResolveStatusSizeKnown)))
return ira->codegen->invalid_instruction;
uint64_t elem_size = type_size(ira->codegen, return_type->data.pointer.child_type);
uint64_t abi_align = get_abi_alignment(ira->codegen, return_type->data.pointer.child_type);
uint64_t ptr_align = get_ptr_align(ira->codegen, return_type);
uint64_t chosen_align = abi_align;
if (ptr_align >= abi_align) {
while (ptr_align > abi_align) {
@@ -17064,15 +17152,24 @@ static IrInstruction *ir_analyze_instruction_elem_ptr(IrAnalyze *ira, IrInstruct
case ReqCompTimeNo:
break;
}
if (ptr_align < abi_align) {
if (elem_size >= ptr_align && elem_size % ptr_align == 0) {
return_type = adjust_ptr_align(ira->codegen, return_type, ptr_align);
if (return_type->data.pointer.explicit_alignment != 0) {
if ((err = type_resolve(ira->codegen, return_type->data.pointer.child_type, ResolveStatusSizeKnown)))
return ira->codegen->invalid_instruction;
uint64_t elem_size = type_size(ira->codegen, return_type->data.pointer.child_type);
uint64_t abi_align = get_abi_alignment(ira->codegen, return_type->data.pointer.child_type);
uint64_t ptr_align = get_ptr_align(ira->codegen, return_type);
if (ptr_align < abi_align) {
if (elem_size >= ptr_align && elem_size % ptr_align == 0) {
return_type = adjust_ptr_align(ira->codegen, return_type, ptr_align);
} else {
// can't get here because guaranteed elem_size >= abi_align
zig_unreachable();
}
} else {
// can't get here because guaranteed elem_size >= abi_align
zig_unreachable();
return_type = adjust_ptr_align(ira->codegen, return_type, abi_align);
}
} else {
return_type = adjust_ptr_align(ira->codegen, return_type, abi_align);
}
}
@@ -18071,54 +18168,20 @@ static IrInstruction *ir_analyze_instruction_array_type(IrAnalyze *ira,
zig_unreachable();
}
static IrInstruction *ir_analyze_instruction_size_of(IrAnalyze *ira,
IrInstructionSizeOf *size_of_instruction)
{
Error err;
IrInstruction *type_value = size_of_instruction->type_value->child;
ZigType *type_entry = ir_resolve_type(ira, type_value);
static IrInstruction *ir_analyze_instruction_size_of(IrAnalyze *ira, IrInstructionSizeOf *instruction) {
IrInstruction *result = ir_const(ira, &instruction->base, ira->codegen->builtin_types.entry_num_lit_int);
result->value.special = ConstValSpecialLazy;
if ((err = type_resolve(ira->codegen, type_entry, ResolveStatusSizeKnown)))
LazyValueSizeOf *lazy_size_of = allocate<LazyValueSizeOf>(1);
lazy_size_of->ira = ira;
result->value.data.x_lazy = &lazy_size_of->base;
lazy_size_of->base.id = LazyValueIdSizeOf;
lazy_size_of->target_type = instruction->type_value->child;
if (ir_resolve_type_lazy(ira, lazy_size_of->target_type) == nullptr)
return ira->codegen->invalid_instruction;
switch (type_entry->id) {
case ZigTypeIdInvalid: // handled above
zig_unreachable();
case ZigTypeIdUnreachable:
case ZigTypeIdUndefined:
case ZigTypeIdNull:
case ZigTypeIdBoundFn:
case ZigTypeIdArgTuple:
case ZigTypeIdOpaque:
ir_add_error_node(ira, type_value->source_node,
buf_sprintf("no size available for type '%s'", buf_ptr(&type_entry->name)));
return ira->codegen->invalid_instruction;
case ZigTypeIdMetaType:
case ZigTypeIdEnumLiteral:
case ZigTypeIdComptimeFloat:
case ZigTypeIdComptimeInt:
case ZigTypeIdVoid:
case ZigTypeIdBool:
case ZigTypeIdInt:
case ZigTypeIdFloat:
case ZigTypeIdPointer:
case ZigTypeIdArray:
case ZigTypeIdStruct:
case ZigTypeIdOptional:
case ZigTypeIdErrorUnion:
case ZigTypeIdErrorSet:
case ZigTypeIdEnum:
case ZigTypeIdUnion:
case ZigTypeIdFn:
case ZigTypeIdVector:
case ZigTypeIdFnFrame:
case ZigTypeIdAnyFrame:
{
uint64_t size_in_bytes = type_size(ira->codegen, type_entry);
return ir_const_unsigned(ira, &size_of_instruction->base, size_in_bytes);
}
}
zig_unreachable();
return result;
}
static IrInstruction *ir_analyze_test_non_null(IrAnalyze *ira, IrInstruction *source_inst, IrInstruction *value) {
@@ -24702,18 +24765,22 @@ static IrInstruction *ir_analyze_instruction_suspend_finish(IrAnalyze *ira,
}
static IrInstruction *analyze_frame_ptr_to_anyframe_T(IrAnalyze *ira, IrInstruction *source_instr,
IrInstruction *frame_ptr)
IrInstruction *frame_ptr, ZigFn **target_fn)
{
if (type_is_invalid(frame_ptr->value.type))
return ira->codegen->invalid_instruction;
*target_fn = nullptr;
ZigType *result_type;
IrInstruction *frame;
if (frame_ptr->value.type->id == ZigTypeIdPointer &&
frame_ptr->value.type->data.pointer.ptr_len == PtrLenSingle &&
frame_ptr->value.type->data.pointer.child_type->id == ZigTypeIdFnFrame)
{
result_type = frame_ptr->value.type->data.pointer.child_type->data.frame.fn->type_entry->data.fn.fn_type_id.return_type;
ZigFn *func = frame_ptr->value.type->data.pointer.child_type->data.frame.fn;
result_type = func->type_entry->data.fn.fn_type_id.return_type;
*target_fn = func;
frame = frame_ptr;
} else {
frame = ir_get_deref(ira, source_instr, frame_ptr, nullptr);
@@ -24721,7 +24788,9 @@ static IrInstruction *analyze_frame_ptr_to_anyframe_T(IrAnalyze *ira, IrInstruct
frame->value.type->data.pointer.ptr_len == PtrLenSingle &&
frame->value.type->data.pointer.child_type->id == ZigTypeIdFnFrame)
{
result_type = frame->value.type->data.pointer.child_type->data.frame.fn->type_entry->data.fn.fn_type_id.return_type;
ZigFn *func = frame->value.type->data.pointer.child_type->data.frame.fn;
result_type = func->type_entry->data.fn.fn_type_id.return_type;
*target_fn = func;
} else if (frame->value.type->id != ZigTypeIdAnyFrame ||
frame->value.type->data.any_frame.result_type == nullptr)
{
@@ -24742,7 +24811,11 @@ static IrInstruction *analyze_frame_ptr_to_anyframe_T(IrAnalyze *ira, IrInstruct
}
static IrInstruction *ir_analyze_instruction_await(IrAnalyze *ira, IrInstructionAwaitSrc *instruction) {
IrInstruction *frame = analyze_frame_ptr_to_anyframe_T(ira, &instruction->base, instruction->frame->child);
IrInstruction *operand = instruction->frame->child;
if (type_is_invalid(operand->value.type))
return ira->codegen->invalid_instruction;
ZigFn *target_fn;
IrInstruction *frame = analyze_frame_ptr_to_anyframe_T(ira, &instruction->base, operand, &target_fn);
if (type_is_invalid(frame->value.type))
return ira->codegen->invalid_instruction;
@@ -24751,8 +24824,11 @@ static IrInstruction *ir_analyze_instruction_await(IrAnalyze *ira, IrInstruction
ZigFn *fn_entry = exec_fn_entry(ira->new_irb.exec);
ir_assert(fn_entry != nullptr, &instruction->base);
if (fn_entry->inferred_async_node == nullptr) {
fn_entry->inferred_async_node = instruction->base.source_node;
// If it's not @Frame(func) then it's definitely a suspend point
if (target_fn == nullptr) {
if (fn_entry->inferred_async_node == nullptr) {
fn_entry->inferred_async_node = instruction->base.source_node;
}
}
if (type_can_fail(result_type)) {
@@ -24769,8 +24845,10 @@ static IrInstruction *ir_analyze_instruction_await(IrAnalyze *ira, IrInstruction
result_loc = nullptr;
}
IrInstruction *result = ir_build_await_gen(ira, &instruction->base, frame, result_type, result_loc);
return ir_finish_anal(ira, result);
IrInstructionAwaitGen *result = ir_build_await_gen(ira, &instruction->base, frame, result_type, result_loc);
result->target_fn = target_fn;
fn_entry->await_list.append(result);
return ir_finish_anal(ira, &result->base);
}
static IrInstruction *ir_analyze_instruction_resume(IrAnalyze *ira, IrInstructionResume *instruction) {
@@ -25553,6 +25631,61 @@ static Error ir_resolve_lazy_raw(AstNode *source_node, ConstExprValue *val) {
bigint_init_unsigned(&val->data.x_bigint, align_in_bytes);
return ErrorNone;
}
case LazyValueIdSizeOf: {
LazyValueSizeOf *lazy_size_of = reinterpret_cast<LazyValueSizeOf *>(val->data.x_lazy);
IrAnalyze *ira = lazy_size_of->ira;
if (lazy_size_of->target_type->value.special == ConstValSpecialStatic) {
switch (lazy_size_of->target_type->value.data.x_type->id) {
case ZigTypeIdInvalid: // handled above
zig_unreachable();
case ZigTypeIdUnreachable:
case ZigTypeIdUndefined:
case ZigTypeIdNull:
case ZigTypeIdBoundFn:
case ZigTypeIdArgTuple:
case ZigTypeIdOpaque:
ir_add_error(ira, lazy_size_of->target_type,
buf_sprintf("no size available for type '%s'",
buf_ptr(&lazy_size_of->target_type->value.data.x_type->name)));
return ErrorSemanticAnalyzeFail;
case ZigTypeIdMetaType:
case ZigTypeIdEnumLiteral:
case ZigTypeIdComptimeFloat:
case ZigTypeIdComptimeInt:
case ZigTypeIdVoid:
case ZigTypeIdBool:
case ZigTypeIdInt:
case ZigTypeIdFloat:
case ZigTypeIdPointer:
case ZigTypeIdArray:
case ZigTypeIdStruct:
case ZigTypeIdOptional:
case ZigTypeIdErrorUnion:
case ZigTypeIdErrorSet:
case ZigTypeIdEnum:
case ZigTypeIdUnion:
case ZigTypeIdFn:
case ZigTypeIdVector:
case ZigTypeIdFnFrame:
case ZigTypeIdAnyFrame:
break;
}
}
uint64_t abi_size;
uint64_t size_in_bits;
if ((err = type_val_resolve_abi_size(ira->codegen, source_node, &lazy_size_of->target_type->value,
&abi_size, &size_in_bits)))
{
return err;
}
val->special = ConstValSpecialStatic;
assert(val->type->id == ZigTypeIdComptimeInt);
bigint_init_unsigned(&val->data.x_bigint, abi_size);
return ErrorNone;
}
case LazyValueIdSliceType: {
LazyValueSliceType *lazy_slice_type = reinterpret_cast<LazyValueSliceType *>(val->data.x_lazy);
IrAnalyze *ira = lazy_slice_type->ira;
@@ -25698,6 +25831,34 @@ static Error ir_resolve_lazy_raw(AstNode *source_node, ConstExprValue *val) {
val->data.x_type = fn_type;
return ErrorNone;
}
case LazyValueIdErrUnionType: {
LazyValueErrUnionType *lazy_err_union_type =
reinterpret_cast<LazyValueErrUnionType *>(val->data.x_lazy);
IrAnalyze *ira = lazy_err_union_type->ira;
ZigType *err_set_type = ir_resolve_type(ira, lazy_err_union_type->err_set_type);
if (type_is_invalid(err_set_type))
return ErrorSemanticAnalyzeFail;
ZigType *payload_type = ir_resolve_type(ira, lazy_err_union_type->payload_type);
if (type_is_invalid(payload_type))
return ErrorSemanticAnalyzeFail;
if (err_set_type->id != ZigTypeIdErrorSet) {
ir_add_error(ira, lazy_err_union_type->err_set_type,
buf_sprintf("expected error set type, found type '%s'",
buf_ptr(&err_set_type->name)));
return ErrorSemanticAnalyzeFail;
}
if ((err = type_resolve(ira->codegen, payload_type, ResolveStatusSizeKnown)))
return ErrorSemanticAnalyzeFail;
assert(val->type->id == ZigTypeIdMetaType);
val->data.x_type = get_error_union_type(ira->codegen, err_set_type, payload_type);
val->special = ConstValSpecialStatic;
return ErrorNone;
}
}
zig_unreachable();
}

View File

@@ -74,6 +74,17 @@ struct ZigList {
capacity = better_capacity;
}
T swap_remove(size_t index) {
if (length - 1 == index) return pop();
assert(index != SIZE_MAX);
assert(index < length);
T old_item = items[index];
items[index] = pop();
return old_item;
}
T *items;
size_t length;
size_t capacity;

View File

@@ -75,6 +75,8 @@ enum Error {
ErrorOperationAborted,
ErrorBrokenPipe,
ErrorNoSpaceLeft,
ErrorNotLazy,
ErrorIsAsync,
};
// ABI warning

View File

@@ -1,5 +1,6 @@
const std = @import("std");
const builtin = @import("builtin");
const assert = std.debug.assert;
const mem = std.mem;
const meta = std.meta;
@@ -165,8 +166,17 @@ pub fn hash(hasher: var, key: var, comptime strat: HashStrategy) void {
/// Slices are rejected to avoid ambiguity on the user's intention.
pub fn autoHash(hasher: var, key: var) void {
const Key = @typeOf(key);
if (comptime meta.trait.isSlice(Key))
@compileError("std.auto_hash.autoHash does not allow slices (here " ++ @typeName(Key) ++ " because the intent is unclear. Consider using std.auto_hash.hash or providing your own hash function instead.");
if (comptime meta.trait.isSlice(Key)) {
comptime assert(@hasDecl(std, "StringHashMap")); // detect when the following message needs updated
const extra_help = if (Key == []const u8)
" Consider std.StringHashMap for hashing the contents of []const u8."
else
"";
@compileError("std.auto_hash.autoHash does not allow slices (here " ++ @typeName(Key) ++
") because the intent is unclear. Consider using std.auto_hash.hash or providing your own hash function instead." ++
extra_help);
}
hash(hasher, key, .Shallow);
}

View File

@@ -75,15 +75,16 @@ pub const Allocator = struct {
new_alignment: u29,
) []u8,
/// Call `destroy` with the result.
/// Returns undefined memory.
/// Returns a pointer to undefined memory.
/// Call `destroy` with the result to free the memory.
pub fn create(self: *Allocator, comptime T: type) Error!*T {
if (@sizeOf(T) == 0) return &(T{});
const slice = try self.alloc(T, 1);
return &slice[0];
}
/// `ptr` should be the return value of `create`
/// `ptr` should be the return value of `create`, or otherwise
/// have the same address and alignment property.
pub fn destroy(self: *Allocator, ptr: var) void {
const T = @typeOf(ptr).Child;
if (@sizeOf(T) == 0) return;
@@ -92,7 +93,7 @@ pub const Allocator = struct {
assert(shrink_result.len == 0);
}
pub fn alloc(self: *Allocator, comptime T: type, n: usize) ![]T {
pub fn alloc(self: *Allocator, comptime T: type, n: usize) Error![]T {
return self.alignedAlloc(T, @alignOf(T), n);
}
@@ -101,7 +102,7 @@ pub const Allocator = struct {
comptime T: type,
comptime alignment: u29,
n: usize,
) ![]align(alignment) T {
) Error![]align(alignment) T {
if (n == 0) {
return ([*]align(alignment) T)(undefined)[0..0];
}

View File

@@ -210,6 +210,103 @@ test "zig fmt: comment to disable/enable zig fmt" {
);
}
test "zig fmt: line comment following 'zig fmt: off'" {
try testCanonical(
\\// zig fmt: off
\\// Test
\\const e = f;
);
}
test "zig fmt: doc comment following 'zig fmt: off'" {
try testCanonical(
\\// zig fmt: off
\\/// test
\\const e = f;
);
}
test "zig fmt: line and doc comment following 'zig fmt: off'" {
try testCanonical(
\\// zig fmt: off
\\// test 1
\\/// test 2
\\const e = f;
);
}
test "zig fmt: doc and line comment following 'zig fmt: off'" {
try testCanonical(
\\// zig fmt: off
\\/// test 1
\\// test 2
\\const e = f;
);
}
test "zig fmt: alternating 'zig fmt: off' and 'zig fmt: on'" {
try testCanonical(
\\// zig fmt: off
\\// zig fmt: on
\\// zig fmt: off
\\const e = f;
\\// zig fmt: off
\\// zig fmt: on
\\// zig fmt: off
\\const a = b;
\\// zig fmt: on
\\const c = d;
\\// zig fmt: on
\\
);
}
test "zig fmt: line comment following 'zig fmt: on'" {
try testCanonical(
\\// zig fmt: off
\\const e = f;
\\// zig fmt: on
\\// test
\\const e = f;
\\
);
}
test "zig fmt: doc comment following 'zig fmt: on'" {
try testCanonical(
\\// zig fmt: off
\\const e = f;
\\// zig fmt: on
\\/// test
\\const e = f;
\\
);
}
test "zig fmt: line and doc comment following 'zig fmt: on'" {
try testCanonical(
\\// zig fmt: off
\\const e = f;
\\// zig fmt: on
\\// test1
\\/// test2
\\const e = f;
\\
);
}
test "zig fmt: doc and line comment following 'zig fmt: on'" {
try testCanonical(
\\// zig fmt: off
\\const e = f;
\\// zig fmt: on
\\/// test1
\\// test2
\\const e = f;
\\
);
}
test "zig fmt: pointer of unknown length" {
try testCanonical(
\\fn foo(ptr: [*]u8) void {}
@@ -2278,7 +2375,6 @@ test "zig fmt: if type expr" {
\\
);
}
test "zig fmt: file ends with struct field" {
try testTransform(
\\a: bool
@@ -2288,6 +2384,20 @@ test "zig fmt: file ends with struct field" {
);
}
test "zig fmt: comment after empty comment" {
try testTransform(
\\const x = true; //
\\//
\\//
\\//a
\\
,
\\const x = true;
\\//a
\\
);
}
test "zig fmt: comments at several places in struct init" {
try testTransform(
\\var bar = Bar{

View File

@@ -89,41 +89,98 @@ fn renderRoot(
var it = tree.root_node.decls.iterator(0);
while (true) {
var decl = (it.next() orelse return).*;
// look for zig fmt: off comment
var start_token_index = decl.firstToken();
zig_fmt_loop: while (start_token_index != 0) {
start_token_index -= 1;
const start_token = tree.tokens.at(start_token_index);
switch (start_token.id) {
// This loop does the following:
//
// - Iterates through line/doc comment tokens that precedes the current
// decl.
// - Figures out the first token index (`copy_start_token_index`) which
// hasn't been copied to the output stream yet.
// - Detects `zig fmt: (off|on)` in the line comment tokens, and
// determines whether the current decl should be reformatted or not.
//
var token_index = decl.firstToken();
var fmt_active = true;
var found_fmt_directive = false;
var copy_start_token_index = token_index;
while (token_index != 0) {
token_index -= 1;
const token = tree.tokens.at(token_index);
switch (token.id) {
Token.Id.LineComment => {},
Token.Id.DocComment => continue,
Token.Id.DocComment => {
copy_start_token_index = token_index;
continue;
},
else => break,
}
if (mem.eql(u8, mem.trim(u8, tree.tokenSlicePtr(start_token)[2..], " "), "zig fmt: off")) {
var end_token_index = start_token_index;
while (true) {
end_token_index += 1;
const end_token = tree.tokens.at(end_token_index);
switch (end_token.id) {
if (mem.eql(u8, mem.trim(u8, tree.tokenSlicePtr(token)[2..], " "), "zig fmt: off")) {
if (!found_fmt_directive) {
fmt_active = false;
found_fmt_directive = true;
}
} else if (mem.eql(u8, mem.trim(u8, tree.tokenSlicePtr(token)[2..], " "), "zig fmt: on")) {
if (!found_fmt_directive) {
fmt_active = true;
found_fmt_directive = true;
}
}
}
if (!fmt_active) {
// Reformatting is disabled for the current decl and possibly some
// more decls that follow.
// Find the next `decl` for which reformatting is re-enabled.
token_index = decl.firstToken();
while (!fmt_active) {
decl = (it.next() orelse {
// If there's no next reformatted `decl`, just copy the
// remaining input tokens and bail out.
const start = tree.tokens.at(copy_start_token_index).start;
try copyFixingWhitespace(stream, tree.source[start..]);
return;
}).*;
var decl_first_token_index = decl.firstToken();
while (token_index < decl_first_token_index) : (token_index += 1) {
const token = tree.tokens.at(token_index);
switch (token.id) {
Token.Id.LineComment => {},
Token.Id.Eof => {
const start = tree.tokens.at(start_token_index + 1).start;
try copyFixingWhitespace(stream, tree.source[start..]);
return;
},
Token.Id.Eof => unreachable,
else => continue,
}
if (mem.eql(u8, mem.trim(u8, tree.tokenSlicePtr(end_token)[2..], " "), "zig fmt: on")) {
const start = tree.tokens.at(start_token_index + 1).start;
try copyFixingWhitespace(stream, tree.source[start..end_token.end]);
try stream.writeByte('\n');
while (tree.tokens.at(decl.firstToken()).start < end_token.end) {
decl = (it.next() orelse return).*;
}
break :zig_fmt_loop;
if (mem.eql(u8, mem.trim(u8, tree.tokenSlicePtr(token)[2..], " "), "zig fmt: on")) {
fmt_active = true;
} else if (mem.eql(u8, mem.trim(u8, tree.tokenSlicePtr(token)[2..], " "), "zig fmt: off")) {
fmt_active = false;
}
}
}
// Found the next `decl` for which reformatting is enabled. Copy
// the input tokens before the `decl` that haven't been copied yet.
var copy_end_token_index = decl.firstToken();
token_index = copy_end_token_index;
while (token_index != 0) {
token_index -= 1;
const token = tree.tokens.at(token_index);
switch (token.id) {
Token.Id.LineComment => {},
Token.Id.DocComment => {
copy_end_token_index = token_index;
continue;
},
else => break,
}
}
const start = tree.tokens.at(copy_start_token_index).start;
const end = tree.tokens.at(copy_end_token_index).start;
try copyFixingWhitespace(stream, tree.source[start..end]);
}
try renderTopLevelDecl(allocator, stream, tree, 0, &start_col, decl);
@@ -1937,15 +1994,24 @@ fn renderTokenOffset(
}
}
const comment_is_empty = mem.trimRight(u8, tree.tokenSlicePtr(next_token), " ").len == 2;
if (comment_is_empty) {
switch (space) {
Space.Newline => {
try stream.writeByte('\n');
start_col.* = 0;
return;
},
else => {},
while (true) {
const comment_is_empty = mem.trimRight(u8, tree.tokenSlicePtr(next_token), " ").len == 2;
if (comment_is_empty) {
switch (space) {
Space.Newline => {
offset += 1;
token = next_token;
next_token = tree.tokens.at(token_index + offset);
if (next_token.id != .LineComment) {
try stream.writeByte('\n');
start_col.* = 0;
return;
}
},
else => break,
}
} else {
break;
}
}

View File

@@ -273,7 +273,7 @@ pub fn addCases(cases: *tests.CompileErrorContext) void {
\\}
,
"tmp.zig:1:1: error: function with calling convention 'ccc' cannot be async",
"tmp.zig:3:18: note: await is a suspend point",
"tmp.zig:3:18: note: await here is a suspend point",
);
cases.add(
@@ -507,11 +507,11 @@ pub fn addCases(cases: *tests.CompileErrorContext) void {
cases.add(
"@sizeOf bad type",
\\export fn entry() void {
\\ _ = @sizeOf(@typeOf(null));
\\export fn entry() usize {
\\ return @sizeOf(@typeOf(null));
\\}
,
"tmp.zig:2:17: error: no size available for type '(null)'",
"tmp.zig:2:20: error: no size available for type '(null)'",
);
cases.add(

View File

@@ -292,3 +292,9 @@ test "read/write through global variable array of struct fields initialized via
};
S.doTheTest();
}
test "implicit cast zero sized array ptr to slice" {
var b = "";
const c: []const u8 = &b;
expect(c.len == 0);
}

View File

@@ -844,3 +844,13 @@ test "cast fn to async fn when it is inferred to be async" {
resume S.frame;
expect(S.ok);
}
test "await does not force async if callee is blocking" {
const S = struct {
fn simple() i32 {
return 1234;
}
};
var x = async S.simple();
expect(await x == 1234);
}

View File

@@ -375,3 +375,23 @@ test "implicit cast to optional to error union to return result loc" {
S.entry();
//comptime S.entry(); TODO
}
test "function pointer with return type that is error union with payload which is pointer of parent struct" {
const S = struct {
const Foo = struct {
fun: fn (a: i32) (anyerror!*Foo),
};
const Err = error{UnspecifiedErr};
fn bar(a: i32) anyerror!*Foo {
return Err.UnspecifiedErr;
}
fn doTheTest() void {
var x = Foo{ .fun = bar };
expectError(error.UnspecifiedErr, x.fun(1));
}
};
S.doTheTest();
}

View File

@@ -74,3 +74,18 @@ test "@sizeOf on compile-time types" {
expect(@sizeOf(@typeOf(.hi)) == 0);
expect(@sizeOf(@typeOf(type)) == 0);
}
test "@sizeOf(T) == 0 doesn't force resolving struct size" {
const S = struct {
const Foo = struct {
y: if (@sizeOf(Foo) == 0) u64 else u32,
};
const Bar = struct {
x: i32,
y: if (0 == @sizeOf(Bar)) u64 else u32,
};
};
expect(@sizeOf(S.Foo) == 4);
expect(@sizeOf(S.Bar) == 8);
}